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Abstract. In this paper, we introduce a new topology T E
G on the edge set of an undirected graph G = (V,E)

named E-graphic topology. We will study some properties of this topology in particular we prove that T E
G is

an Alexandroff topology. In addition, we investigate the compactness, connectedness and relation with functions

between graphs. Finally, we give some characterization of homeomorphism between two E-graphic topologies.
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1. INTRODUCTION

In this paper, we construct a new topology on the edge set of an undirected graph. This topol-

ogy is built by using subbases and under some assumptions, it is an Alexandroff topology. So,

we have a minimal basis and therefore many properties are proved. Since any topology of a

graph gives an arrangement of edges and vertices and influences its structure, it plays a crucial

role in various applications and analyses. It can be used in connectivity analysis [9, 17], Fault

Tolerance and Resilience [8], Network Design and Optimization [33] and Social Network Anal-

ysis and Security [35, 16, 32, 14] and human heart [24, 25, 26]. In computational geometry, a
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topology on the edge set indicates a spatial relationship between edges. It provides insights

into the structure, connectivity, and behavior of that system or graph. A spatial analysis of this

topology helps in understanding the geometric relationships between edges and can be crucial

for Computational Geometry [11], and Geometry in Computer Science [15, 28]. In addition,

topologies associated with the set of edges of graphs can be used to deal with some weighted

graph problems. In Shokry [30], the author investigated a method to generate topology on

graphs built on the choice of the distance between two vertices. His method can be applied in

the graph of airline connections to give the least number of flights required to travel between

two cities by determining the distance between two vertices (cities). These and others of appli-

cations of graphs with topologies give rise to many researches. For topologies on vertices sets

we can refer to [1, 3, 6, 10, 13, 18, 19, 20, 29, 30, 37, 38]. For topologies on the edges set,

we have fewer studies. For directed graphs, in 2018, Abdu and Kilicman [1] constructed two

topologies on the set E of a directed graph G(V,E). These two topologies are improvements to

the graphic topology given in [19]. If the graphic topology respects the direction of two adjacent

edges, they call it compatible edges topology and if not, it is called incompatible edges topol-

ogy. For undirected graph, Othman and Alzubaidi [27] construct a topology on the edges set

of undirected graph. This topology is built by path connected edges and it is the corresponding

topology of Z-graphic topology introduced and given in [37]. In this paper, we define a new

topology T E
G on the edge set of undirected graph called edge graphic topology and which is

larger than τE introduced in [27].

The outline of this paper is as follows. In section 2, we give some preliminaries about topologi-

cal spaces and the main definitions and results that we will need later. Then, we write some basic

definitions and properties in graph theory. In addition, we define the new topology T E
G from a

subbases. In section 3 some properties are presented after proving that the new topology is an

Alexandroff topology. In section 4, we study the relation between isomorphic graphs, homeo-

morphic topological spaces and symmetric spaces. Finally,Compactness and connectedness are

studied in section 5.
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2. BASIC CONCEPTS

In this section, we give some basic definitions and properties for topological spaces and graph

theory, for more details we cab refer to [7, 12, 23, 34]. Then, we introduce the new topolog on

the edge set of an undirected graph.

Definition 2.1. A topological space is a nonempty set X with a family T of subsets of it satis-

fying

(i) /0, X ∈T ;

(ii) ∀U1, U2 ∈T , we have U1∩U2 ∈T ;

(iii) ∀ {Ui}i∈I a family of elements in T , the union ∪i∈IUi ∈T .

T is called a topology on X and an element of T is called an open set of X.

A topology on a set X can be defined from a basis or a subbases. First, let us consider the

following definitions.

Definition 2.2. Let X a nonempty set.

If (X ,T ) is a topological space and B ⊂P(X). Then, we say that B is a bases of T if for all

A ∈ T , A can be written as union of elements of B and the unions of sets in B are also in T .

Conversely, we have the following result.

Proposition 2.1. Let X be a nonempty set and let B ⊂P(X) a family of subsets of X. If for all

x ∈ X, there exists B ∈B such that x ∈ B and for all B1,B2 ∈B and for all x ∈ B1∩B2 there

exists B ∈B such that x ∈ B⊂ B1∩B2, then the set T of all possible unions of B is a topology

on X.

The topology T has B as basis.

Definition 2.3. Let X a nonempty set.

Suppose that (X ,T ) is a topological space with bases B and β ⊂P(X). We say that β is a

subbases of T (or for B) if the sets in B are precisely the intersections of sets in β .

Proposition 2.2. Let X be a nonempty set and let β ⊂P(X) a family of subsets of X. If the

union of all elements of β is X, then the set of all possible intersections of sets in β is a basis

for a topology T on X.



4 HANAN OMER ZOMAM

Definition 2.4. A graph G is a pair of sets G = (V,E) such that E ⊂V ×V . An element of V is

called vertex and of E is said edge.

When we identify (x,y) with (y,x) in V ×V , for all x and y in V , we say that the graph G is

undirected graph.

If e is an edge joining two vertices x and y, we write e = (x,y) or e = xy.

In this paper, a graph means an undirected graph.

Definition 2.5. Let G = (V,E) be a graph. Two edges e1 and e2 of G are called adjacent if they

have a common end. We write e1 ∼ e1 and e1∩ e1 6= /0) (see [27]).

Definition 2.6. Let G = (V,E) be a graph. An edge e of G is called isolated if it does not have

an adjacent edge.

Let G = (V,E) be a graph and let e ∈ E be an edge of G. We define

(1) Ae = {e′ ∈ E,e′ ∼ e}

the set of the edges adjacent to e in G.

It is clear that

e′ ∈Ae if and only if e ∈Ae′.

Theorem 2.1. Let G = (V,E) be a graph without isolated edges. The set

EG = {Ae,e ∈ E}

is a subbases for a topology of E.

Proof. From the Proposition 2.2, we have to prove that

E ⊂
⋃
e∈E

Ae.

Let f ∈ E. Since f is not isolated, there exists e′ ∈ E such that f ∼ e′ and so f ∈Ae′ . Therefore,

f ∈ ∪e∈EAe and the result follows.

�

The topology induced by the subbases EG is called edge-graphic topology and denoted T E
G .



ALEXANDROFF TOPOLOGY ON EDGE SET 5

Example 2.1. For the following undirected graph

we have EG =
{
{bc},{ab,cd}

}
the sabbases of the edge-graphic topology T E

G and then

T E
G =

{
/0,{bc},{ab,cd},{ab,bc,cd}

}
.

Definition 2.7. Let G = (V,E) be simple graph, that is without multiple edges nor loops. Let

e ∈ E be an edge of G. The number of the edges adjacent to e is called the degree of e in G.

deg(e) = |Ae|

The graph G = (V,E) is called edge-locally finite graph if for all e ∈ E, the edge e has a

finite number of adjacent edges. In what follows, we consider undirected,edge-locally finite

and simple graphs without isolated edges.

3. ALEXANDROFF SPACE AND MINIMAL BASIS

When we deal with an Alexandroff topology, many properties can be proved and studied by

using minimal bases [4, 5, 21]. So, our first result is the following.

Theorem 3.1. Suppose that G = (V,E) is a graph. Then, (E,T E
G ) is an Alexandroff topological

space.

Proof. From Theorem 2.1, the topology T E
G has EG as subbases. So, in order to prove that

any intersection of open sets is an a open set it is sufficient to prove this for open sets in the

subbasis. Let A⊂ E and consider the family {Ae; e ∈ A}.

If f ∈ ∩e∈AAe, we have f ∈Ae, for all e ∈ A. Then, for all e ∈ A, e ∈A f . Therefore, A ⊆A f

and so A is also finite. Hence, ∩e∈AAe is an open set.

�

For all e ∈ E, the intersection of all open sets containing e, Ue, is an open set of the topological
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space E. Let

U = {Ue; e ∈ E}

Then, U is a basis of T E
G and it is minimal, that is, if B is a basis of T E

G then U ⊆B. For

more details and properties we can refer to [4, 5, 21, 31, 38].

In the topological space (E,T E
G ), we have a characterisation of Ue using the subbases and so

for a graph, we use the neighbors.

Theorem 3.2. Let G = (V,E) be a graph and e ∈ E. Then, the minimal open set containing e

is finite and satisfies

Ue = ∩e′∈AeAe′.

Proof. e is not an isolated edge, so Ae 6= /0. For all e′ ∈ Ae, we have e ∈ Ae′ and hence

e ∈ ∩e′∈AeAe′ .

Since we deal in Alexandroff space, ∩e′∈AeAe′ is an open set. We get

Ue ⊆
⋂

e′∈Ae

Ae′.

Conversely, Ue is the minimal open set containing e and so Ue is in the basis following from the

original subbases EG. Therefore there exists a subset A of E such that

Ue =
⋂

e′∈A

Ae′.

Now, if e′ ∈ A then e ∈Ae′ which is equivalent to e′ ∈Ae. It follows that A⊆Ae and we get

Ue =
⋂

e′∈A

Ae′ ⊆
⋂

e′∈Ae

Ae′

and the theorem is proved.

�

Next, we give some methods to find the minimal open set Ue of e in T E
G due to Theorem 3.2.

Corollary 3.1. Let G = (V,E) be a graph and e ∈ E.

(a) If deg(e) = 1 and f ∼ e, then Ue = A f the set of neighbors of f in the edges set E.

(b) If f ∈Ae, then Ue ⊂A f .

(c) If U f ⊂Ae, then Ue ⊂A f .
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Proof.

(a) From Theorem 3.2, we have Ue =
⋂

e′∈Ae
Ae′ = A f .

(b) We have Ue is a subset Ae′ , for all e′ ∈Ae. Then, Ae ⊂A f .

(c) Since U f ⊂Ae, we get f ∈U f ⊂Ae and so Ue ⊂A f , using (b).

�

We have the next characterisation of the minimal open sets for the topology T E
G .

Proposition 3.1. Suppose that G is a graph and e an edge of G. Then

Ue = { f ∈ E; Ae ⊂A f }.

Proof. We have Ue =
⋂

e′∈Ae
Ae′ . Then, f ∈Ue if and only if f ∈Ae′,∀e′ ∈Ae. This means,

∀e′ ∈Ae, we have e′ ∈A f . This is equivalent to Ae ⊂A f .

�

Corollary 3.2. Suppose that G is a graph and e ∈ E an edge. If f ∈Ue, then

deg(e)≤ deg( f ).

Proof. Follows from the fact that f ∈Ue⇔Ae ⊂A f and the Definition 2.7.

�

Proposition 3.2. Suppose that G = (V,E) a graph and let ∆ = max{deg(e), e ∈ E}. The set

U = {e ∈ E, deg(e) = ∆}

is an open set for the space (E,T E
G ).

Proof. Suppose that e ∈U and consider e′ ∈Ue. Using Corollary 3.2, we get

deg(e)≤ deg(e′) and so deg(e′) = deg(e) = ∆.

Therefore e′ ∈U and then Ue ⊂U . The result follows.

�
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4. TOPOLOGY AND FUNCTIONS

Definition 4.1. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. G and G′ are said isomorphic

(G≈i G′) if there exists f = (h,g) a pair of bijective maps, h : V →V ′ and g : E→ E ′, satisfying

g(xy) = h(x)h(y), for all x,y ∈V.

We call f an isomorphism between the two graphs G and G′.

Lemma 4.1. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If G ≈i G′ and f = (h,g) is an

isomorphism between them, then g(e)∼ g(e′)⇔ e∼ e′, for all e,e′inE.

Proof. Let e,e′ ∈ E two edges in the graph G. Then, e = xy and e′ = x′y′ for some vertices

x,y,x′,y′ ∈V .

First, suppose that g(e)∼ g(e′) and so f (x) f (y)∼ f (x′) f (y′). Therefore, the two edges have a

common end. Without loss of generality, we can suppose f (x) = f (y′) and so x = y′. We get

e∼ e′.

Conversely, if e∼ e′, then e and e′ have a common vertex. Let us take x = x′ as example and so

g(e′) = g(xy′) = f (x) f (y′). Hence, g(e)∼ g(e′).

Definition 4.2. Let (X ,T ) and (X ′,T ′) be two topological spaces. A function g : X → X ′ is

called continuous if for all A ∈T ′, g−1(A) ∈T .

We say that the two topologies T and T ′ are homeomorphic (T ≈h T ′) if there exists a

continuous bijective function g : X → X ′ and g−1 is also continuous.

Theorem 4.1. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If G≈i G′, Then T E
G ≈h T E

G′ .

Proof. We set f = (h,g) an isomorphism from G to G′. We are going to prove that the

function g is an homeomorphism. Since we deal with a topology having subbases, let A ∈ EG′

an open set in the subbases of the topology of E ′. Then, there exists e′ ∈ E ′ such that A = Ae′ .

By Lemma 4.1, we get

e ∈ g−1(A)⇔ g(e) ∈ A

⇔ g(e) ∈Ae′
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⇔ g(e)∼ e′

⇔ e∼ g−1(e′)

⇔ e ∈Ag−1(e′)

So, g−1(A) is an open set of E and so, the function g is continuous. We have also

(2) g−1(Ae′) = Ag−1(e′),∀e′ ∈ E ′.

In the equation (2) we replace g by g−1, we get

(3) g(Ae) = Ag(e),∀e ∈ E

and then the function g−1 is continuous.

�

The converse of the above result is not true. If we consider the two following graphs

Definition 4.3. [18] Let (X ,T ) and (X ′,T ′) be two topological spaces. We say that the two

topologies T and T ′ are symmetric (T ≈s T ′) if

(i) |T |= |T ′|

and

(ii) For all A1 ∈T , there exists A2 ∈T ′ with |A1|= |A2|, and conversely.

Theorem 4.2. Let G = (V,E) and G′ = (V ′,E ′) be two graphs. If G≈i G′, Then T E
G ≈s T E ′

G .

Proof. Let f = (h,g) an isomorphism from G to G′. From the equation (2) and (3), we

have a bijection between the two subbases of the topologies T E
G and T E ′

G . Then they will be

symmetric.

�

5. ALEXANDROFF SPACE AND MINIMAL BASIS

Recall that a topological space is called compact if each open cover of the space has a finite

subcover. We have the following result for the edge graphic topology.
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Theorem 5.1. Suppose that G = (V,E) is a graph. The topological space (E,T E
G ) is compact

if and only if E is finite.

Proof. If E is finite, then from any open cover we have a finite subcover since we can choose

an open set for any element in E.

Conversely, suppose that (E,T E
G ) is a compact topological space and consider the open cover

given by the minimal bases. This open cover has a finite subcover. So, E is finite.

�

Definition 5.1. We say that a topological space (X ,T ) is connected if there does not exist

nonempty disjoint open subsets A and B of X such that x = A∪B.

Example 5.1. For X = {a,b,c}, T1 = { /0,{b},{b,a},{b,c},X}

the space is connected but for T2 = { /0,{b},{a,c},X}, the space (X ,T2) is disconnected since

X = {b}∪{a,c}.

Definition 5.2. A graph G = (V,E) is called connected if for all x,y ∈ V there exists a path

joining x and y.

Example 5.2. The following first graph is connected but the second is disconnected one.

Definition 5.3. Let G=(V,E) be a graph and let Hi =(Vi,Ei), i= 1, . . . ,k, a family of connected

subgraphs of G such that

(i) V = ∪k
i=1Vi,

(ii) E = ∪k
i=1Ei,

(iii) Vi∩Vj = /0 and Ei∩E j = /0, if i 6= j.

Each subgraph Hi is called a connected component of the graph G.

Remark 5.1. A graph G is connected if and only if it has one connected component.
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Theorem 5.2. Let G = (V,E) be a graph. If G is disconnected, then (E,T E
G ) is a disconnected

topological space.

Proof. Suppose that G is disconnected. So, as in Definition 5.3 we have E =
⋃

i∈I Ei, where

the cardinal of I satisfies |I| ≥ 2. In addition, Ei =
⋃

e∈Ei
Ae, then Ei is an open set. So, we have

at least two nonempty disjoint open sets where their union is E.

�

Remark 5.2. The converse of the Theorem 5.2 is not true.

Example 5.3. For the following connected graph, the edge graphic topology is the discrete

topology.

Proposition 5.1. Let G = (V,E) be a cycle of order n ≥ 4 and n 6= 4, then T E
G is the discrete

topology and therefore disconnected.

Proof. Let G be a cycle a1, · · · ,an. We have

E = {a1a2,a2a3, · · · ,ana1} and so Aaiai+1 = {ai−1ai,ai+1ai+2}, i= 1, . . . ,n, with the convention

an+1 = a1,an+2 = a2 and a0 = an. Then, TG is the discrete topology.

�

CONCLUSION

In this work, we introduced a new topology on edge set of an undirected graph. We studied

its properties and mainly we proved that it is an Alexandroff space. In addition, we investigated

this topology and related it with isomorphic and symmetric graphs. As perspectives, we can

study the density in this topology.
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