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Abstract. An efficient numerical method based on a quintic spline collocation is proposed for the

numerical solution of neutral delay differential equations (NDDEs). The convergence analysis is given

and the method is shown to have fifth-order convergence. Finally, numerical results for two nonlinear

examples are given to illustrate the efficiency of our method.
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1. Introduction

Neutral delay differential equations (NDDEs), arise widely in scientific fields, such as

control theory, bioscience, physics; we refer reader for many examples to the monograph

[8]. This class of equations play an important role in modeling phenomena of the real

world. So it is valuable to investigate the properties of the solutions of these equations.

Since most of these equations cannot be solved exactly, it is necessary to study efficient

numerical methods to solve these equations.
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In this paper we will be concerned with the numerical solution for the initial value

problems (IVPs) of NDDEs:

y′(t) = f(t, y(t), y(t− τ), y′(t− τ)), t ∈ [t0, tf ],

y(t) = φ(t), t ≤ t0,
(1.1)

where f ∈ C5([t0, tf ]×R×R×R) is Lipschitz continuous with respect to y, τ is a positive

constant, φ is given continuously differentiable function.

Spline methods for solving delay differential equations (DDEs) and NDDEs are con-

sidered in [1, 3]. C3-spline collocation methods with four points for solving DDEs and

second order NDDEs were presented in [4, 5]. C1-spline collocation methods for solving

stiff delay and DDEs were studied in [6, 7]. More detailed analysis for both the conver-

gence and absolute stability was also given. The convergence of numerical methods for

NDDEs have previously been considered by several authors (see, e.g., [2, 10, 13]). Analysis

of convergence and absolute stability of quintic C2-spline integrating method for solving

second-order ordinary initial value problems were studied in [9].

The outline of this paper is as follows: Section 2 contains an investigation of the

existence, uniqueness, and the precise definition of spline collocation methods. Analysis

of convergence for the method has been discussed in Section 3. In Section 4, numerical

results are included to demonstrate the efficiency of the method. The last section is

conclusion.

2. Description of the methods

Consider the initial value problem for the NDDEs (1.1). For a given positive integer

n, the interval [t0, tf ] is partitioned into n equal subintervals Ii = [ti−1, ti], i = 1(1)n with

ti = ti−1 + h, n = (tf − t0)/h, h is the stepsize. The basic idea is to generate a quintic

spline collocation methods S ∈ C1[t0, tf ] at the Chebyshev points

c` =
ti + ti−1

2
+
ti − ti−1

2
(−cos`π

4
), ` = 0(1)4, i = 1(1)n. (2.1)
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Let S
(1)
n,5 = {S(t) : S ∈ C1[t0, tf ], S ∈ Π5, for t ∈ Ii, i = 1(1)n}, where Π5 denotes the

collection of all polynomials of degree ≤ 5. Using the notations

S ′i−1 = S ′(ti−1), S ′i−1+c1
= S ′(ti−1+c1), S ′i−1+c2

= S ′(ti−1+c2),

S ′i−1+c3
= S ′(ti−1+c3), S ′i = S ′(ti), i = 1(1)n,

a quintic spline functions S ∈ S(1)
n,5 can be represented on each Ii by

Si(t) =Si−1 + hA(ξ)S ′i−1 + hB(ξ)S ′i−1+c1
+ hC(ξ)S ′i−1+c2

+ hD(ξ)S ′i−1+c3
+ hE(ξ)S ′i,

(2.2)

where A(ξ), ..., E(ξ) are given in the Appendix of this paper, t = ti−1 + ξh, ξ ∈ [0, 1].

Since S ∈ S(1)
n,5, then the approximate spline solution S(t) to the exact solution y(t) of Eq.

(1.1) will be constructing as follows: for i = 1(1)n

Si = M0Si−1 + hM1S
′
i−1 + hM2S

′
i (2.3)

where Si = (Si−1+c1 , Si−1+c2 , Si−1+c3 , Si)
T , S ′i = (S ′i−1+c1

, S ′i−1+c2
, S ′i−1+c3

, S ′i)
T ,

S ′i−1+c`
= f

(
ti−1+c` , S(ti−1+c`), S(ti−1+c` − τ), S ′(ti−1+c` − τ)

)
, (2.4)

c` be given in Eq. (2.1), M0 = (1, 1, 1, 1)T , M1 and M2 are also given in the Appendix of

this paper.

It is easy to define that S(ti−1+c` − τ) = φ(ti−1+c` − τ) when (ti−1+c` − τ) ≤ t0, and if

(ti−1+c` − τ) ∈ [tk−1, tk], k = 1(1)i, then S(ti−1+c` − τ) can be calculated by

S(ti−1+c` − τ) =Sk−1 + hA(ζ)S ′k−1 + hB(ζ)S ′k−1+c1
+ hC(ζ)S ′k−1+c2

+ hD(ζ)S ′k−1+c3
+ hE(ζ)S ′k,

(2.5)

where

ζ =
(ti−1+c` − τ)− tk−1

h
∈ [0, 1].

and A(ζ), ..., E(ζ) be given in Eq. (5.1).
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Also S ′(ti−1+c` − τ) = φ′(ti−1+c` − τ) when (ti−1+c` − τ) ≤ t0, and if (ti−1+c` − τ) ∈

[tm−1, tm],m = 1(1)i, then S ′(ti−1+c` − τ) can be calculated by

S ′(ti−1+c` − τ) =A′(ζ)S ′m−1 +B′(ζ)S ′m−1+c1
+ C ′(ζ)S ′m−1+c2

+D′(ζ)S ′m−1+c3
+ E ′(ζ)S ′m,

(2.6)

with

ζ =
(ti−1+c` − τ)− tm−1

h
∈ [0, 1],

and A′(ζ), ..., E ′(ζ) can be calculated from Eq. (5.1).

From Equations (2.4)-(2.6), system (2.3) can be solved for Si−1+c1 , Si−1+c2 , Si−1+c3 , Si.

Theorem 2.1. If f satisfies Lipschitz condition, and if

h <
1

1.02427L
, (2.7)

then there exists a unique spline approximation solution of Eq. (1.1) given by system

(2.3).

Proof. It is sufficient to prove that Si = (Si−1+c1 , Si−1+c2 , Si−1+c3 , Si)
T can be uniquely

determined for an arbitrary given Si−1. Since, we can write system (2.3) as follows:

Si = M0Si−1 + hM1fi−1 + hM2f i
(2.8)

where f
i

= (fi−1+c1 , fi−1+c2 , fi−1+c3 , fi)
T , from Eq. (2.8), we have

Si,1 = M0Si−1 + hM1fi−1,1 + hM2f i,1

Si,2 = M0Si−1 + hM1fi−1,2 + hM2f i,2
.

Thus, Si,1 and Si,2 can be written in the form

Si,1 = Q
i,1

(Si−1+c1,1, Si−1+c2,1, Si−1+c3,1, Si,1),

Si,2 = Q
i,2

(Si−1+c1,2, Si−1+c2,2, Si−1+c3,2, Si,2).
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Applying ‖.‖1, Lipschitz condition, we get

‖Q
i,1
−Q

i,2
‖ = ‖(M0Si−1 + hM1fi−1,1 + hM2f i,1

)

− (M0Si−1 + hM1fi−1,2 + hM2f i,2
)‖

≤
{
‖M1‖h|fi−1,1 − fi−1,2|+ ‖M2‖h

(
|fi−1+c1,1 − fi−1+c1,2|

+ |fi−1+c2,1 − fi−1+c2,2|+ |fi−1+c3,1 − fi−1+c3,2|+ |fi,1 − fi,2|
)}

<
{ 7

48
hL1|Si−1,1 − Si−1,2|+ 1.02427h

(
L2|Si−1+c1,1 − Si−1+c1,2|

+ L3|Si−1+c2,1 − Si−1+c2,2|+ L4|Si−1+c3,1 − Si−1+c3,2|+ L5|Si,1 − Si,2|
)}

<1.02427hL
{
|Si−1,1 − Si−1,2|+ |Si−1+c1,1 − Si−1+c1,2|

+ |Si−1+c2,1 − Si−1+c2,2|+ |Si−1+c3,1 − Si−1+c3,2|+ |Si,1 − Si,2|
}

where

L = max(L1, L2, L3, L4, L5).

Thus, the function Q
i
defines a contraction mapping, if (1.02427)hL < 1, which satisfies

Eq. (2.7). Hence, there exists a unique Si that satisfies

Si = Q
i
(Si−1+c1 , Si−1+c2 , Si−1+c3 , Si)

which may be found by iteration

Sp+1
i = Q

i
(Sp

i ), p = 0, 1, 2, ....

The proof of Theorem 2.1 is now complete.

3. Convergence of the method

In this section the emphasis is on conditions for convergence of the proposed method.

It is shown that the method is a continuous extension of a multi-step method, and its

derivative reproduces the values given by the well-known closed four-panel Newton-Cotes

formula at the mesh points. A priori error estimates in L∞−norm shows that the method

is a fifth order as well as its first derivatives, according to the following:
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Lemma 3.1. Let f ∈ C6([t0, tf ]×R×R×R), then

ei = O(h5), i = 0(1)n, (3.1)

where ei = Si − yi, with yi = y(ti).

Proof. Since

Si = Si−1 +
h

30

(
S ′i−1 + 8S ′i−1+c1

+ 12S ′i−1+c2
+ 8S ′i−1+c3

+ S ′i

)
,

which is the well-known closed four-panel Newton-Cotes formula, applied to y′(t), if y ∈

C6[t0, tf ], then it follows that

e′i = O(h5).

But

ei = ei−1 + δi.

where

δi =
h

30

(
e′i−1 + 8e′i−1+c1

+ 12e′i−1+c2
+ 8e′i−1+c3

+ e′i

)
+O(h6), e0 = 0,

thus

ei =
i∑

j=1

δj

or

ei = O(h5). (3.2)

The proof of Lemma 3.1 is now completed.

We now turn to prove the following main theorem, which provides estimation for the

global error for S(t)− y(t) and its first derivative.

Theorem 3.1. Let f ∈ C6([t0, tf ]×R×R×R), then for all t ∈ [t0, tf ], we have

|S(k)(t)− y(k)(t)| < Ckh
5, k = 0, 1, (3.3)

where Ck denote generic constants independent of h, but dependent on the order of the

various derivatives.

Proof. On [ti−1, ti], we have

e′i(t) = S ′(t)− u′(t) + u′(t)− y′(t),
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where u′(t) is the quartic interpolant of y′(t) at ti−1, ti−1+c1 , ti−1+c2 , ti−1+c3 and ti. It can

be easily verified that

u′(t) = y′i−1A
′(ξ) + y′i−1+c1

B′(ξ) + y′i−1+c2
C ′(ξ) + y′i−1+c3

D′(ξ) + y′iE
′(ξ),

with A′(ξ), ..., E ′(ξ) can be calculated from Eq. (5.1).

But

S ′(t)− u′(t) = e′i−1A
′(ξ) + e′i−1+c1

B′(ξ) + e′i−1+c2
C ′(ξ) + e′i−1+c3

D′(ξ) + e′iE
′(ξ).

Therefore,

|S ′(t)− u′(t)| ≤ |e′i−1||A′(ξ)|+ |e′i−1+c1
||B′(ξ)|+ |e′i−1+c2

||C ′(ξ)|

+ |e′i−1+c3
||D′(ξ)|+ |e′i||E ′(ξ)|

≤ |e′i−1|+ |e′i−1+c1
|+ |e′i−1+c2

|+ |e′i−1+c3
|+ |e′i|,

and using Lemma 3.1, it follows that

|S ′(t)− u′(t)| = O(h5).

Also from the construction of u′(t), it follows that |u′(t) − y′(t)| = O(h5), provided f ∈

C6([t0, tf ]×R×R×R). Hence, |e′(t)| ≤ C1h
5.

On [ti−1, ti], we have

e(t) =

∫ t

ti−1

e′(ξ)dξ + ei−1

or, using Lemma 3.1, we get

|e(t)| ≤ C0h
5.

This completes the proof of Theorem 3.1.

4. Numerical results

To demonstrate the applicability of our presented method for the approximate solution

of the NDDEs computationally, two nonlinear examples are considered. All calculations

are implemented by MATLAB 7.
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Example 4.1. [11] Consider the following nonlinear NDDEs:

y′(t) =r y(t) + a cos
(
y(t− τ) + y′(t− τ)

)
+cos(t)exp(−t)

− a cos
(
cos(t− τ)exp(−(t− τ))

)
, t ≥ 0,

y(t) =exp(−t)sin(t), −1 ≤ t ≤ 0,

where τ = 1, r = −1, a = 0.9. The exact solution is given by

y(t) = exp(−t)sin(t), t ≥ −1.

In Table 1, we give the absolute errors between the exact solution and the numerical

results by the present method.

Table 1. Absolute errors for the solution of Example 4.1

t h = 0.2 h = 0.1

2 5.807605E-11 9.045403E-13

4 1.200563E-11 1.875131E-13

6 4.509175E-13 6.898019E-15

8 1.705967E-13 2.669847E-15

10 2.450184E-14 3.962657E-16

Table 2. Errors |yni − y2n2i | of Example 4.2 for n = 50.

t |yni − y2n2i |

2 2.018320E-10

4 3.718039E-10

6 6.768029E-11

8 2.129114E-12

10 1.285190E-13

Example 4.2. [12] Consider the following nonlinear NDDEs:

y′(t) = −20y(t) + 0.25cos(y(t− 1))sin(y′(t− 1)), t ∈ [0, 10].
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In Table 2, the absolute errors for this example are calculated, with initial function

φ(t) = t, using the double mesh principle |yni − y2n2i | (because the exact solution for this

example is not available).

5. Conclusion

In this paper, a numerical method based on a quintic C1-spline collocation is proposed

for the numerical solution of NDDEs. Our present methods have convergence of order

five. Numerical results are presented in tables. It can be observed from the tables that

the results of the present method are very encouraging.
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Appendices

A. Appendix In this Appendix, we give the A(ξ), ...E(ξ).

A(ξ) = ξ − 11

2
ξ2 +

34

3
ξ3 − 10ξ4 +

16

5
ξ5,

B(ξ) = 6.82842712474616ξ2 − 18.99018758282566ξ3 + 18.82842712474616ξ4 − 32

5
ξ5,

C(ξ) = −2ξ2 + 12ξ3 − 16ξ4 + 6.4ξ5,

D(ξ) = 1.17157287525384ξ2 − 7.67647908384101ξ3 + 13.17157287525384ξ4 − 6.4ξ5,

E(ξ) = −0.5ξ2 +
10

3
ξ3 − 6ξ4 +

16

5
ξ5.

(5.1)

B. Appendix In this Appendix, we give the M1 and the matrix M2.

M1 = (0.05970177968644, 1/60, 0.03613155364689, 1/30)T ,

M2 =


0.09503171601907 −0.01213203435596 0.00664336837074 0.00279822031356

0.31011002862997 0.2 −0.04344336196330 0.01666666666667

0.26002329829592 0.41213203435597 0.17163495064760 −0.02636844635311

4/15 2/5 4/15 1/30

.


