
Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 4, 824-829

ISSN: 1927-5307

CONVEXITY OF A CLASS OF MATRIX FUNCTIONS

XIANG GAO∗

School of Mathematical Sciences, Ocean University of China, Lane 238, Songling Road, Laoshan

District, Qingdao City, Shandong Province, People’s Republic of China, 266100

Abstract. In this paper, we present some sufficient conditions for the convexity of the function f (A) =

g (detA), where g (x) is a monotonic increasing and convex function.
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1. Introduction and Main Results

The research of matrix inequalities which have well symmetry is very important and

interesting in linear algebra and matrix theory. Among the matrix inequalities theory, the

research of convexity of some particular matrix functions is also extremely valuable. In

this paper, we deal with a class of interesting matrix functions f (A) = g (detA) and

present some sufficient conditions for the convexity of these functions.

Firstly we recall some basic facts. A matrix A ∈ Mn is said to be positive definite

if Re
(
xTAx

)
> 0 for all nonzero x ∈ Cn. The convex set of positive definite matrices is

denoted by M+
n .
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Definition 1.1. A real valued function f defined on M+
n is said to be convex if

f (αA+ βB) ≤ αf (A) + βf (B) ,

and concave if

f (αA+ βB) ≥ αf (A) + βf (B)

for all 0 < α, β < 1, α + β = 1 and all A,B ∈M+
n , A 6= B.

It has been proved by Horn, Johnson [1] that the function f (A) = log (detA) is strictly

concave function on the convex set of positive definite Hermitian matrices M+
n , that is

(1) log (det (αA+ βB)) ≥ α log (detA) + β log (detB)

for positive definite matrices A,B ∈M+
n and 0 < α, β < 1, α + β = 1.

By the following famous Minkowski inequality which is widely used in linear algebra

and matrix theory, we obtain that the function f (A) = (detA)
1
n is also concave on the

set of positive definite Hermitian matrices which states that

(2) (det (αA+ βB))
1
n ≥ α (detA)

1
n + β (detB)

1
n .

Theorem 1.2.(Minkowski Inequality) If A,B ∈M+
n (R), then

(3) (det (A+B))
1
n ≥ (detA)

1
n + (detB)

1
n .

But in general, the function f (A) = (detA)m is not concave for m 6= 1
n
, not to mention

a general function f (A) = g (detA).

The purpose of this paper is to discuss this question, and we will present some sufficient

conditions for the convexity of function f (A) = g (detA). In fact we will prove the

following theorems.

Theorem 1.3. Let A is a positive definite matrix, B is a symmetric matrix, λi (A) , λi (B),

i = 1, · · · , n be the eigenvalues of A and B, 0 < α, β < 1 with α + β = 1. Then for a

monotonic increasing and convex function g (x),

(4) g (det (αA+ βB)) ≤ αg (detA) + βg (detB)
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holds true if one of the following conditions is satisfied

(i) λi (B) ≥ max
1≤i≤n

λi (A) for i = 1, · · · , n;

(ii) λi (B) ≤ min
1≤i≤n

λi (A) for i = 1, · · · , n.

Theorem 1.4. Let A, B be symmetric matrices such that AB = BA, and let λi (A) , λi (B),

i = 1, · · · , n be the eigenvalues of A and B, 0 < α, β < 1 with α + β = 1. Then for a

monotonic increasing and convex function g (x),

(5) g (det (αA+ βB)) ≤ αg (detA) + βg (detB)

holds true if one of the following conditions is satisfied

(i) λi (B) ≥ λi (A) for i = 1, · · · , n;

(ii) λi (B) ≤ λi (A) for i = 1, · · · , n.

2. Proof of the Main Results

For the proof of the main results we prove the following lemma firstly.

Theorem 2.1. If 0 < α, β < 1 satisfying α + β = 1, and λi ≥ µi for arbitrary 1 ≤ i ≤

n or λi ≤ µi for arbitrary 1 ≤ i ≤ n, then

(6)
n∏

i=1

(λiα + µiβ) ≤ α
n∏

i=1

λi + β
n∏

i=1

µi.

Proof. The approach we use is mathematical induction. Firstly we consider n = 2, since

0 < α, β < 1 and α + β = 1, we have

(λ1α + µ1β) (λ2α + µ2β) = ((λ1 − µ1)α + µ1) (λ2 − (λ2 − µ2) β)

= λ2 (λ1 − µ1)α− µ1 (λ2 − µ2) β − (λ1 − µ1) (λ2 − µ2)αβ

+ λ2µ1

= λ1λ2α + µ1µ2β − (λ1 − µ1) (λ2 − µ2)αβ.

(7)

Then it follows from the hypotheses that (λ1α + µ1β) (λ2α + µ2β) ≤ λ1λ2α + µ1µ2β.

Assume that (6) is true for n = k, we prove that it is also true for n = k + 1. S-

ince (6) holds for n = k we have
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k+1∏
i=1

(λiα + µiβ) = (λk+1α + µk+1β)
k∏

i=1

(λiα + µiβ)

≤ (λk+1α + µk+1β)

(
α

k∏
i=1

λi + β

k∏
i=1

µi

)
.

(8)

As the proof of (7) we obtain

(λk+1α + µk+1β)

(
α

k∏
i=1

λi + β

k∏
i=1

µi

)

=

(
αλk+1

k∏
i=1

λi + βµk+1

k∏
i=1

µi

)
− αβ (λk+1 − µk+1)

(
k∏

i=1

λi −
k∏

i=1

µi

)
.

(9)

Since the second term in (9) is nonpositive for λi ≥ µi or for λi ≤ µi, it follows

from (8) and (9) that
k+1∏
i=1

(λiα + µiβ) ≤ α
k+1∏
i=1

λi + β
k+1∏
i=1

µi,

and consequently that inequality (6) holds for n = k + 1.

With the help Lemma 2.1, we now turn to prove our main theorems.

Proof of Theorem 1.3. Since g (x) is a convex function, we have g (αx+ βy) ≤ αg (x)+

βg (y) for arbitrary 0 < α, β < 1, α + β = 1. Putting x = detA and y = detB it follows

that

(10) g (α detA+ β detB) ≤ αg (detA) + βg (detB)

On the other hand, it is known from [1] that for positive definite matrix A and sym-

metric matrix B there exists a nonsingular matrix C such that A = CTC and B =

CTΛC, where Λ = diag {λ1, · · · , λn}. The inequality

(11) det (αA+ βB) ≤ α detA+ β detB

is then equivalent to det (α + βΛ) ≤ α + β det Λ, that is

n∏
i=1

(α + λiβ) ≤ α + β

n∏
i=1

λi.
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It follows from Ostrowski Theorem [1] that for each 1 ≤ i ≤ n there exists θi > 0 such

that min
1≤i≤n

λi (A) ≤ θi ≤ max
1≤i≤n

λi (A) and λi (B) = θiλi. Thus we conclude that

(12)
λi (B)

max
1≤i≤n

λi (A)
≤ λi ≤

λi (B)

min
1≤i≤n

λi (A)

Therefore if the condition (i) satisfies, we have λi ≥ 1 for arbitrary 1 ≤ i ≤ n, and if the

condition (ii) is satisfied, we have λi ≤ 1 for arbitrary 1 ≤ i ≤ n. It follows from Lemma 2.1

that
n∏

i=1

(α + λiβ) ≤ α + β
n∏

i=1

λi. Since g (x) is a monotonic increasing function, together

with (10) we complete the proof of Theorem 1.3.

Proof of Theorem 1.4. As the proof of Theorem 1.3, we only need to prove (11) is

also satisfied under the hypotheses of Theorem 1.4. Indeed, since AB = BA, it is known

from [1] that there exists a orthogonal matrix C such that A = CTΛAC, B = CTΛBC,

where

ΛA = diag {λ1 (A) , · · · , λn (A)} , ΛB = diag {λ1 (B) , · · · , λn (B)} .

Thus (11) is equivalent to

det (αΛA + βΛB) ≤ α det ΛA + β det ΛB,

that is
n∏

i=1

(αλi (A) + βλi (B)) ≤ α
n∏

i=1

λi (A) + β
n∏

i=1

λi (B).

Therefore if the condition (i) satisfies, we have λi = λi (A) ≤ λi (B) = µi for arbi-

trary 1 ≤ i ≤ n, and if the condition (ii) is satisfied, we have λi = λi (A) ≥ λi (B) = µi for

arbitrary 1 ≤ i ≤ n. It follows from Lemma 2.1 that

n∏
i=1

(αλi (A) + βλi (B)) ≤ α

n∏
i=1

λi (A) + β
n∏

i=1

λi (B).

Since g (x) is a monotonic increasing function, together with (10) we complete the proof

of Theorem 1.4.

Remark 2.2 In fact the key point of our proofs is (11), hence we have the following

corollary.
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Corollary 2.3. Let A is a positive definite matrix, B is a symmetric matrix, λi (A) , λi (B),

i = 1, · · · , n be the eigenvalues of A and B, 0 < α, β < 1 with α + β = 1. Then for a

monotonic decreasing and concave function g (x),

g (det (αA+ βB)) ≥ αg (detA) + βg (detB)

holds true if one of the following conditions is satisfied

(i) λi (B) ≥ max
1≤i≤n

λi (A) for i = 1, · · · , n;

(ii) λi (B) ≤ min
1≤i≤n

λi (A) for i = 1, · · · , n.

Corollary 2.4. Let A, B be symmetric matrices such that AB = BA, and let λi (A) , λi (B),

i = 1, · · · , n be the eigenvalues of A and B, 0 < α, β < 1 with α + β = 1. Then for a

monotonic decreasing and concave function g (x),

g (det (αA+ βB)) ≥ αg (detA) + βg (detB)

holds true if one of the following conditions is satisfied

(i) λi (B) ≥ λi (A) for i = 1, · · · , n;

(ii) λi (B) ≤ λi (A) for i = 1, · · · , n.
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