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Abstract: In the present paper we have found out the equation of geodesic for a more general (   )  metric 

as compared to Randers, Kropina and Matsumoto mertric under the same conditions as for the Randers, Kropina 

and Matsumoto metric, the geodesic of the two-dimensional space with following metrics are the same as that of 

Matsumoto metric 

            
  

 
 

    
   

          
 

   
 

We have also deal the geodesic of two-dimensional Finsler space with metric, 

            
  

 
 

All the above three metrics are special form of the general metric, 

    
   

          
 

       
 

wherea’s and k’s are constants. 
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0.  Introduction 

 In the year 1997 Matsumoto and Park [1] obtained the equation of geodesic in two-

dimensional Finsler spaces with the Randers metric (     ) and the Kropina metric 
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(     ⁄ ), whereas in 1998, they have [2] obtained the equation of geodesic in two-

dimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by   

  (   ⁄ ), by considering   as an infinitesimal of degree one and neglecting infinitesimal 

of degree more than two they obtained the equations of geodesic of two-dimensional Finsler 

space in the form      (      ), where (x, y) are the co-ordinate of two-dimensional 

Finsler space. 

 In the present paper we have shown that under the same conditions as for the 

Matsumoto metric, the equations of geodesic of the two-dimensional space with following 

metrics are the same as that of Matsumoto metric 

            
  

 
 

    
   

          
 

   
 

 We have also deal the geodesic of two-dimensional Finsler space with metric, 

            
  

 
 

 All the above three metrics are special form of the general metric, 

    
   

          
 

       
 

wherea’s and k’s are constants. 

 

1. Preliminaries 

 We consider a two-dimensional Finsler space    (    (   ))  with the (  

 )  metric ([3], [4], [5], [7]) where   √   ( ) ̇  ̇  is a Riemannian metric and   

  ( ) 
  is a one form on   . The space    (    ) is said to be a Riemannian space 

associated to   . 

 M. Matsumoto constructed the problem in his paper [2] as follows: 

(I).  The underlying manifold    is thought of as a surface S of the ordinary 3-space with an 

orthonormal co-ordinate system (  )          which by the parametric equation  (  )  

  (     ). Then S is equipped with the induced Riemannian metric  . Thus two tangent 
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vector field             , are given with the components   
  

   

    and then     ∑   
   

 
 . 

Let   (  ) be the unit normal vector to S. 

 In S an isothermal co-ordinate system    (   ) may be referred in which   is of 

the form     , where    (   ) is a positive-valued function and   √ ̇   ̇ . Then 

the Christoffel symbols    
 (   ) of S in (  ) are given by (   

     
     

      
     

     
 )  

(                         )  ⁄ . We shall denote by (;) the covariant differentiation with 

respect to Christoffel symbols in   . 

(II).  Let  (  ) be a constant vector field in the ambient 3-space, and put, 

(1.1)             

along S. Then the tangential component of B gives to the linear form, 

(1.2)       ̇
 ,         

     

 The Gauss-Weingarten derivation formulae lead from (1.1) to, 

      (   
          )  (   

       
   ) 

 where,     is the second fundamental tensor of S and          
 . From,      , we 

get    
      

 , i.e., 

(1.3)            . 

 Consequently, we have,           i.e.         and hence    is a gradient vector 

field in S. 

(III).  The linear form   was originally to be induced one in S by the earth’s gravity [4]. 

Hence it is here assumed that the constant vector field B is parallel to the    axis, i.e. 

   (      )           . Then from (1.1) we have        
    (  ) . Since 

(           )  (       ), then 

  (
 

 
)
 

 (  )  (  )  (
  

 
)
 

. 

 We shall regard the quantity 
 

 
 as an infinitesimal of degree one, and neglect the 

infinitesimal of degree more than two. Then it is natural from the above that   ,    and 
  

 
 are 
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also those of degree one. Further (1.3) shows that     ⁄  (     ̇
  ̇ )  ⁄  may be regarded as 

an infinitesimal of degree one. Consequently,  

(1.4)       ⁄                ⁄                 ⁄  

 are infinitesimals of degree one, whereas      ̇     ̇. Thus, 

(I)  is the induced Riemannian metric in a surface S and, in particular     . 

(II)  is the linear form in ( ̇ ) induced from a constant vector field (      ) by (1.1) 

and (1.2). 

(III)  ,  , and   of (1.4) are regarded as infinitesimals of degree one, and infinitesimals 

of degree more than two are neglected. 

2. Special (   )  metric 

 Here we shall consider the special (   )  metric 

(2.1)    
   

          
 

       
, 

wherea’s and k’s are constants. It is obvious that by homothetic change of  and  . 

This kind of metric may be classified as follows: 

(I)         , we have the Randers metric      , 

(2.2)            
  

 
 

(II)         , we have the Randers metric      , 

(2.3)            
  

 
 

(III)       , we have, 

(2.4)    
   

          
 

   
 

Remark: If,          , then (2.2) reduced to       
  

 
 which is the Matsumoto 

metric of second kind. If,    and     , then (2.2) reduced to     
  

 
. This metric is 

also a very special metric introduced by Matsumoto [6]. If             and    

     , then the metric (2.1) is reduced to Matsumoto metric,     (   ⁄ ). 

 Now, we study the geodesic in two-dimensional Finsler space with above metrics. 
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3. Geodesics of the special (   )  metric 

 M. Matsumoto in his paper [1] found out the differential equation of the geodesic in 

an isothermal co-ordinate system (  )  (   ) for the (   )  metric is 

(3.1)  (        )  ( )      
      (       )    

where we put,    
   

    
   

  
 

   

   

   ( )   ( ̇ ̈   ̇ ̈)   ⁄  (   ̇     ̇)  ⁄  

It is remarked that the equation   ( )    gives the geodesic of the associated 

Riemannian space. 

Now according to the above contribution (3.1) may be written for the metric (2.2) in 

the form 

 (  
    

     
     

    )  ( )  
     

     

Let us neglect the infinitesimals of degree more than two. Then we have 

(3.2)    ( )  
     

     

Remark: If we take      then equation (3.2) reduced to   ( )  
     

   that is the result is 

reduced as for the Matsumoto metric [2]. 

 Therefore on our construction, we obtain the approximate equation of geodesics in the 

form 

(3.3)      
 

    
   

    
 

 
(  ) (   

    ) 

where,  

(3.3)'  {
       ⁄            √  (  )                

    

   
       (         ) 

      ( 
 ) 

 

 Next if we take the metric (2.3) then the differential equation (3.1) of geodesic is 

written as 

  (    
           )  ( )      

 Let us neglect the infinitesimals of degree more than two. Then we have 
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(3.4)    ( )  
  

 (     )
 

 Therefore on our construction, we obtain the approximate equation of geodesics in the 

form 

(3.5)      
 

  
    

    
    

 

 
(  ) (   

    ) 

 where    
 ,   ,    and    are given in (3.3)'. 

 Again if we take the metric (2.4) then the differential equation of (3.1) of geodesic is 

written as 

 (          
    (     )

 
 

     (        )

(    )
)  ( )  

     (        )

 (    )
 

 Let us neglect the infinitesimals of degree more than two. Then we have 

  
  

(    )
 

  

 
                   

  

 (    )
 

  

   

 Thus the equation is reduced to 

(3.6)    ( )  
     (        )

   

Remark: If we take     and        , then equation (3.6) is reduced to,   ( )  
     

   

that is the result for Matsumoto metric [2]. 

 Therefore on our construction, we obtain the approximate equation of geodesics in the 

form 

(3.7)      
 (        )

       
    

 

 
(  ) (   

    ) 

 where    
 ,   ,    and    are given in (3.3)'. 

4. Some Examples 

 In the following we shall use the notation as follows: 

  (  )  (     )                 (  )  (   ) 

Example 1 We consider the circular cylinder S:                , which is also written 

as 

  S:                                              

 Then we get 



EQUATION OF GEODESIC FOR A (   )  METRIC                                     869 

    (              )              (     )               (            ) 

 (           )  (     )         (              )  (                 ) 

 Consequently we have 

                                   

 Therefore (3.3) gives the approximate differential equation of geodesic is 

(4.1)      
  

  
(     )     

 Next (3.5) gives the differential equation of geodesic is as 

      (    )      

 which has the solution  

(4.2)              

 where    and    are constants. The above equation shows sine curve which shown for 

different values of    and    are given below: 

 

Fig. 1 The solution of equation of geodesic for thecircular cylinder S:       

         , behaves like Sine curves 

 Again (3.7) gives the approximate differential equation of geodesic is 

(4.3)      (        ) 
 (     )    . 

 Next we are interested in revolution surfaces the axis of which is parallel to the 

constant vector field B. Such a surface S is given by 
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     ( )                  ( )                   ( ) 

 Denoting (u, y) by (  ) we have 

    (                )                  (                    ) 

   (                     )  ⁄           √(  )  (  )  

 (           )  (       )     (              )  ( 
   

 
       

   

 
)   

 (     )  (     ) 

 Consequently we get 

                                    . 

 We need an isothermal co-ordinate system if we take 

(4.4)    ∫
 

 
   

 Then we obtain 

(4.5)      ( ) (       )               
   

 
    

Example 2 We shall deal with the sphere, surface of constant curvature +1:  ( )      and 

 ( )      . Then F = 1 and (4.4) gives, 

    ∫
 

    
   

 

 
   

      

      
 

 Then 
      

      
     implies, 

 

    
      , and hence    

  

     
. Consequently (4.5) 

leads to 

     
 

      
(       )           

 

      
   

 Therefore (3.3) gives the approximate differential equation of geodesics in the form 

(4.6)           (  
   

        
) {   (  ) } 

 Again (3.5) gives the approximate differential equation of geodesics in the form 

        

which has the solution  

(4.7)           
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 where    and    are constants. The above equation shows sin curve which shown for 

different values of    and    are given below 

 

 

Fig. 2 The solution of equation of geodesic for the sphere, surface of constant curvature 

+1:  ( )       and  ( )      , behaves like Straight line  

Again (3.7) gives the approximate differential equation of geodesics in the form 

(4.8)           (  
 (        ) 

 

      
) {   (  ) } 

Example 3 We shall treat of the pseudo-sphere, surface of constant curvature   1:   ( )  

    and  ( )        (
 

 
 

 

 
)     . We have,    

     

    
       

    

    
, and (4.4) gives 

  
 

    
. Therefore (4.5) leads to 

     
 

  
(       )            

√    

     

 We shall exchange x and y as usual: 

     
 

  
(       )            

√    

  
  . 

 Then (3.3) yields the approximate differential equation of geodesic as 

(4.9)       
(  )

 
  

 
 

   

    
{     (  ) } 

 Again (3.5) gives the approximate differential equation of geodesics in the form 

      
 (  )
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which, has the solution  

(4.10)  
 

 
 √     

 

 
   (  √    )         

 where,    and    are constants. 

Again (3.7) gives the approximate differential equation of geodesics in the form, 

(4.11)       
(  )

 
  

 
 

 (        ) 
 

  
{     (  ) }. 
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