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Abstract: In the present paper we have found out the equation of geodesic for a more general (@, §) —metric
as compared to Randers, Kropina and Matsumoto mertric under the same conditions as for the Randers, Kropina
and Matsumoto metric, the geodesic of the two-dimensional space with following metrics are the same as that of
Matsumoto metric

BZ
L=ca+cf+—

cra’+cyaf+czf?
a+f

L=
We have also deal the geodesic of two-dimensional Finsler space with metric,
aZ
L=ca+cp+ r

All the above three metrics are special form of the general metric,

_ kia?+kpaf+k3p?
aja+azf

L

wherea’s and k’s are constants.
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0. Introduction

In the year 1997 Matsumoto and Park [1] obtained the equation of geodesic in two-

dimensional Finsler spaces with the Randers metric (L = a + ) and the Kropina metric
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(L = a?/B), whereas in 1998, they have [2] obtained the equation of geodesic in two-
dimensional Finsler space with the slope metrics, i.e. Matsumoto metric given by L =
a?/(a — pB), by considering 8 as an infinitesimal of degree one and neglecting infinitesimal
of degree more than two they obtained the equations of geodesic of two-dimensional Finsler
space in the form y” = f(x, y, ¥'), where (x, y) are the co-ordinate of two-dimensional

Finsler space.

In the present paper we have shown that under the same conditions as for the
Matsumoto metric, the equations of geodesic of the two-dimensional space with following
metrics are the same as that of Matsumoto metric

2
L=c1a+czﬁ+;

cia?+cyaf+c3B?
a+p

L=
We have also deal the geodesic of two-dimensional Finsler space with metric,
6{2
L=ca+cpf+ r

All the above three metrics are special form of the general metric,

_ k1a2+k2aﬁ+k3ﬁz
- a,a+af

L

wherea’s and k’s are constants.

1. Preliminaries

We consider a two-dimensional Finsler space F? = (M?, L(x,y)) with the (a,

B) —metric ([3], [4], [5], [7]) where a = /aij(x)fcifcf is a Riemannian metric and g =

b;(x)y' is a one form on M?. The space R?> = (M?, ) is said to be a Riemannian space

associated to F2.
M. Matsumoto constructed the problem in his paper [2] as follows:

(1). The underlying manifold M? is thought of as a surface S of the ordinary 3-space with an
orthonormal co-ordinate system (X%), a = 1,2,3, which by the parametric equation (X%) =

X%(x1, x?). Then S is equipped with the induced Riemannian metric a. Thus two tangent
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vector field B;, i = 1,2, are given with the components B = % and then a;; = ¥ B{*B;}".

Let N = (N%) be the unit normal vector to S.

In S an isothermal co-ordinate system x' = (x, y) may be referred in which a is of
the form a = aE, where a = a(x, y) is a positive-valued function and E = \/m Then
the Christoffel symbols v/, (x, ¥) of S in (x!) are given by (viy, ¥ia, V32 YA, Vi ¥i2) =
(ay, a,, —ay, —ay, a,, a,)/a. We shall denote by (;) the covariant differentiation with

respect to Christoffel symbols in R?.
(I1). LetB = (B%) be a constant vector field in the ambient 3-space, and put,
(1.1) B = b'B; + b°N

along S. Then the tangential component of B gives to the linear form,
(1.2) B = b;ixt, b; = a;;b’

The Gauss-Weingarten derivation formulae lead from (1.1) to,

B,; = (b);B; + b'H;N) + (b5N — b°H}B))

where, H;; is the second fundamental tensor of S and H;; = al-kij. From, B,; = 0, we
get b; = b°H/, i.e.,
(1.3) b;.; = b°Hj;.

Consequently, we have, b;;; = b;,; i.e. by, = by, and hence b; is a gradient vector
field in S.

(111).  The linear form S was originally to be induced one in S by the earth’s gravity [4].
Hence it is here assumed that the constant vector field B is parallel to the X3 —axis, i.e.
B* = (0, 0,—G),G = const.> 0. Then from (1.1) we have G2 = a;;b'b’ + (b°)%. Since

(a11, @12, azz) = (a? 0, a?), then

O - oo+ ()

We shall regard the quantitygas an infinitesimal of degree one, and neglect the

0
infinitesimal of degree more than two. Then it is natural from the above that b, b? and % are



866 V. K. CHAUBEY, B. N. PRASAD AND D. D. TRIPATHI

also those of degree one. Further (1.3) shows that £.,/a = (bi;jfcifcf)/a may be regarded as

an infinitesimal of degree one. Consequently,
(1.4) A=B/a®, p=y/a®, v=py/a
are infinitesimals of degree one, whereas y = b;y — b,x. Thus,

Q) ais the induced Riemannian metric in a surface S and, in particular « = aE.

(I1)  Bis the linear form in (k%) induced from a constant vector field (0, 0,—G) by (1.1)
and (1.2).

(1) A, u, and v of (1.4) are regarded as infinitesimals of degree one, and infinitesimals

of degree more than two are neglected.
2. Special (a, B) —metric

Here we shall consider the special (a, ) —metric

_ kya’+kyaB+ksp?
- aja+azfl

(2.1) L

wherea’s and k’s are constants. It is obvious that by homothetic change of aand S.

This kind of metric may be classified as follows:

(Day # 0, a, = 0, we have the Randers metric L = a + £,
2

(2.2) L= c1a+c2[3+%

(Ia, =0, a, # 0, we have the Randers metric L = a + 3,
2

(2.3) L= c1a+c2[3+%

(1ay, a, # 0, we have,

c1a2+c2aﬂ+C3BZ
a+f

(2.4) L=

Remark: If,c; =1, ¢, =1, then (2.2) reduced to L = a + f +£Which is the Matsumoto

metric of second kind. If,c; = 1and ¢, = 0, then (2.2) reduced to L = a + %2 This metric is

also a very special metric introduced by Matsumoto [6]. If k; =1, k, = k; = 0and a; =

1 = —a,, then the metric (2.1) is reduced to Matsumoto metric, L = a?/(a — ).

Now, we study the geodesic in two-dimensional Finsler space with above metrics.



EQUATION OF GEODESIC FOR A (a, 8) —METRIC 867

3. Geodesics of the special (a, ) —metric

M. Matsumoto in his paper [1] found out the differential equation of the geodesic in
an isothermal co-ordinate system (xi) = (x, y) for the (a, B) —metric is
(3.1) (L + aEwyHRi(C) — Boa’wy — Lg(byy — byy) =0

L L L
where we put, w = -%& = 228 _ B

B2 apB a2
Ri(C) = a(xy — y¥#)/E® + (ayy — ay%)/E
It is remarked that the equation Ri(C) = 0 gives the geodesic of the associated

Riemannian space.

Now according to the above contribution (3.1) may be written for the metric (2.2) in

the form

2192 2,2 2
(122 4 2000 gy gy = 2o

C1E2 (,'1E3 C1E3

Let us neglect the infinitesimals of degree more than two. Then we have

. _ ZaZuv
(32) Rl(C) = clT
2
Remark: If we take ¢; = 1 then equation (3.2) reduced to Ri(C) = ZaEfV that is the result is

reduced as for the Matsumoto metric [2].

Therefore on our construction, we obtain the approximate equation of geodesics in the

form
(33) ' = 5By — 2 (ED*(ay - a)
where,
(3.3) {y’ =dy/dx, E =\J1+0@)% vy =by —b
B = by + (byy + by1)y' + by (v')?

Next if we take the metric (2.3) then the differential equation (3.1) of geodesic is

written as
(cpaA® + 2E2% + 2Eu®)Ri(C) = 2uv

Let us neglect the infinitesimals of degree more than two. Then we have
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(3.4) Ri(C) = #

Therefore on our construction, we obtain the approximate equation of geodesics in the

form
(35) " _ 1 B* *_l(E*)Z(a '_a )
' Y =PV T xY — Ay
where £, v*, E* and y’ are given in (3.3)".

Again if we take the metric (2.4) then the differential equation of (3.1) of geodesic is

written as

a?2%(cy—c3) |, 2a?p2(c1—cz+c3) . _ 2a2pv(ci—cy+c3)
(ClE t2c0d+— (E+ak) )Rl(c) T T EGE+ad)

Let us neglect the infinitesimals of degree more than two. Then we have

2 2

W _u

(E+al)  E

woouv
E(E+al)  EZ2

)

Thus the equation is reduced to

2a?pv(ci—ca+c3)
E3

(3.6) Ri(C) =

2a%uv

Remark: If we take ¢; = 0and ¢, = ¢3 = 0, then equation (3.6) is reduced to, Ri(C) = 5

that is the result for Matsumoto metric [2].

Therefore on our construction, we obtain the approximate equation of geodesics in the

form

17} 2( - ) * * 1 * !
(3.7) y' =T gyt -~ (B (ay' — ay)

c1a?
where S, v, E* and y’ are given in (3.3)".
4. Some Examples
In the following we shall use the notation as follows:
X=X, 7Y, 2), (x') = (x »)

Example 1 We consider the circular cylinder S: X2 + Z2 =1, Y =y, which is also written

as
S: X =cosx, Y=y, Z =sinx

Then we get
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B; = (—sinx, 0, cosx), B, = (0, 1, 0), N = (cosx 0, sinx)
(ay1, a12, ay) =(1, 0, 1), (b, b? b%) =(Gcosx, 0, —G sinx)
Consequently we have

a? = dx? + dy?, f =—Gcosx dx

Therefore (3.3) gives the approximate differential equation of geodesic is
GZ
(4.1) y'+ o (sin2x)y' =0

Next (3.5) gives the differential equation of geodesic is as
y'+ (tanx)y =0
which has the solution
4.2) y=a'sinx+ b’

where a’ and b’ are constants. The above equation shows sine curve which shown for

AL
AVAVAVATAVAY
IRIEIRIER

Fig. 1 The solution of equation of geodesic for thecircular cylinder S: X? + Z% =

different values of a’ and b’ are given below:

1, Y =y, behaves like Sine curves
Again (3.7) gives the approximate differential equation of geodesic is
(4.3) y" + (c1 — €3 + €3)G*(sin2x)y’ = 0

Next we are interested in revolution surfaces the axis of which is parallel to the

constant vector field B. Such a surface S is given by
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X =g)cosy, Y =g)siny, Z = f(u)
Denoting (u, y) by (x*) we have
By =(g'cosy, g'siny, ), B, = (—gsiny, gcosy, 0)
N = (=f'cosy, —f'siny, g0/F, F=()?+(g)?

— (E2 2 1 p2 poy — (_Gf _Gg'
(a1, a1z, az) = (F%, 0, g°), (b,b,b)—( F,O, F),

(b1, by) = (Gf', 0)
Consequently we get
a? = F%2du? + g2dy?, g =—Gf' du.
We need an isothermal co-ordinate system if we take
(4.4) x=[ gdu
Then we obtain
(4.5) o = g (dx* +dyd),  p=-G6LL dx

Example 2 We shall deal with the sphere, surface of constant curvature +1: g(u) = cosuand
f(u) = sinu. Then F =1 and (4.4) gives,

1 1 1+sinu
x = [—du==log—
cosu 2 1-sinu

dx

Then =552 — g2x implies, —L_ = coshu, and hence du = . Consequently (4.5)
1-sinu cosu coshx
leads to
2 1 2 2 _ __ G
a = cosh2x (dx + dy )' ﬁ T cosh2x

Therefore (3.3) gives the approximate differential equation of geodesics in the form

2G?
cicosh2x

(4.6) y" = tanhx (1 - ){y’ + (y)H3}
Again (3.5) gives the approximate differential equation of geodesics in the form
yll — 0

which has the solution

4.7 y=a x+b'
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where a’ and b’ are constants. The above equation shows sin curve which shown for

different values of a’ and b’ are given below

-2

Fig. 2 The solution of equation of geodesic for the sphere, surface of constant curvature

+1: g(u) = cosu and f(u) = sin u, behaves like Straight line

Again (3.7) gives the approximate differential equation of geodesics in the form

_ 2
(4.8) y"” = tanhx (1 - M) iy + ()3}

cosh2x

Example 3 We shall treat of the pseudo-sphere, surface of constant curvature —1: g(u) =

u ., . , _ sinfu __sinu .
cosuand f(u) = logtan (E+Z> —sinu. We have, f' = v F = o and (4.4) gives
x = ——. Therefore (4.5) leads to

cosu
a? = xiz(dx2 +dy?), B=-G xxzz_l dx

We shall exchange x and y as usual:

a? = y—lz(dx2 +dy?), B=-G '3;22_1dy.
Then (3.3) yields the approximate differential equation of geodesic as

r/__(y,)2+1_£ _ 2 "2
(4.9) y' = Ayt 0%

Again (3.5) gives the approximate differential equation of geodesics in the form

2
y(»")
y>-1

y'+ =0
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which, has the solution

(4.10) %y yz—l—%log(y+\/y2—1)=a’x+b’
where, a’ and b’ are constants.
Again (3.7) gives the approximate differential equation of geodesics in the form,

_ (y’)2+1 _ 2(c1—ca+c3)G?

(4.11) y'=-" % {1-y*+ ("%
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