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FINITE ITERATIVE ALGORITHM FOR SOLVING THE GENERALIZED
COUPLED SYLVESTER - CONJUGATE MATRIX EQUATIONS

AV +BW =E,VF, +C, AND AV +B,W =E,VF, +C,
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Abstract. In this paper, we consider an iterative algorithm for solving a generalized coupled Sylvester— conjugate
matrix equation. With the iterative algorithm, the existence of a comman solution of these two matrix equation can
be determined automatically. When these two matrix equations are consistent, for any initial matrices Vl,Wl the

solutions can be obtained by iterative algorithm within finite iterative steps in the absence of round off errors. Some
lemmas and theorems are stated and proved where the iterative solutions are obtained. A numerical example is given

to illustrate the effectiveness of the proposed method and to support the theoretical results of this paper.
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1. Introduction
Consider the generalized coupled Sylvester — conjugate matrix equation
AV +BW =E,VF, +C,,

_ oy
AV +BW =E,VF, +C,,

where A ,E,,A,,E,eC™", B,,B,eC™, F,F,eC"® and C,,C, eC™Pare given matrices, while
VeC™ and W eC"™" are matrices to be determined. Matrix equations are often encountered

in many areas of computational mathematics, control and system theory. Research on solving

linear matrix equations has been actively engaged in for many years. For example, Navarra et al.
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studied a representation of the general common solution of the matrix equations

A XB, =C,, A, XB, =C,[1]; van der Woude obtained the existence of a common solution X for

matrix equations A XB; =C; [2]; Bhimasankaram considered the linear matrix equation

AX =C,XB=Dand FXG=H [3]. Mitra has provided conditions for the existence of a solution
and a representation of the general common solution of the matrix equations AX =C, XB=D and
the matrix equation A XB, =C,,A,XB, =C, [4, 5]. Ramadan et al. [6] introduced a complete,

general and explicit solution to the Yakubovich matrix equationV — AVF =BW , the matrix

equation (AXB,GXH)=(C,D) have some important results have been developed. In [7],

necessary and sufficient conditions for its solvability and the expression of the solution were
derived by means of generalized inverse. Moreover, in [7] the least-squares solution was also
obtained by using the generalized singular value decomposition. While in [8], when this matrix
equation is consistent, the minimum-norm solution was given by the use of the canonical
correlation decomposition. In [9], based on the projection theorem in Hilbert space, an analytical
expression of the least-squares solution was given for the matrix equations

(AXB,GXH) = (C,D) by making use of the generalized singular value decomposition and the

canonical correlation decomposition. In [10], by using the matrix rank method a necessary and

sufficient condition was derived for the matrix equations AX,B=C and GX,H =D to have a

common least square solution. In the aforementioned methods, the coefficient matrices of the
considered equations are required to be firstly transformed into some canonical forms. Recently,

an iterative algorithm was presented in [11] to solve the matrix equation (AXB,CXD) = (E,F).

Different from the above mentioned methods, this algorithm can be implemented by initial
coefficient matrices, and can provide a solution within finite iteration steps for any initial values.

Based on the iterative solutions of matrix equations, Ding and Chen presented the
hierarchical gradient iterative algorithms for general matrix equations [12,13] and hierarchical
least squares iterative algorithms for generalized coupled Sylvester matrix equations and
general coupled matrix equations [14,15]. The hierarchical gradient iterative algorithms
[12,13] and hierarchical least squares iterative algorithms [12,15,16] for solving general
(coupled) matrix equations are innovational and computationally efficient numerical ones and
were proposed based on the hierarchical identification principle [14,17] which regards the

unknown matrix as the system parameter matrix to be identified. The generalized Sylvester
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matrix equations (1) have very wide application in many problems such as pole/eigenstructure
assignment design [18, 19], observer design [20].

This paper is organized as follows: First, in section 2, we introduce some notations, a
lemma and a theorem that will be needed to develop this work. In section 3, we propose iterative

methods to obtain numerical solution to the generalized coupled Sylvester—conjugate matrix
equation AV +BW =E,VF, +C, and AV +B,W =E,VF, +C, using iterative method. In section
4, numerical example is given to explore the simplicity and the neatness of the presented

methods.

2. Preliminaries

The following notations, definitions, lemmas and theorems will be used to develop the
proposed work. We use A",A A" and tr(A) to denote the transpose, conjugate, conjugate
transpose and the trace of a matrix A respectively. We denote the set of all mxn complex

matrices by C™" ,Re(a) denote the real part of number a

Definition 1 Inner product [21]
A real inner product space is a vector space V over the real field R together with an
inner product that is with a map
(,) VxV >R

Satisfying the following three axioms for all vectors x,y,z eV and all scalars aeR

(1) Symmetry: (x,y)=(y,x).

(2) Linearity in the first argument:

(axy)=a(x,y), (x+y.z)=(x2)+(y.2).
(3) Positive definiteness: (x,x)> 0 forall x = 0.

The following theorem defines a real inner product on space C™" over the field R

Theorem 1 [22]
In the space C™" over the field R, an inner product can be defined as
(A B)=Re[tr(A"B)] (2)

Proof
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(1) For A,BeC™", according to the properties of trace of a matrix one has

(A, B) = Re[tr(A"B)] = Re[tr (B" A)]=Re][tr(B" A)]
=Re[tr(B" A)]=(B, A).
(2) For areal number a, and A B,CeC™", one has
(aA B) =Re[tr((aA)" B)]=Re[tr(aA" B)]=Re[atr(A" B)]
=a Re[tr(A"B)]=a(A B).
(A+B,C) = Re[tr((A+B)" C)] = Re[tr(A" + B")C]
= Re[tr(A"C)]+Re[tr(B"C)]=(A,C) +(B,C).
(3) It is well-known that tr(A" A)>0 forall x=0. Thus, (A A)=Re[tr(A" A)]> 0 forallx=0.

According to definition 1, all the above argument reveals that the space C ™" over field R with

the inner product defined by (2) is an inner product space. The Frobenius norm of A is denoted

by |A|. that is || = ytr (A" A)

3. Main results
In this section, we propose an iterative solution to the generalized coupled Sylvester —
conjugate matrix equation
AV +BW = Elv_F1 +C,, O
AV +BW =E,VF, +C,,
where A ,E, A, E,eC™, B,B,eC™, F,F,eC"”" and C,,C, eC"™"are given matrices, while
VeC™ and W eC"™" are matrices to be determined.
Let f(V,W)=AV +BW —E,VF,
and g(V,W)=AV +B,W —E,VF,.
We introduce the following finite iterative algorithm to solve the generalized coupled
Sylvester — conjugate matrix equation (1)
Algorithm I
1. Input A,E A E,B,B,C,C,;

2. Chosen arbitrary matrices V, e R"Pand W, e R"";
3. set
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Rl =diag(Cl - f(\/l’Wl) ) Cz - g(V1'W1));
S, =A"(C, - f(V,W,))—E:x (C, — f (V;,W,))F:
+ A (C, -9V, W,))—E: (C, — gV, W,))F: ;

T1 = BlH (C1 - f(\/l’Wl))+ BzH (Cz - g(vl'Wl));
k:=1;

4. If R, =0, then stop and V, , W, are the solution ; else let k:=k +1 go to STEP 5

5. compute
. RE
+1 2 2 ’
IS+l
_ R
k+1 k

ISl +Iml”
Rk+1 = diag(Cl - f(vk+1’Wk+1) ’Cz - g(vk+1’Wk+1))

Rl
2 2
ISl + Il

k

diag(f(S,,T,), 9(5,.T.));

—H H
Sk+1 = AIH (Cl - f(\/k+l’Wk+1)) - El (Cl - f (\/k+l’Wk+1))Fl

2

H =H H ||Rk+1
+ Az (Cz - g(\/k+l’Wk+1))_ E> (Cz - g(\/k+l’Wk+l))F2 + ”R ”2 k1
k
2
_ RpH _f H _ ||Rk+l .
Tk+l - Bl (Cl (Vk+l’Wk+1))+ BZ (CZ g(\/k+1'Wk+1))+ ||R ||2 Tk’
k

6. IfR,_, =0, then stop; else let k=k +1 go to STEP 5.

To prove the convergence property of Algorithm I, we first establish the following basic
properties

Lemma 1.
Suppose that the system of matrix equations (1) is consistent and let V' ,W" be its

arbitrary solutions. Then for any initial matrices V,andW, , we have

S/ (V7 =V + T W W)L+ tr[S (v -V) + T W -W)]=2JR [ 3)
Or, equivalently

Reftr[S" (V' V) +T," W -W)I}=|R |,
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where the sequences {V, },{S,}, {W,}, {T,} and {R, }are generated by Algorithm | for i=12,...
Proof

We apply mathematical induction

For i =1, from Algorithm | one has

tr[S" (V" =V,) + T, W™ —W,)] = tr[(A" (C, — f (V;,W,))~E: (C, — f (V;,W,))F1

+ A(C, — (Vo W)~ Ex (C, — gV, W))F= )" (V" = Vi)
+ (B (C, = F(V,, W)+ B;' (C, —g(V,,W,))" W™ = W,)]
=tr[(C, - f(V, W) (A (V" -V)) + BW™ -W,))
+(C, = gV, W,))" (A, (V™ =V,) + B, (W™ —W,))
~C TV W)) (Eo(V™ =V,)F) —(C, — gV W) (E= (V" —V,)F2)]
In view that V",W " are solutions of the generalized coupled Sylvester — conjugate matrix

equation (1), it is easy one can obtain from above relation

t[SH (V" =V + T, W —W,)]+tr[SF (V™ V) +T," W™ —W,)] = tr[(C, - f (V,,W,))"
(A" =V)+B W™ =W))+(C, — gV, W)™ (A, (V" =V,) + B,(W ™ —W,))
~C - TEW)) (B -V)F)-(C, gV W) (B2 (V' -V)F2)]
+Ur[(C, — F (V. W) (AL(V" =V)) + B,W ™ -W,))
+(C, gV, Wy)" (A, (V7 =V) + B, (W™ —W,))

—(C = fV, W) (Eo(V" =V,)F1)—(C, gV, W) (E2(V" -V,)F>2)]
= tr[(Cl —f (V1’W1))H (A1V* + B:LW* - EI\TFl - A1V1 - Blwl + E1\71F1)

+(C, gV, W) (AV” +BW ™ —E,V'F, - AV, -BW, + E,V,F,)]

+tl’[(C1 - f (V11W1))H (A1V* + Bl\N* - E1\FF1 - A1V1 - Blwl + E1\71F1)

+(C, —g(Vu W) (A +BW' —EV'F, AV, -BW, + E,V,F,)]
:tr[(Cl - f(Vl,Wl))H (Cl - f(\/l’Wl))+ (Cz - g(V11W1))H (Cz - g(V11W1))]

+tl’[(C1 - f (V1'W1))H (Cl - f(vl’Wl))+ (Cz - g(\/l’Wl))H (Cz - g(V1'W1))]
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_ tr[{ca - f(v1vW1) 0 } |:C1 —f (V1’W1) 0 }]

0 Cz _g(\/l’Wl) 0 Cz _g(v1vW1)
] o FOW,) 0 "[c, - f(v,.W,) 0
" [ 0 Cz - g(\/l’Wl) 0 Cz - g(VvW1) ]

—tr(R'R)+tr(Ri Ru) =2|R|
This implies that (3) holds fori=1.
Now assume that (3) holds for i =k . That is,

tr[SkH (V* -Vi) +TkH (W* _Wk)]"‘tr[SkH (V* -Vi) +TkH (W* _Wk)]:2||Rk||2

Then we have to prove that the conclusion holds for i =k +1. It follows from Algorithm | that

* * —H H
tr[SkH+1(V _Vk+1) +TkT1(VV _Wk+1)]= tr[(AlH (Cl — f (Vk+1'Wk+1)) - Ei (C1 —f (Vk+1'Wk+1))F1

H =H H ||Rk+l i H *
+ A2 (Cz - g(\/k+l’Wk+1))_ E: (Cz - g(\/k+1'Wk+1))F2 +—Sk) (V _Vk+l)

Rl

2

+ (BlH C, = Ve W)+ BzH C, = 9Via W) + |||I|T::+l||2
=rT(C, — Ve W) (AN =V, )+ B =W, )+ (C, — 90V, 0 W, 1)) (A, 0V =V, )

Tk)H (\N* _Wk+l)]

+B,W" —W,.))~ (C, — (Ve W,.)) (Ex(V" =V, ,)F2) = (C, — 9 (Ve W,.1))

||Rk+l
2
IRl

2

(E2(V" -V, )F2)]+ S (V7 —Vi) + T W -W,,)]
(4)
In view that V"W~ are solutions of the generalized coupled Sylvester — conjugate matrix

equation (1), with relation (4) one has

tr[SkHJrl(\/* _Vk+l) +Tkﬂl(\N* _Wk+l)]+tr[SkH+1(V* _Vk+l) +Tkal(\N* _Wk+1)]:tr[(cl - f(\/k+l’Wk+1))H

(Al(\/* _Vk+1)+ B1(\NX _Wk+1))+(cz - g(Vk+1ka+1))H (Az(V* _Vk+1) + Bz(\N* _Wk+1))

- (Cl - f(Vk+1ka+1))H (El(\/* _Vk+1)E1) _(Cz - g(\/k+1’wk+1))H (EZ(V* _Vk+1)E2)]

+tr[(C1 - f(Vk+1ka+1))H (Al(V* _Vk+1) + Bl(\N* _Wk+1))

+(Cz - g(\/k+1’Wk+1))H (Az(V* _Vk+1) + Bz(\N* _Wk+1))

~C = (VoW ) (Es(V™ =V, )F1) = (C, — 9V W) (B2 (V™ —V,,,)F2)]

Re|’ ) ) ; ;
: ||||F\:(+I||l tr[SkH % _Vk+1) +TkH w _Wk+1) + SkH Y _Vk+1) +TkH w _Wk“)]
k
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=tr[(C, - f (V... W, ) (AV +BW' —E,V'F, — AV, -BW,, +E,V, ,F,)

+ (Cz - g(\/k+l’Wk+1))H (AZV* + Bz\N* - EzV*Fz - AZVk+1 - BZWk+l +E \KFz)

+tr[(C1 - f(Vk+1’Wk+l))H (A1V* + Bl\N* - E1V*F1 - A1Vk+1 - Blwk+1 + E1\EF )

+ (Cz - g(\/k+l’Wk+1))H (AQV* + BZW* - EZV*FZ - AZVk+1 - Bzwk+1 + EZ\EF )]

2

|| k+1

SV i “ o R
tr[SkH (V _Vk ) + Tk (\N _Wk k )]
TR ISl + [Tl s +Im
" k+1 2 tr[SH (V* -V ” k" ) (W ||Rk||2 T )]
k k k k
"R s T s

:tr[(Cl —f (\/k+1’Wk+1))H (C1 - f(vk+1’Wk+1))+ (Cz - g(\/k+1’Wk+1))H (Cz - g(\/k+1'Wk+1))]

+ tr[(C - f(Vk+1ka+1))H (C - f(Vk+1’Wk+1))+ (C - g(\/k+1’Wk+1))H (C - g(\/k+11Wk+1))]

|”Rk*h tr{[S 'V =V )+T W -W)+S* (V" =V )+T W -W,)]-

R
2 2
5.7+

_ tr[|: f (Vk+1 k+l) 0 :|H |:C1 - f (Vk+1’Wk+l) 0 :|]
0 Cz - g(\/k+1’Wk+1) 0 Cz - g(vk+l’Wk+1)

Hr[{ = F Vs W) 0 } {cl = F Vs W) 0 }]
0 Cz - g(vk+1’Wk+l) 0 Cz - g(vk+1’Wk+l)

LR i 2 IR .
LR -5 @S| +[T.[ N1}
|| A ISl + [T

- tr(Rk+l k+1) + tr(Rk+l k+1) + 2||Rk+1||2 - 2||Rk+1 i

((S'Sy +T'T)+(S'S, +T' TN}

= 2||Rk+l ’

This implies that (3) holds for i =k +1 . Hence relation (3) holds by principle of induction.

Lemma 2.

Suppose that system of matrix equations (1) is consistent and the sequences
{R},{s,}and {T,} are generated by Algorithm I with any initial matrices V,,W, , such that
R, #0 forall i=12,...,k , then

Reftrace(R"'R,)}=0 (®)
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and Reftrace(S"'S, +T"T,)}=0, fori,j=12,...k, i=]j. (6)
Proof
We apply mathematical induction
Step 1: We prove
tr(R,R) =0 (7
and tr(S.S, +T.\T,)=0 (8)
fori=12,...,k.
First from Algorithm | we have
R, = diag(Cl - f(Vk+1'Wk+1) ,C, — g(\/k+1'Wk+1))
= diag(Cl - A1Vk+1 - Blwk+1 +E Vk+l Cz - AZVk+1 - BZWk+1 +E Vk+1F )
=diag(C _Al(\/k " k" k) (Wk ” k” k) (Vk " k” k)
1 2 2 2 1
ISl +Iml ISl +Iml IS+l
_Az(vk " " S ) B(Vvk+ " " k) (Vk " " k) )
2 2 2 2
ISl +Im. I’ ISill” +IT.] IS +IT.]
= diag(cl - A1Vk - Bka + El\/_kFl’CZ - Asz - BZWk + Ezv_sz)
R’ _ _
- %diag(ﬂsk +BT, -ES,F,AS, +B,T, -E,S,F,)
[l +Im
. R’ .
= dlag(cl —f (Vk 'Wk) ’Cz - g(Vk ’Wk )) _% dlag(f (sk ’Tk) ’ g(Sk ka ))
[Sill” + [Tl
2
sz _% diag(f(svak) ) g(sk’Tk)) . (9)
ISl +[T]

For i =1, it follows from (9) that

IRJ* [Hsl,m 0 })HR]
[s.)°+m L0 e T

IR
Is.I°

tr(R;'R,) =tr[(R, —

tr[|:A181 + BlTl - E18_1F1 0 o
”Tln 0 Azsl + Ble - Ez SlF

C1 - f(vl'Wl) 0
. 0 Cz - g(V1’W1) ]

=tr(R"R,) —

J
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. RI SE)
=[Ri TS A TAS BT - ESF)C, - 1 W)
1 1

+(AS, +B,T, —E,S,F,)" (C, - g(V,,\W,))]

R 2
=||R1||2 &tr[sf A1H (C1 - f(V1!W1)) +T1H BlH (C1 - f(vl’Wl))

Is.]" + .l
e Men H H AH HpH
- Sl El (Cl - f(vl’Wl))Fl + Sl Az (Cz - g(V1’W1))+T1 Bz (Cz - g(vl’Wl))

e Hew H
_Sl Ez (Cz _g(V11W1))F2 ]

2 R, i H/AH H H/pH
:”Rl" _mtr[s1 (A1 (Cl - f(vl’Wl))+ Az (Cz - g(vl’Wl)))+T1 (Bl (Cl - f(Vl,Wl))

—H
+ BZH (Cz - g(\/l'Wl)))_ Sl (ElH (Cl - f(vl’Wl))FlH + EzH (Cz - g(\/l'Wl))FZH )]
From this last relation one has

e DHD Y 2 R, i HAH H
tr(RzH Rl) +tr(R2H Rl) = 2"R1" &tr[sl (A1 (Cl - f(\/l’Wl)) + Az (Cz - g(\/l’Wl)))

Is.° +mIf
+T1H (BlH (Cl - f(\/l’Wl)) + BzH (Cz - g(v11W1)))_S_1H (ElH (C1 - f(Vl’W1))F1H
+ EZH (Cz - g(\/l’Wl))FZH ) + SlH (AlH (C1 - f(Vl’Wl)) + AzH (Cz - g(vl’Wl)))

+T1H (BlH (Cl - f(\/l’Wl)) + BzH (Cz - g(vl’Wl)))

S, (EF(C, - F(V,W))F" +EF (C, — gV, W,))F)]

2 R1 i H H —H H H
=2"R1” &tr[sl (A1 (C1 - f(Vl’W1))_ E. (C1 - f(Vl’W1))F1 + Az (Cz - g(V11W1))

s+
—E. (C, —g(V, W))F: )+ T." (B (C, - f (V,,W,)) + B! (C, — g(V,,W,)))

+T1H (B1H (C1 - f(\/l’Wl)) + BzH (Cz - g(\/l’Wl))) +

SH(A"(C, - f(V, W,))~E: (C, — F(V,W))F1 +A(C, —g(V,,W,))—E: (C, — g(V,,.W,))F2)]

Ry’ — —

=2r . _IRI” tr[S”S, +S°S, +T,"T, + T,"T

|| l|| ||Sl||2 +||Tl||2 [ 1 1 1 1 1 1 1 l]
R ) )

= 2[R |I —”; 2ls.|* + 2T [*1=0

This implies that (7) is satisfied fori=1.

From Algorithm | we also have
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tr(Sy'S, + T'T,) =tr[(Af (C, — F(V,,W,))—E: (C, — F(V,,W,))F: +A' (C, —g(V,,W,))

= _ H "RZHZ H H _ H _
E> (Cz g(VZ'Wz))FZ + ”R "2 Sl) S1 +(Bl (C1 f(\/z’Wz))+Bz (Cz g(VZ,WZ))
1

R
2
IRl

+

T)"T.]

—tr[(C, — f(V,\W,))" (AS, + B.T,) - (C, — T (V,,W,)) (E;S, ;) +(C, — g(V,,W,))"

w— — R
(AZSl + BzT1)_ (Cz - g(vz!Wz)) (Ezsl Fz)]‘*‘Htr(slH Sl +T1HT1)
1
It follows from this relation that

Ho— —
tr(S;'S, +T,'T,) +tr(S;'S, +T,'T,) =tr[(C, — f(V,,W,))" (AS, +B.T,)-(C, - f(V,,W,)) (E,S,F)

2
H— — R
+ (Cz - g(Vzin))H (Azsl + BzT1)_ (Cz - g(Vz’Wz)) (EZSl Fz)]+ ||R2 "2 [tr(SlH Sl +T1HT1)

1

+r(S)'S, +TAT)]+tr[(C, — (v, W,))" (AS, +BT,)— (C, — TV, W,))" (E,S,F,)

+(C, - g(V,,W,))" (A,S, +B,T,)~(C, —9(,.W,))" (E,S,F,)]

= tr[(cl — f (Vz 1W2))H (A181 + BlTl - Els_lF1)+ (Cz - g(Vz’Wz))H (Azsl + Ble - Ezs_le)]

+tl’[(Cl - f(vzawz))H (A131 + BlTl - E18_1F1)+ (Cz - g(vz’Wz))H (AQSl + Ble - Ezs_le)]

R 2
||||Rj||||2 [tr(S;'S, + T,"T,) +tr(S]'S, + T,"T))]
=tr[ C, = TV, W,) 0 " AS,+BT, -ESF 0 —
0 Cz - g(vvaz) 0 Azsl + BzT1 - Ez Sle
+ |:C1 - f(V21W2) 0 :|H Alsl + BlTl - E1S_1F1 0 — ]
0 C,-9g(v,,W,) 0 AS, +B,T,—E,S,F,

+

R 2
2R s )
1
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S — 2
W[t (R (R, —R,))+tr(RY (R, - R))]+2|||| ” (s +Im [

_ s +Im” IR
R T2
[R.Jf [R.Jf

Thus, (8) satisfied for i=1

Now, assume (7) and (8) hold fori=k-1. From (9) and applying mathematical assumption,

(s +Iml =0

from Algorithm I one has

IR’
2 2
[Sill” +Imi

JR— H
=tr[RkH Rk ” k" |:Alsk + BlTk - Elsk Fl 0 e }
||s || +||T || 0 AS, +B,T, —E,S,F,

tr(Rﬂle):tr[(Rk - diag(f (S, Ty) , 9(Sk, Ty )" R¢]

Cl_f(vk’Wk) 0
0 Cz_g(\/k’Wk) ]

. RS —cn
=[IR| —Wtr[(ﬂsk +BT, -ESF)"(C, - f(V,,W,))
k k

+(A,S, +B,T, —E,S,F,)" (C, — g(V,,W,)]

2 Rk i H H H H H
:"Rk" _mtr[sk (A1 (C1 - f(vk’Wk))+A2 (Cz _g(\/k’Wk)))+Tk (Bl (C1 - f(vk'Wk))

+ BZH (Cz - g(vk ’Wk )))_gH (ElH (Cl - f(vk 'Wk ))FlH + EzH (Cz - g(vk 'Wk ))FzH )]
It follows from this relation that

- R |I?
tr(RkH+1Rk) +tr(RkH+1Rk): 2||Rk ”2 _mtr[sﬁ (A1H (C1 - f(Vk ’Wk )) + AzH (Cz - g(\/k ’Wk )))
k k

+TkH (B]_H (C1 - f(Vk 'Wk )) + BzH (Cz - g(Vk ’Wk )))_QH (E]_H (C1 - f(Vk 'Wk ))F]_H

R 2
+ EzH (Cz - g(Vk ka ))FzH ] _%tr[sr (A1H (C1 —f (Vk ka )) + AzH (Cz - g(vk ’Wk )))
Sl + Tl

+TkH (BlH (Cl - f(Vk ’Wk )) + BzH (Cz - g(Vk ’Wk )))

-5, (B (C, - F(V, \W))F" +ES (C, - gV, ,W,))F,"]
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R
2 2
ISl +Im]

—E: (C, —g(V . W,))F2 )+ T, (B (C, - f (V,,W,))+ B (C, - g(V, ,W,)))

=2R |’ - tr[S," (AY (C, - F(V, W,))~E: (C, - f(V, W))F: +Af (C, - g(V, W,))

+S(A(C, - F(V,,W,))—E: (C, - F(V, W))F: +A" (C, —g(V,,.W,))—E: (C, - gV, . W,))F:)

+T (B (C, - f(V,, W)+ B, (C, — gV, . W)

R’
2 2
IS+l

RJ"
2

IRes

R R
2

Res Re-

R | R |
T S NN N D 0 HP NS T e T e
IS+ Rl

Thus, (7) holds for i=k.

Also, from Algorithm | one also has
—H H
tr(sk'ilsk +Tk':1Tk) = tr[(AlH (C1 - f(Vk+1’Wk+1)) -E (C1 - f(Vk+1’Wk+1))F1

||Rk+1
R’

IRJ"

=2R,J" - -
k Re. [

{tf[SkH (S, - S1) +TkH (T,

Tl

+tr[S/ (S, — S +T (T, - L)}

2

—H H
+ AQH (Cz - g(vk+l’Wk+1))_ E. (Cz - g(\/k+1'Wk+1))F2 + Sk)H Sk

H H |Rk+l 2 H
+ (Bl (C1 —f (Vk+1’Wk+1)) + Bz (Cz - g(vk+l’Wk+l)) + WTk) Tk]
k

—tr[(C, — f V.t W, )" (AS, +BT)—(C, = TV, W) (ES,F)—(C, — 9V, W,0))
||Rk+l i

R,

(E,S F,) +(C, = g(Vit W, )" (AS, +B,T)]+ tr($'s, +T'T,)

2

Thus, from above relation one has
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tr(S¢sS, + TT) + (S8, +TT) =tr[(C, — (Vs W)™ (AS, +B/T,)

—(C.— Vet We)) (EsS,F) = (C, —g(VerW,0)) " (E,S,F,)

2
+(C, = 9Vt W, )™ (AS, + B, T )]+ "”Rk“z

1

tr(S;”S, +S,'S, +T,"T, +T"'T,)

Fr[(C, — f (VW) (AS, +BT) = (C, — TV, W) (S, Fy)

~(C, =9V, W) (E,S, ) +(C, — gVt W, )" (A,S, +B,T,)]

:tr[(Cl - f(\/k+1’Wk+1))H (A18k + BlTk - E1§F1)+ (Cz - g(Vk+l’Wk+1))H (Asz + Bsz - Ezsz)

+ (C - f(\/k+1ka+1))H (Alsk + BlTk - EIS_kF1)+ (Cz - g(\/k+l’wk+1))H (Azsk + Bsz - Ez ng)

Lo lRaal

s+
|| A
_tr[[ = TV Wea) 0 T AS, +BT, —ES.F, 0 _
0 Cz - g(\/k+l’Wk+1) 0 AZSk + Bsz - Ezssz
+|:Cl - f(vk+1'Wk+1) 0 }H Alsk + BlTk - E1§F1 0 o ]
0 C, -9V W) 0 AS, +B,T, —E,S,F,
colReall g 1
|| A’
B I L Py SN e L PPN A
IRJ IR’ IR
S - 2
—” |+ [tr(R",R)+tr(R",R, )—2||Rk+1||2]+2” IS Tl
IR IR
S
IS Y PN . W

" k+1
IR IR.J"
This implies that (7) and (8) hold fori=k
Hence, relation (7) and (8) hold for all 1<i<k

Step2: we want to show that

and Re(tr(S",S, +THT.))=0 (11)

i+l
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hold for integer 1 >1 . We will prove this conclusion by induction. The case of | =1 has been

proven in Step 1. Now we assume that (10) and (11) hold for I <q,q>1 the aim is to show

Re(tr(R" ,R))=0 (12)

i+g+1

and Re(tr(S/ .S +T." T.))=0 (13)

i+g+1 i+g+1

First we prove the following

Re(tr(R!,R,))=0 (14)
and Re(tr(S.,S, +T,/\T,))=0
(15)
according Algorithm I, from (9) and induction assumption one has
2
R
tr(R;:;Ry) =tr[(R, —% diag(f (S,,T,) , 9(S,,T,)))" Ro]
s 1T
2 JR—
=tl’(RqH Ro)_ "Fq" . tr({AlSq +Bqu _ElSqFl 0 o "
||Sq|| +||-|-q " 0 AS,+B,T,—E,S,F,
|:C1_ f(VO’Wo) 0 j|)
0 Cz - g(Vo ’Wo)
R.[l
=tr(RI'R,) —————[tr((AS, + BT, —E,S F)" (C, - f(V,,W,))
S]] +[.]

+(A,S, +B,T, —E,S,F,)" (C, — g(V,,W,))]

R 2
:tr(RqH Ro) _%[tr(sqH (AlH (Cl —f (Vo’Wo)) + AzH (Cz - g(\/O’WO)))
[Soll + I
+T, (B (C, — f(Vy,W,))+ B, (C, —g(V,,W,)))
—iH (ElH (Cl - f(Vo’Wo))FlH + EzH (Cz - g(vo'Wo))FzH )]

Thus, from above relation one has
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tl’(R;lRo) +tr(R;1Ro) = tI’(R(? Ro) +tI’(R£:+ Ro) _%[tr(s; (AlH (C1 —f (\/O'WO))+ AQH (Cz - g(vo 'Wo)))
Sq *'q

+ TqH (BlH (C1 —f (Vo on))+ BzH (Cz - g(\/O’WO))) _gH (E1H (C1 - f(VO’Wo))FlH

R 2
+ EzH (Cz - g(VO!Wo))FzH )]_%[tr(sqH (A1H (C1 - f (Vo 'Wo))+ AzH (Cz - g(\/O’WO)))
ISl +[m]

+TqH (B1H (C1 —f (VO’WO))+ BzH (Cz - g(VO’WO)))

_EH (E1H (C1 —f (Vo on))F1H + EzH (Cz - g(\/O’WO))FZH )]

R

= Jtr(SH (A" (C, - f (Vs W,))+ Al (C, — gV, W,)) = Ex (C, — F (Vs W,))F 1
8ol +[T)

_E'; (Cz - g(VwWo))F?)"'TqH (BlH (Cl - f(Vo’Wo)) + BzH (Cz - g(Vo’Wo)))

+TH (B (C, — f (V4. W,))+BY (C, — g (Vo W,))) +tr(Sq (Ar (C, — f(Vy,W,))

+ A (C, - gV, W,)) —Er (C, — f (Vo W,))F1 —Ez (C, — gV, W,))F2))]

2
R
—ﬂ[tr(sqH S, +TqHT0) +tr(SqH S, +TqHTO)] =0

8.l +Im.ll

And
—H H
tr(Sc:'JrlSO +qulT0) :tr[(AlH (Cl - f(vq+1'Wq+1)) -E: (Cl - f(vq+1'Wq+1))F1

2

—H H R +
+ AZH (CZ - g(vq+l7Wq+1))_ E2 (CZ - g(\/q+l’Wq+1))F2 +||q—128q)H SU + (BlH (Cl - f(VQ+11Wq+1))

IR

2

H ”Rq“
+ Bz (Cz - g(Vq+1’Wq+1)) + 2
IR,

:tr[(cl —f (Vq+11Wq+1))H (A.lSO + BlTo) + (Cz - g(Vq+1'Wq+1))H (Azso + BzTo)

T)"To]

2
H— | — H — — R,.
-(C, = (V1. W,1)) (ExS,F1)—(C, =gV, W,.1)) (E2S F2)]+ ” : 12 tr(S; S, +T,'T,)

q
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Thus, from above relation one has

tr.(Sq+1 0 q+1T )+tr(Sq+1 0 q+1T ) tr((C f(\/q+1’Wq+1))H (Also + BlTO)

+ (Cz - g(vq+1'Wq+1))H (Azso + BzTo)_ (Cz - f(Vq+1’Wq+1))H (ElsoEl)

—(C, — 9V, W) (E2S,F2))

+tr((Cl - f(Vq+1'Wq+1))H (Also + BlTo) + (Cz - g(\/q+1’Wq+1))H (Azso + BzTo)

- (€ TV W,) (B8, F) - (C, — 90V, W,,) (E2S,Fe))
Ryl
+

[R.[

=tr[(C, - f (V... W,..))" (AS, + BT, —E,S,F,) +(C

tr[(Sy' Sy + T, To) +(Sy'Sy + T, T,)]

2 g(vq+1’Wq+1))H (Azso + BzTo - EZS_OFZ)

+(C, — TV, W, )" (AS, + BT, —E,S,F,) + (C, — gV, W,..))" (AS, +B,T, —E,S,F,)]

2

R -
+ "” ‘“hz (SIS, + T Ty) + (SIS, + T T,)]
R
_tr( — f (V0 W, ) 0 "TAS, +BT, —E,S,F, 0
0 C, - 9(V41:We.s) 0 A,S, +B,T, —E,S,F,
+ Cl - f(\/q+l’Wq+l) 0 " AISO + BlTO - ElS_OFl 0 o )
0 C, - 9(V4r:We.y) 0 AS, +B,T, —E,S,F
—tl’( q+l(|| |:| ””T " ( 0o~ Rl))+tr(Rq+1(|| ” " ” ( 0~ Rl)) =0
0

IRoI

Then (14) and (15) hold

529
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From Algorithm I and (9) , induction assumption one has

tr(S|+q+1S +T|+q+1T ) + tr-(S|+q+ls + Tiﬁ'-'q-v-lTi ) = tr[(AlH (Cl - f (Vi+q+1’Wi+q+1))

—H H —H H
- El (Cl - f(\/i-¢-q-¢-1’Wi-¢-q+1))|::l + AZH (CZ - g(\/i+q+l’Wi+q+1)) - E2 (CZ - g(Vi+q+1’Wi+q+1))F 2

Rl
+

|F\i:q+l |+q) S + (B (C - f(V|+q+1v |+q+1))+ B (C g(Vi+Q+1’Wi+q+1))
i+q
Rl
i+q+ E; y
4 |R a 12 Ti+q)HTi]+tl’[(A1H (Cl _ f(\/i+q+1’Wi+q+l)) -E: (Cl - f(vi+q+1’Wi+q+1))F]_
i+q

2

i+q+1

—H H
+ AZH (CZ - g(Vi+q+l’Wi+q+l)) - E (CZ - g(ViJqurl’Wi+q+1))|:2 + || R 2 Si+q)H Si

i+q+1

| R

—tr[(C, — f VpgWig )" (AS, +BT) = (C, — f (Vo0 Wio) (ESS,Fy)

i+q

2

2 Ti+q)HTi]

+ (BlH (Cl - f(vi+q+1'Wi+q+1)) + BZH (CZ - g(vi+q+1’Wi+q+l)) + |

i+q

—(C, =9Vt Wo)) (E,S/F)) +(C, = 9VigWio)) (AS; +B,T,)]

2

||Rk+l tr
[SF S +STS 4 THT 4T H

” i+q i i+q™i i+q i i+q |]
I

Ftr(C — Vg Wego ) (AS, +BT) = (€, — T VyaW,.00) (ES,F)

—
- (CZ - g(vi+q+l’Wi+q+l)) (Ezsi FZ) + (CZ - g(\/i+q+1’Wi+q+l))H (AZSi + BZTi )]
=tr[(C, — f Virgus Wi )" (AS, + BT, —E,S,F)+ (C, = 9(Viqu We o))" (A,S, +B,T, —E,S,F,)

+ (C - f(\/i+q+1'wi+q+1))H (A1$i + BlTi - Els_iF1)+ (Cz - g(\/i+q+1'Wi+q+1))H (Azsi + BzTi - Ez S_in)]

_ tr( f(vl+q+1’W|+q+l) 0 " A18| + BlTi - E1S_i|:1 0
0 Cz - g(vi+q+l’Wi+q+1) 0 AzSi + BzTi - Ez S_in
+ Cl - f(\/i+q+l ’Wi+q+1) 0 " A18| + BlTi - Els_il:l O )
0 Cz - g(Vi+q+1’Wi+q+1) O AZS| + BZTi - EZS_iFZ
+[T; +T,
tr(R|+q+1(|| ” ” " ( i Ri+1))+tr(RiTq+l(|| ” " ” ( i Ri+1))

w[t (R|+q+1 i ) + tr(R|+q+1 i )] (16)
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in addition, from (9) it can be shown that

2

Mg

i+q
2
+

tr(R:qﬂ Ri ) + tr(RiTqﬂ Ri ) = tr[(Ri+q -

> diag(f (S Tig) » (81 Tia) )R]

i+q

2

+Ur[(Ry,, - ——— diag(f (Siq. Tieg) » 9(Siq Ti) N R
i+q i+q
[Sical [T
2
T ~H ~ Ri+q
= tr(RiTq Ri ) + tr(RiTq Ri) - ﬁ[
St +[Teal
—_— H
tl’( Alsi+q + BlTi+q - Elsi+q Fl 0 _ Cl - f(vl 'Wi) 0 )
0 AS.,+B, T, —ES.F, 0 C, -9V, W)
H
v ASwa +BT. ~ESF, o JTe-fvw) o ]
0 AS,., +B,T ., —ES.F 0 C,—-g(v,,W,))
2
= tr(Ri+q R|) +tr(Ri+q Ri ) - 2I+q 2 [tr((Alsi+q + B1Ti+q - ElSi+q Fl)H (Cl - f (\/i 7Wi ))
i+q + ITi+q
+(AS,, +B.T. ~E; S, F)" (C, — gV W) +tr((AS,,, + BT, —E,S,,F)" (C, — (V. W)

+(AS,,, +B,T., —E, S, F)" (C, - gV, W)

2

Mg

+T (B (C, — (v, W)+ B (C, — g(V,,W,)))~ Siua (E}' (C, - T(V,, W, )"

i+q
2
+

:tr(Riliq Ri) +tr(RiTq Ri)_

2 tr[SiTq (AlH (Cl - f(Vi 7Wi)) + AZH (Cz - g(vi 7Wi)))

i+q

2

i+q

e (WIS (AT (€, — TV, W) + AT (€, — 9V, W)
[Sial +[Tcl

+ EzH (Cz - g(vi ’Wi ))FzH )]_

+Ti0g (B (C, — F(V,,W))) + B, (C, —g(V,;,W,)))

~Sia (] (C, - TV, W))R" +EJ (C, — gV, W))F)])
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2

R —H H
:_rs“%[tr[sﬂq(/\f (C.— TV, W)+ AN(C, — 9V, W)~ E: (C, = TV, W)F:
+

—E2 (C, — gV, W,))Fz ) +T" (B (C, - f(V,W,))+ B! (C, — g(V, W,)))

i+q

i+q

=S (A(C,— F (VW) + AT(C, gV, W)~ Ex (C, ~ TV, W))F:

—E2 (C, —glV,,W,))Fz ) +T (B (C, - f(V,W,))+ B! (C, — g(V,,W,)))]

R, 1 I
== | qu 2 [tr(SiTq (S _”ansm) +Ti'jq (T, _”R;HZTH))
|Si+q + i+q "Ri—l” "Ri_l”
R [ R’
+tr(sijq (Si - |||L |"”2 Si—l) +Ti-|¢-_|q (Ti - |||L I||||2 Ti—l))]
i-1 i-1
__ R RI [tr(S/.S, +THT ) +tr(SH.S,, + T T, )] (17)
= |S 2 N IT 2 " - 1"2 i+qYi-1 i+q ' i-1 i+q -1 i+q i1
i+q i+q 1=

Repeating (16) and (17), one can easily obtain for certain « and g

tr(SilqurlSi +Ti+Hq+lTi) +tr(Siliq+1Si +T'H T|) :a[tr(s ) Sl + S N Sl) +tr(s § Sl + SqH+lsl)]

i+g+1 q+1 q+1 q+1

And
tr(R7,.R) +tr(R7,.,R) = Altr (R, R) +tr(R7,R))]

i+g+1" i i+q+1

Combining these two relations with (14) and (15) implies that (10) and (11) holds for | =s+1 .
From step (1) and (2) the conclusion holds by the principle of induction.
With the above two lemmas, one has the following theorem
Remark

Lemmal implies that if there exist a positive number i such that P =0 and Q, =0 but
R; = 0, then the system of matrix equation (1) is inconsistent .

Theorem 2.
If the system of matrix equation (1) is consistent, then a solution can be obtained within
finite iteration steps by using Algorithm | for any initial matricesV,,W, .

Proof.



FINITE ITERATIVE ALGORITHM 533

Suppose that R, =0 for i=123,...,2np we get P =0 or Q, =0 from the previous lemma and
remark.

W,

2np+1?

Then we can compute V, R by Algorithm 1. Also, from Lemma2

np+1? 2np+1

we have

trace(R;,,,R,)=0 and trace(R'R,;)=0 for i=123,....2np,i #

2np+1

So the set of R,R,,...,R is an orthogonal basis of the linear space Q of dimension 2np

17 2np
where Q={ UJU =diag(K,,K,) where K, K, eC™ }
Which implies that

Ronpsr =0 thatis Vopp,q,Wonp,4 Is the solution of system of matrix equation (1).

4. Numerical example

In this section, a numerical example is given to illustrate the application of our proposed
algorithm.

Consider the system of matrix equation AV +BW =EVF, +C, ,AV +BW =E,VF, +C,
Where

[1-3i 2i —3i 3-i 1+i -1
A=l 1 2+3i  4i , Ep={4+1 —i 4y |,
_1—2i 0 2 0 1-i 2+2
0 i -16+27i —45-52i 0 L
B,=|1+i 0 ,C,=| —-50+09i 21-79 |, Flz[ . } )
. ) . -3 4+1i
_—1—| 3i —-8+7i -3-28i
1 i
F,=| . )
=1 2+3i
[2+3i  -i  1+i 3+i -1-i -3i
A= 5 1+2i -3i , E, = 0 2-1 i
i 0 1-i 0 -1+ 3i 2 0
0 0 6i 21-22i
B,=|1-3i 4+i ,C,=| 5-15i 8-30i
i 2i -3i -3-18 19+ 23

Taking
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0
Vv, =|0
0

o O O

After iterating 33 steps we obtain

1-i 2-3i

V.. =|3-i 1+i w, o2
B _ U 1.2 - 2i
1 2-1i
which satisfy the system of

AV +BW =EVF, +C,, AV +BW=E,\VF,+C,
With the corresponding residual
|Rss | =[diag(C, — f V43, W) ,C, — 9(Vay,W,5))| =1.8151x107"
The obtained results are presented in figure 1, where
e =R (Residual)

LI ]
W]l

(Relative error)

W, = B 8} We apply Algorithm | to compute V, ,W,

matrix

equation

From Fig. 1, it is clear that the error 5, is becoming smaller and approaches zero as iteration

number k increases. This indicates that the proposed algorithm is effective and convergent.

]

—

=
T

A2 I I 1 I
0 ] 10 15 20 25

k { lteration number)

Fig. 1. The residual and the relative error versus k (iteration number)
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5. Conclusions

An iterative algorithm for solving the generalized coupled Sylvester — conjugate Matrix
Equation AV +BW =E,VF, +C, and AV +B,W =E,VF, +C, is presented. We have proven
that the iterative algorithms always converge to the solution for any initial matrices. We stated
and proved some lemmas and theorems where the solutions are obtained. The obtained results
show that the methods are very neat and efficient. The proposed methods are illustrated by

numerical example. Example we tested using MATLAB to verify our theoretical results.
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