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ABSTRACT: In this paper, we investigate some interesting properties among certain subclasses of analytic and p-
valent functions, which are defined by a new generalized differential operator | ’Taﬁ and a new generalized integral

m

operator J ', 5,

using the techniques of the first order differential subordination.

Key words: Analytic functions, Differential subordination, Differential operator, Integral operator.

2010 Mathematical Subject Classification: Primary 30C45; Secondary 30C80, 47B38.

1. Introduction

LetA, denote the class of functions of the form

11)  f@=2"+ Yaz (peN={123.})

k=p+1

which are analytic and p -valent in the unit discU ={zeC :|z|<1},and we set A = A, a well-

known class of normalized analytic functions in U. For f eA given by (1.1) and g €A,
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defined by g(z) =z" + Zbkzk ,the Hadamard (or convolution) product of f andgis given by

k=p+1

(f*g)(2)=z"+ Zakbkzk =(g=*f)(z2).If fand gare analytic inU, we say that the function

k=p+1

f is subordinate to g, or the function g is superordinate to f, if there exists a Schwarz function
w, analytic in U, with w(0)=0 and |w(z)| <1, for all zeU, such that f(z)=g(w(z)), for

z €U. Insuch a case we write f < g.In particular, if the function g is univalent in U , then we
have the following equivalence(See [8,16]:
f(z)<g(z) (zeU) ifandonlyif f(0)=g(0) and fU) < g).

m

For f € A, the author [23, 24] defined a new differential operator 1],

by the following

infinite series

(1.2) 1™ f(2)=z"+ i[a+kﬁj a,z“zeU,

p.a.f
k=p+1 a+ pIB

where pe N, me N, =N U{0}, 8>0and « areal number withe + pg >0.

m

Remark 1.1 If f e A and the differential operator I, ,

is given by (1.2), then

(1.3) (@+pAI™, (@) =dl" ,f(@)+ /3", ,f(2),5>0.

We note that

17, ,f(2) =17, (2)(See [22]).

m
I pal

f(2) = 1™ (@) f (2),@ > —p (See [1]).

I m
p.l+p-pB.p

f (2) = DI f (2) (See [4]).

f(2)=1™(B,1)f(2),] >—p, B > 0(See Catas [9]).

I m
p.0.8
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Remark 1.2 i) 17 () f (z) was considered in [1], for & >0and I 7(5,1) f (z) was defined in [9]
for 120,4>0,i)17()f(2)=1]@N)f(2),1 >—p,iii) 17(80)f(z)= D, (B)f(2), 8 =0,was
mentioned in Aouf etal. [5], iv) D;"(8),8>0, was introduced by Al-Oboudi [2], V)
D"() f(z) =D" f (z) was defined by Salagean [20] and was considered for m>0 in [7] , vi)
1" () f(2),x > 0,was investigated in [10] and [11] and vii) I,"(1)was due to Uralegaddi and

Somanatha[27].

In [26], the author defined a new integral operator J 7, ; and is as follows:

Definition 1.3 For f € A, we define an integral operator J ', , f (z) by

Jous T@=1(2),

a+pp |

jjozt[ ”) "tz U,

a+pp
B

3 f@=3,,,1@) = (a ;pﬂjz al

32 f(2) = (0‘ Jrﬁpﬁjz p[a;pﬁjj'ozt(a;pﬁjpl\];aﬁ f(t)dt,z eU,

a+pp a+pp
m o+ P z B
Jp’a’ﬁf(Z):(_ ﬂpﬂJz [ B jot[ B j ‘Jp,al,ﬂf(t)dt
zP z°
—J;aﬁ[ zj Jé’“’ﬂtl—z}m*‘];“ﬂ( j*f(z)
e m — times -------------------- —

where pe N, me N, =N U{0}, 8>0and « areal number witha + pg > 0.

We see that for f(z) € A,, we have
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(1.4) L t@) =27+ gi%} az",zeU,

where pe N, me N, = N U{0}, 8>0and « areal number witha + pS > 0.
From (1.4), it is easy to verify that
(1.5) (@+pA)Ip. s f (@) =ad]., f (@) + 37,1 (2)).

We also note that for f(z) € A, we have

3@ =301 (@) =1 +i( ] az",zeU,

+kp
where me N, = N U{0}, #>0and « a real number witha+ 3 >0.

Remark 1.4 i) J[, ,f(2)=37,f(2) [See 25],ii) 37\, .s,T(2)=37 (B (2),1>-p, >0
(See [6(considered forl > 0) ], iii)J [, f(z) = I («) f (2), > —p (See [6(considered for o > 0)],
V) Jgo,f(2)=371(2) (See[6]).v) I7, s, F(D)=L3(B)T(2), >0 (See[6]),vi) I, f(2)=
L f(z) (See [17, 21]), vii) J0),f(2)=L"f(2)=L"f(z) (See [12, 14]) and Vviii)

Ii1 4 (1) =L7(B) F(2) (See [19]).

Remark 1.3 we observe that 17, ;and J7', , are linear operators and for f €A, we have

Jpas (s F@) =17, ;0 0., F(2) = T(2).

For f(z) €A, the function F;(z) is defined by

5+5pj.t“f(t)dt,ZEU.
0

(16)  F(2)=

where 5 > —p. Clearly F,;(z) =z" + orp a, z“and it is easy to verify that
5+k “

k=p+1
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(1.7) @+P)g.,f@=a7,,F@)+2(17, ,F(2),

p.a.f p.a.p

and from Remark 1.3, we have

(1.8) S+p)dl f(@=a" F,(2)+z(d7, ,F;(2).

p.a.p p.a.p p.a.p

In this paper we will determine some subordination properties of multivalent functions

defined using a new generalized differential operator or a new generalized integral operator

2. Preliminaries
The following lemmas will be required in our investigation.

Lemma 2.1[13] Let y €C,y #0,Re(y) >0,h(z) be a convex (univalent) inU , with h(0) =1and

let p(z) =1+ p,z+ p,z* +..., be analyticin U . If p(z)+L(z)<h(z),z eU, then
v

p(z) <q(2) = lyjty’lh(t)dt <h(z),z €eU,and q(z)is the best dominant.
z 0

For any complex numbers a,b,c(c ¢ Z, ={0,-1,-2,...}), the Gauss hypergeometric function is

defined by

2
a_bEJr a(a+1)b(b +l)z—+

F (a,b;c;z) =1+
i ) c cc+l) 2

The above series converges absolutely for all z €U, and hence represents an analytic function in

the unit disc U (See, for details, [28]).

The each of the identities asserted by lemma below is well-known

Lemma 2.2[28] For any complex parameters a,b and ¢ (c¢Z,), Re(c) > Re(b) >0, we have

I'(b)I'(c—b)

(2.1) ! 7 1-t) 1 (1-tz) dt = o)

, F(a,b;c; 2);
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(2.2) F(a,b;c;z)=,F (b,a;c;2);

23) R@bicz)=01-2)", Fl(b.C—b;cizi—l).

3. Main Results

Unless otherwise mentioned, we shall assume in the remainder of this paper thatz €U, the
powers are understood as principle values and the parameters p,m, A ,B,d,4, u,a, and g are

constrained as follows:

peN,meN,-1<B<A<L6>-p,A>0,u>0,4>0,a Rsuchthata + pg > 0.

Theorem 3.1 If the function f € A, satisfy the following subordination condition

(3.1) (1_,1)(MJ M('?a,ﬂf(Z)] (IL“;,/;f(Z)}qu,
z* z° " ,f(z2)] 1+Bz
then
g f(2) g 1+ Az
(z—"J BRI
where
é+(1—éj(1+ BZ)_lZFl(l,l; plat p,b’)+1; Bz j B=0
(3.2) q(z)=1 5 B B Bz +1

u(a + ppB) Az B=0
pla+pB)+i8

and q(z)is the best dominant. Furthermore,

Re[[%j ] >M(p,A B, u,A,a, f)
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where
- (1—éj(1— B)",F 11,242 PA) o, B J B0
(3.3) M(p,AB,u,A,a,p)= B B AB B-1
ula + pp) B0

~ ua+pp)+Ap
This result is sharp.

Proof. Let

f
(3.4) p(2) = ( e 15 (Z)J

then p(z) is analytic in U with p(0) =1. Using (1.3), (3.1) and (3.4), we obtain

2B 1+Az
PETTY RRE VT

p(z)+

Thus, by Lemma 2.1 for y = , we deduce that

ula+pp)
B

z” 0 1+ Bt

[ Mf(z)} (ﬁ,%pﬁ))z[”(“me]jt[”(?}pﬁ]l[1+ Atjdt =q(2),

where q(z) is given by (3.2) and is obtained by change of variables followed by the use of

identities (2.1),(2.2) and (2.3) from Lemma 2.2.Following the same lines as in Theorem 4[18],

we can prove that inj (Re(q(z)) = q(-1). The proof of Theorem 3.1 is thus completed.

In a manner similar to that of Theorem 3.1, we can easily prove the following theorem,

using the identity (1.5).

Theorem 3.2 Let f e A, satisfies

(1 /ﬁt)(‘);q;ﬂf(z)} i[JPm:;ﬂf(z)J[ Palﬁ’f(z)J 1+AZ’
z z’ Jm f(z)) 1+Bz

p.a.p
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then

Iy £(2) 1+ Az
pa.f 7) <
( zP J =<a@) 1+ Bz

where q(z)is given by (3.2) and q(z) is the best dominant. Furthermore,

Re[{‘]s;z”f(z)] J> M(p,AB,u,Aa,pB),

where M (p, A B, 1, 4, ¢, ) is given by (3.3) and this result is sharp.

Remark 3.3 For p=1, =1, and o =1-f, Theorem 3.1 and Theorem 3.2 agree with Theorem

3.1 and Theorem 3.2, respectively, of Al-Oboudi and Al-Qahtani [3]. For #=1in Theorem 3.1

and Theorem 3.2, our results for operators |7 () and J;'(e) hold true for o >—p. Similarly,

results obtained for operators 17(4,1) and J'(5,1) from Theorem 3.1 and Theorem 3.2, by

putting « =1+ p— pg, hold true for | >—p.

Now we prove the following.

Theorem 3.4 If the function f € A, satisfy the following subordination condition

1- ,1)[L5(Z)] +;{ pasFo (Z)j (paﬁf(z)J 1+ Az
: z? z° 1+8Bz’

then

Bz

[ paiFu] AL 3

where F;(z)is defined by (1.6) and q(z)is given by



S RSWAMY 562

A A ) u(S+p) . Bz
Z41-—|1+B)*,F |11 +1 ,
( B]( ) 1( 2 Bz1) 570

14 H0*D) o, B=0
u(6+p)+4

(3.5) q(z) =

and q(z)is the best dominant. Furthermore

Re[(wj J> M, (p, A B,S, A, 1)

Zp

where
équ(l—éj(l—B)‘le{l,l; ”(5+p)+1; & ) B=0
(3.6) M,(p,AB,5,4,u) = B (5+p) 4 o
_AA, B:O
w0+ p)+4

This result is sharp.

Proof. Setting
I" F(2))
(3.7) p(z)={—"'“‘” p(’(z) ] :
z

we note that p(z)is analytic in U and p(z) =1+ p,z+ p,z° +... .Carrying out logarithmic

differentiation of (3.7) and using the identity (1.7) , one obtains

2p (z) < 1T A2

P@)+ 1(S5+ p) 1+Bz

Using Lemma 2.1 fory = @ , We get

p(2)<(—ﬂ(5ﬂ+ p)Jz[ ’ )J.t( ’ J[%thq(n,
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where q(z)is given by (3.5) and the remaining part of the proof is similar to Theorem 3.1.

In the following theorem we prove the corresponding result, using the identity (1.8), for

the defined new integral operator, the proof of which is similar to that of Theorem 3.4.

Theorem 3.5 Let f e A, satisfies

(1_4)LF(Z) ) paﬁF() s F(2) 1+Az
zf z? 2 ) 1eB’

then

( " sFs (Z)J ()<1+Az

z° +Bz

where F;(z) is defined by (1.6) , g(z) is given by (3.5) and q(z) is the best dominant. Furthermore

Re[(%’z(zq ]> M, (p, A B,S, A, 1)

where M, (p, A B,d,4, 1) is given by (3.6) and this result is sharp.

Remark 3.6 For p=1,A1=1 =1 and a=1-/, Theorem 3.4 and Theorem 3.5 agree with
Theorem 3.3 and Theorem 3.4, respectively, of Al-Oboudi and Al-Qahtani [3]. For g =1in

Theorem 3.4 and Theorem 3.5, our results for operators | () and J 7' («) hold true for > —p.
Similarly, results obtained for operators 17(4,1) and J7'(4,1) from Theorem 3.4 and Theorem

3.5, by putting « =1+ p— pg, hold true for | >—p.
Now we prove the partial converse of Theorem 3.4 and Theorem 3.5, for A=1-2p,

0<p<land B=-1.
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Theorem 3.7 Let f e A, satisfies

(3.8) Re[[%I:(Z)J } > p,0< p<],

then
Re{(li)(%fm] +ﬂ,£ pa'/;lpz (Z)J [ pazﬁf(z)j]>p’|z|<Rl,

JA2+ @S +P)? -2
(S + p)

where

(3.9) R, =

The bound R, is the best possible.

Proof. From (3.8), we have

(3.10) {iﬂfﬁﬁ] — p+ (- p)p(2)

Zp

We see that p(z) =1+ p,z+ p,z° +... is analytic and Re(p(z)) >0,z €U. Differentiating both
sides of (3.10) and making use of (1.7), we obtain

(3.11)
Re[(l_i)(LF(z)] }{ v pFs(Z )} ( paﬁf(Z)J ](1—,0)Re(p(z)+ Azp (2) )
? 2! 2f #(3+1)

/l‘zp'(z)‘
>(1-p)| R _ATm R
>(1 p)[ e(p(z) er p)}'
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@) _

By making use of the well-known estimate (See [15]),
Re(p(2)) 1

(|z| =r<1),in (3.11),

we obtain

_ | g s Fs(2) " pasFs (2) o 1 (2) B B 2r
Re[(l /1)[ 7 JJJ{ > ] ( i J p]Z(l p)Rep(z)(l T A=)

which is positive if r <R;,where R, is given by (3.9).

To show that the bound R, is the best possible, we consider the function f A defined by

(p“ﬁF()J =p+(1- )1+_Z

Zp

where F;(z)is defined by (1.6). By noting that

z

1™ F.(2)) F, f
Re[(l/l)( pyaipé(Z)] JJ{ paip (Z)) ( pazﬂp (Z)j J:(lp)Re(i+§+ﬂ(§i p) (1-2)?

=0

for z =R, we conclude that the bound is best possible. Theorem 3.7 is thus proved.

By applying the technique of proof of Theorem 3.7, we easily get the following result.

. . p a ﬂ F (Z)
Theorem 3.8 Let f € A, satisfiesRe ———| [>p0=<p<] then
z

Re[(lﬂ){%lz(n} ﬂ,[ pas'pz (Z)] ( pazﬂpf(Z)j]>p’|Z|<R1’

}

|
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where R, is given by (3.9). The bound R, is the best possible.

Remark 3.9 For p=1, =1, and  =1- f, Theorem 3.7 and Theorem 3.8 agree with Theorem
3.5 and Theorem 3.6, respectively, of Al-Oboudi and Al-Qahtani [3]. For g =1in Theorem 3.7
and Theorem 3.8, our results for operators I '(a)and J () hold true for a >—p. Likewise,
results obtained for operators |7(4,1) and J'(5,1) from Theorem 3.7 and Theorem 3.8, by

putting « =1+ p— pg, hold true for | >—p.
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