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Abstract. In this paper, the general quadratic continuous optimal control problem constrained by an ordinary

differential equation is considered. For the analytical solution, the necessary conditions of optimality are applied

to the Hamiltonian function. This results in a system of first-order ordinary differential equations that are solved to

obtain the optimal state and optimal control variables. In order to obtain the numerical solution, the discretization

of the objective function and the corresponding constraints are carried out using 1
3 Simpson’s rule and fifth-order

Implicit method respectively. The discretized Optimal Control Problems (OCPs) are converted into unconstrained

problems using Augmented Lagrangian Method. The Conjugate Gradient Method (CGM) and Fico Xpress Mosel

are used to solve the resulting nonlinear programming problem. Convergence analyses are conducted to determine

the effectiveness of the proposed scheme. Two examples are considered to illustrate the robustness of the proposed

methods and compare the analysis of the solutions from the CGM and Fico Xpress Mosel. The results show that

FICO XPress Mosel performs better than CGM for this class of problems.
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1. INTRODUCTION

Optimization is the process of finding the best decision for a given problem within a define

set of goals and constraints [21]. Optimization can be divided into two major subfields which

are discrete in which set of feasible solutions is typically a discrete or finite set and continuous

optimization, this is when the feasible set is characterized by continuous value and the objective

function is a continuous function . The knowledge gained from optimization can be applied in

many fields such as engineering, science and technology, health, business, fraud and financial

crimes etc.

Optimization can be classified into Constraints and Unconstrained Optimization. Constrained

Optimization is the process of optimizing an objective function with respect to some variables

subject to certain limitations usually called constraints. Unconstrained optimization on the other

hand, optimize the objective function in the absence of any limitation or constraint [5].

A standard constrained optimization problem takes a perfomance index J (t,x(t),u(t))

which is subject to a constraint ẋ(t) = g(t,x(t),u(t)) with an initial condition x(t0) = x0. In

optimal control problems, we categorize variables into two groups: the state (or phase) variable

x(t) and the control variable u(t). The behavior of the state variables is influenced by the control

variables through a set of differential equations. Additionally, both the control and state vari-

ables typically have constraints associated with them. These constraints introduce complexity

into many optimal control problems, as traditional calculus of variations struggles to handle

problems involving path constraints effectively.

To address optimal control problem, a specific set of conditions, known as necessary con-

ditions, must be met. These conditions are the essentially the requirements that need to be

satisfied when solving the problem. It is widely acknowledged that the Maximum Principle was

initially proven by L. Pontryagin and his collaborators during the late 1950s [1, 6].

Pontryagin introduced the concept of an adjoint function, which was attached to the dif-

ferential equation of the objective function. This adjoint function serves a similar purpose to

Lagrange multipliers in multivariable calculus. The necessary conditions essential for solving

the basic problem are derived from what is known as the Hamiltonian function [5].
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Over the years many researchers have worked on optimal control problems that involves a

combination of equality and inequality constraints on both state and control variables. More-

over, this class of problems include fixed constraints on the initial and final states. The control

variables are described as piecewise continuous functions, while the state variables are repre-

sented as piecewise smooth functions. The approach involves discretizing the continuous-time

optimal control problem using various numerical techniques and then optimizing it through es-

tablished iterative methods. This process effectively transforms the constrained problem into

an unconstrained nonlinear programming problem, utilizing methods like penalty or multiplier

techniques [15, 17, 18, 19].

[1] obtained the analytical solutions by applying the necessary optimality conditions of op-

timality to the Lagrangian function. The method of the fundamental matrix method was used

to solve the resultant non-homogeneous system of first-order ordinary differential equations,

resulting in analytical solutions for both the state and control variables, along with the value of

the objective function.

Similarly, [2] presented the analytical and numerical solutions of optimal control problems

with equality and inequality constraints. Two numerical methods - Simpson’s Rule and Adams-

Bashforth explicit method were employed for the numerical solutions of constrained optimal

control problems. The resulting non-linear programming problem was then solved using the

Exterior penalty function and the Conjugate Gradient Method. The convergence analysis estab-

lished the reliability of this approach [16].

A fifth order implicit method for the solution of initial valued first order Ordinary differen-

tial equations (ODEs) was developed using sixth order Lagrangian Interpolation formula. The

method yielded superior results compared to those obtained using implicit formula on Euler and

Runge-Kutta methods [14]. A Romberg scheme was employed to enhance the accuracy of the

results obtained [13]

[4] A quadratic cost functional having quasilinear systems of first order ordinary differential

equations as its constraints was examined. The optimal control was characterized by employ-

ing the fixed-point theorem together with the associated Riccati equation. A novel numerical

method was utilized to approximate the solution and this was validated within the context of a
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quasilinear quadratic cancer therapy model. The methodology presented in this research work

provided the frame work for obtaining the solutions of this class of optimal control problems

across various fields.

Accuracy estimates for both first and second orders of an optimal control problem regulated

by a system of ordinary differential equations featuring a bilinear control mechanism was pre-

sented. The finite element method, utilizing continuous piecewise linear functions, was applied

for numerical time discretization. When considering box constraints on the control, first-order

error estimated for the control function was derived, a piecewise constant approximation of the

control was assumed. On the other hand, a continuous, piecewise polynomial approximation

allows for achieving second-order accuracy. The presented numerical evidence substantiates

the theoretical results. [11]

[12] introduced optimal control problems employing neural ordinary differential equations

(neural ODEs) as a proficient approach for iteratively approximating continuous-time control

functions in situations involving analytical challenging and computational intensive control

tasks. The research addressed certain gaps in knowledge related to effective hyperparameter

optimization. It involved an analysis of the impact of both truncated and non-truncated back

propagation through time on both runtime performance and the capability of neural networks to

learn optimal control functions. The investigation utilized analytical and numerical methods to

explore the influence of parameter initializations, optimizers, and neural network architecture

on the study’s objectives.

Xpress Optimization Suite also called Xpresss MP is a mathematical modelling software

which was developed by FICO, a leading analytical Software company. It include Xpress solu-

tions which are being used by Business analysts and Xpress Technology which are being used

by Operation Researchers, Data Scientists and Solution Developers. FICO designed Xpress MP

to solve a wide range of mathematical optimization problems such as Linear and Non-Linear

programming, Quadratic programming, Mixed-integer programming etc. These are being used

to solve business problems in different industries all over the world such as Banking and Fi-

nance Services, Marketing, Deposit Pricing, Impairment management, Supply chain, Energy,

Transportation and Logistics etc.
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The Xpress mosel and Xpress Optimizer are both major components of Fico Xpress Optimiza-

tion but they serve different purposes. Mosel is a solution technique and modeling environment.

It is a language that may be used for both modeling and programming. The Xpress Optimizer

uses the models that are created in the mosel to find optimal solution to a particular problem. It

support a wide range of problem types featuring advanced algorithm that can handle large scale

problems such as Interior point method, Sequantial quadratic programming , Gradient based

optimization e.t.c [8, 10]

Modules were considered a practical approach for swiftly crafting prototype algorithms

aimed at tackling intricate problems that demanded a fusion of solution techniques or solvers

originating from diverse research domains. An example of this concept involved the utilization

of an external solver such as mmxprs, mmquad, mmsvg etc. FICO Xpress Mosel is equipped

with its proprietary optimization solvers, such as the Xpress-MP solver, it also offered com-

patibility with external solvers constituted a valuable feature within FICO Xpress Mosel. This

feature empowered users to leverage the strengths of diverse solvers tailored to the precise de-

mands of their optimization problems [10, 3].

While extensive research efforts have been dedicated to Optimal Control Problems (OCPs),

there is a noticeable dearth of studies that focus on OCPs characterized by Ordinary Differential

Equations, where solutions are tackled using optimization software like the FICO express Op-

timization tool. This research project is driven by the urgent need to develop a highly efficient

and robust model tailored specifically for addressing these particular instances of OCPs. This

approach entails the utilization of both the Conjugate Gradient method and the FICO Optimiza-

tion suite implemented within the Mosel language. This tool is designed to effectively handle

OCPs constrained by Ordinary Differential Equations, with a focus on achieving superior per-

formance compared to solutions obtained using the conjugate gradient method. Furthermore, it

aims to produce numerical solutions that closely align with analytical solutions whenever they

are accessible.

2. PRELIMINARIES

2.0.1. Analytical Solution of quadratic optimal control problem constrained by ordinary dif-

ferential equation. Consider a Quadratic Optimal Control Problem Constrained By Ordinary
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Differential Equation given by

(1) MinJ (x,u) =
∫ T

0
(a+bx+ cu+dx2(t)+ eu2(t))dt

(2) Subject to ẋ(t) = px(t)+qu(t)

x(0) = x0 t ∈ [0,T ]

where a,b,c,d,e, p,q are real constant d,e > 0, x(t) ∈Rn,u(t) ∈Rm, f : Rn×Rm×R→R are

continuous differentiable functions and T denotes the terminal time.

By introducing the adjoint variable µ(t), the constrained Optimal Control Problem (OCP) given

in equations (1) and (2) is converted to an unconstrained problem. Hence, the hamiltonian

function is given by

(3) H(x,u,µ) = a+bx+ cu+dx2 + eu2 +µ(px+qu)

The Euler-Lagrange system of equations for this hamiltonian function can be written as

(4)
d
dt

[
∂H
∂ µ̇

]
=

∂H
∂ µ

(5)
d
dt

[
∂H
∂ ẋ

]
=

∂H
∂x

(6)
d
dt

[
∂H
∂ u̇

]
=

∂H
∂u

Equations (4)-(6) give

(7) px+qu = ẋ∗

(8) µ̇
∗ =−(b+2dx+µ p)

(9) c+2eu+µq = 0

From equation (9)

(10) u∗ =
−µq− c

2e
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Substituting equation (10) into equation (7)

(11) ẋ∗ = px− q2µ

2e
− cq

2e

Expressing equations (8) and (11) in matrix form, we have

(12)

 ẋ∗

µ̇∗

=

 p
−q2

2e
−2d −p


x

µ

+

−cq
2e
−b


where

(13) A =

 p
−q2

2e
−2d −p

 ,X =

x

µ

 and C =

−cq
2e
−b


The eigenvalues of A are obtained from its characteristic equation as

(14) λ1 =

√
e(dq2 + ep2)

e

λ2 =−
√

e(dq2 + ep2)

e
(15)

and the corresponding eigenvectors are given as

(16) U1 =


−1

2
q2

e

(√
e(dq2 + ep2)

e
− p

)
1



(17) U2 =


−1

2
q2

e

(
−
√

e(dq2 + ep2)

e
− p

)
1


The complementary Solution of equation (12) is given as

(18) V (t) = c1
−→
U1eλ1t + c2

−→
U2eλ2t

Equation (18) can be written in matrix form as



8 A.A. OYEWALE, A.S. AFOLABI, K.A. DAWODU

(19)

x(t)

µ(t)

=


−1

2
q2eλ1t

e

√e(dq2 + ep2)

e
−p

 −1
2

q2eλ2t

e

−
√

e(dq2 + ep2)

e
−p


eλ1t eλ2t


c1

c2



The method of Fundamental matrix is adopted for the general solution of equation (12). This

implies that

(20) X(t) = φ(t)C

where

(21) φ(t) =


−1

2
q2eλ1t

e

√e(dq2 + ep2)

e
−p

 −1
2

q2eλ2t

e

−
√

e(dq2 + ep2)

e
−p


eλ1t eλ2t


hence,

(22) φ
−1(t) =


−
(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
q2eλ1t

√
e(dq2+ep2)

−pe+
√

e(dq2+ep2)

2
√

e(dq2+ep2)eλ1t

(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
q2eλ2t

√
e(dq2+ep2)

pe+
√

e(dq2+ep2)

2
√

e(dq2+ep2)eλ2t


From equation (12), if C = g(s) is a constant, then

(23) g(s) =

−cq
2e
−b



φ
−1(t)g(s) =


−
(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
q2eλ1t

√
e(dq2+ep2)

−pe+
√

e(dq2+ep2)

2
√

e(dq2+ep2)eλ1t

(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
q2eλ2t

√
e(dq2+ep2)

pe+
√

e(dq2+ep2)

2
√

e(dq2+ep2)eλ2t


−cq

2e
−b


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(24) =
1
2



(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
c

qeλ1t
√

e(dq2+ep2)e
−
(
−pe+

√
e(dq2+ep2)

)
b√

e(dq2+ep2)eλ1t

−
(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
c

qeλ2t
√

e(dq2+ep2)e
−
(

pe+
√

e(dq2+ep2)
)

b√
e(dq2+ep2)eλ2t



(25)

∫ T

0
φ
−1(s)g(s)ds =

∫ T

0



(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
c

2qeλ1s
√

e(dq2+ep2)e
−
(
−pe+

√
e(dq2+ep2)

)
b

2
√

e(dq2+ep2)eλ1s

−
(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
c

2qeλ2s
√

e(dq2+ep2)e
−
(

pe+
√

e(dq2+ep2)
)

b

2
√

e(dq2+ep2)eλ2s

ds

Let Z =

(
−pe+

√
e(dq2+ep2)

)(
pe+

√
e(dq2+ep2)

)
c

2q
√

e(dq2+ep2)e
, Y = b

2
√

e(dq2+ep2)
, W =

√
e(dq2 + ep2)

Hence, equation (25) becomes

(26)
∫ T

0
φ
−1(s)g(s)ds =

∫ T

0

 Z
eλ1s −

Y (−pe+W )

eλ1s

− Z
eλ2s −

Y (pe+W )

eλ2s

ds

(27)

φ(t)
∫ T

0
φ
−1(s)g(s)ds =

−1
2

q2eλ1t

e
(W

e − p
) −1

2
q2eλ2t

e
(
−W

e − p
)

eλ1t eλ2t

∫ T

0

 Z
eλ1s −

Y (−pe+W )

eλ1s

− Z
eλ2s −

Y (pe+W )

eλ2s

ds

This implies that the general solution is given by(
− 1

2
q2eλ1t

e
(W

e − p
) − 1

2
q2eλ2t

e
(
−W

e − p
)

eλ1t eλ2t

)(
c1

c2

)
+

(
− 1

2
q2eλ1t

e
(W

e − p
) − 1

2
q2eλ2t

e
(
−W

e − p
)

eλ1t eλ2t

)∫ T

0

(
Z

eλ1s −
Y (−pe+W )

eλ1s

− Z
eλ2s −

Y (pe+W )

eλ2s

)
ds

(28) X(t) = φ(t)C+φ(t)
∫ T

0
φ
−1(s)g(s)ds

2.1. Numerical Solution.

2.1.1. Discretization Of Quadratic Optimal Control Problem Constrained By Ordinary Dif-

ferential Equation. Discretizing equation (1) Using 1
3 Simpson’s Rule

(29)
∫ b

a
f (x)dx =

b−a
3n

{
f (x0)+4

n
2

∑
i=1

f (x2i−1)+2

n
2−1

∑
i=1

f (x2i)+ f (xn)

}
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Since h =
b−a

n

(30)
∫ b

a
f (x)dx =

h
3

{
f (x0)+4

n
2

∑
i=1

f (x2i−1)+2

n
2−1

∑
i=1

f (x2i)+ f (xn)

}

(31)
∫ T

0
(a+bx+ cu+dx2 + eu2)dt =

∫ T

0
adt +

∫ T

0
bxdt +

∫ T

0
cudt +

∫ T

0
dx2dt +

∫ T

0
eu2dt

∫ T

0
adt = anh

Since h =
b−a

n
=

T −0
n∫ T

0
(a+bx+ cu+dx2 + eu2)dt = anh+

bh
3

x0 +
dh
3

x2
0

+
bh
3
[4x1 +2x2 +4x3 +2x4 +4x5 +2x6 + · · ·+2xn−1 +4xn−2 + xn]

+
ch
3
[4u1 +2u2 +4u3 +2u4 +4u5 +2u6 + · · ·+2un−2 +4un−1 +un]

+
dh
3
[
4x2

1 +2x2
2 +4x2

3 +2x2
4 +4x2

5 +2x2
6 + · · ·+2x2

n−2 +4x2
n−1 + x2

n
]

+
eh
3
[
u2

0 +4u2
1 +2u2

2 +4u2
3 +2u2

4 +4u2
5 +2u2

6 + · · ·+2u2
n−2 +4u2

n−1 +u2
n
]

Let C = anh+
bh
3

x0 +
dh
3

x2
0,

bh
3

= B1,
ch
3

=C1,
dh
3

= D1,
eh
3

= E1

Re-writing in matrix form.

∫ T

0
(a+bx+ cu+dx2 + eu2)dt =

(
x1 x2 · · · xN−1 xN u0 u1 u2 · · · un

)



4B1

2B1

4B1

...

B1

C1

4C1

2C1

4C1

...

4C1

C1


+
(

x1 x2 · · · xN−1 xN u0 u1 u2 · · · un

)
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4D1 0 0 0 · · · 0 0 0 · · · 0 0 0 0

0 2D1 0 0 · · · 0 0 0 · · · 0 0 0 0

0 0 4D1 0 · · · 0 0 0 · · · 0 0 0 0

0 0 0 2D1 · · · 0 0 0 · · · 0 0 0 0

0 · · · · · · · · ·
. . . 0 0 0 · · · 0 0 0 0

0 0 0 0 0 D1 0 0 · · · 0 0 0 0

0 0 0 0 0 0 E1 0 · · · 0 0 0 0

0 0 0 0 0 0 0 4E1 · · · 0 0 0 0

0 0 0 0 0 0 0 0 2E1 0 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 0 0 0 2E1 0 0

0 0 0 0 0 0 0 0 0 0 0 4E1 0

0 0 0 0 0 0 0 0 0 0 0 0 E1





x1

x2

x3

...

xN−1

xN

u0

u1

u2

u3

...

uN−1

uN



+anh+
bh
3

x0 +
dh
3

x2
0

The above can be written as

(32) ZT S+ZT MZ +C

where

C = anh+
bh
3

x0 +
dh
3

x2
0

ZT =
(

x1 x2 · · · xN−1 xN u0 u1 u2 · · · un

)
The dimension of Z is (2n+1)×1

M =



4D1 0 0 0 · · · 0 0 0 · · · 0 0 0 0

0 2D1 0 0 · · · 0 0 0 · · · 0 0 0 0

0 0 4D1 0 · · · 0 0 0 · · · 0 0 0 0

0 0 0 2D1 · · · 0 0 0 · · · 0 0 0 0

0 · · · · · · · · ·
. . . 0 0 0 · · · 0 0 0 0

0 0 0 0 0 D1 0 0 · · · 0 0 0 0

0 0 0 0 0 0 E1 0 · · · 0 0 0 0

0 0 0 0 0 0 0 4E1 · · · 0 0 0 0

0 0 0 0 0 0 0 0 2E1 0 0 0 0
...

...
...

...
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 0 0 0 0 0 2E1 0 0

0 0 0 0 0 0 0 0 0 0 0 4E1 0

0 0 0 0 0 0 0 0 0 0 0 0 E1


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The dimension of M is (2n+1)× (2n+1)

where

mi j =



D1, i = j = N

E1, j = i = N +1,2N +1

4D1, j = i i = 1,3,5, · · · ,(N−1)

2D1, j = i i = 2,4,6, · · · ,(N−2)

4E1, j = i i = N +2,N +4,N +6, · · · ,2N

2E1, j = i i = N +3,N +5,N +7, · · · ,2N−1

0, elsewhere

S =



4B1

2B1

4B1
...

B1

C1

4C1

2C1

4C1
...

4C1

C1



is of dimension (2n+1)×1

2.1.2. Discretization of the Constraint. Using fifth order implicit method has formulated

in [13] to discretize equation (2)

Given as

yi+1 = yi +h[ω1 f (xi +αh(yi +α(yi+1− yi)))+ω2 f (xi +βh,(yi +β (yi+1− yi)))

+ω3 f (xi + γh,(yi + γ(yi+1− yi)))+ω4 f (xi + τh,(yi + τ(yi+1− yi)))+ω5 f (xi+h,yi+1)]
(33)
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where α = 0.05710419612460134,β = .27684301367379077,γ = 0.5835904324091858,

τ = 0.8602401356748276,ω1 = 0.14371356081477416,ω2 = 0.28135601516952136,

ω3 = 0.3118265229640613,ω4 = 0.2231039010576481,ω5 = 0.03999999999402437

xi+1 = xi +h[ω1 p(xi +αh+q(ui +α(ui+1−ui)))+ω2(pxi +βh+q(ui +β (ui+1−ui)))

+ω3(pxi + γh+q(ui + γ(ui+1−ui)))+ω4(pxi + τh+q(ui + τ(ui+1−ui)))

+ω5(pxi+1 +qui+1)]

(34)

(1−hω5)pxi+1 = (1+hω1 p+hω2 p+hω3 p+hω4 p)xi

+(hω1q−hω1qα +hω2q−hω2qβ +hω3q−hω3qγ +hω4q−hω4qτ)ui

+(qhαω1 +qhω2β +qhω3γ +qhω4τ +qhω5)ui+1

+(h2
ω1α +h2

ω2β +h2
ω3γ +h2

ω4τ)

(35)

Hence,

(36) xi+1 = A1xi +A2ui +A3ui+1 +A4

where

A1 =
1+hω1 p+hω2 p+hω3 p+hω4 p

(1−hω5)p

A2 =
hω1q−hω1qα +hω2q−hω2qβ +hω3q−hω3qγ +hω4q−hω4qτ

(1−hω5)p

A3 =
qhαω1 +qhω2β +qhω3γ +qhω4τ +qhω5

(1−hω5)p

A4 =
h2ω1α +h2ω2β +h2ω3γ +h2ω4τ

(1−hω5)p

for i = 0

(37) x1−A2u0−A3u1 = A1x0 +A4
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for i = 1

(38) x2−A1x1−A2u1−A3u2 = A4

for i = 2

(39) x3−A1x2−A2u2−A3u3 = A4

...

for i = N−1

(40) xN−A1xN−1−A2uN−1−A3uN = A4

The above system of equations can be written in Matrix form as



1 0 0 0 · · · 0 −A2 −A3 0 0 · · · 0 0

−A1 1 0 0 · · · 0 0 −A2 −A3 0 · · · 0 0

0 −A1 1 · · · 0 0 · · · 0 −A2 −A3 · · · 0 0

0 0 −A1
. . . 0 0 0 0 0

. . .
. . . 0 0

...
...

...
. . .

. . . 0
...

...
...

...
. . .

. . .
...

0 0 · · · 0 −A1 1 0 · · · 0 0 · · · −A2 −A3





x1

x2

x3

...

xN−1

xN

u0

u1

...

uN−1

uN



=



A4 +A1x0

A4

A4

...

A4

A4



(41) [R|T ]Z = D

(42) WZ = D

Where R ∈ RN×N , T ∈ RN×N+1, W ∈ RN×2N+1, Z ∈ R2N+1×1, D ∈ RN×1

By parametric optimization, the discritized constrained optimal control problem becomes

(43) Min ZT S+ZT MZ +C

(44) Subject to: WZ = D
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2.1.3. Conversion of the Discretized Constrained Problem to Unconstrained Problem. Aug-

mented Lagrangian Method is used to transformed the discritized optimal control problem to an

unconstrained problem given as

(45) L(Z,λ ,µ) = ZT S+ZT MZ +C+λ
T |WZ−D|+ µ

2
||WZ−D||2

L(Z,λ ,µ) = ZT S+ZT MZ +C+λ
TWZ−λ

T D+
µ

2
W TWZT Z−µWDT Z +

µ

2
DT D

(46) L(Z,λ ,µ) = ZT MkZ +ZT S+WkZ +Dk

where

Mk = M+
µ

2
W TW , Wk = λ TW −µDTW and Dk =

µ

2
DT D−λ T D+C.

3. MAIN RESULTS

3.1. Example1. Consider the optimal control problem given as

(47) Minimize
∫ 4

0
(0.1x(t)+0.02u(t)+0.01x2(t)+0.005u2(t))dt

(48) ẋ = 0.02x+0.005u, x(0) = 1

Solution

By introducing the adjoint varible µ(t), the constrained OCP given in equations (47) and (48)

is converted to an unconstrained problem. Hence, the hamiltonian fuction is given by

(49) H(x,u,µ) = 0.1x+0.02u+0.01x2 +0.005u2 +µ(0.02x+0.005u)

The Euler-Lagrange system of equations for this hamiltonian function can be written as

(50) 0.02x+0.005u = ẋ∗

(51) µ̇
∗ =−(0.1+2(0.01)x+0.02µ)

(52) 0.02+0.01u+0.005µ = 0
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This implies that

(53) u∗ =
−0.02−0.005µ

0.01

In view of equation (53) equation (50) becomes

(54) ẋ∗ = 0.02x−0.0025µ−0.01

Expressing equations (51) and (54) in matrix form, we have

(55)

 ẋ∗

µ̇∗

=

 0.02 −0.0025

−0.02 −0.02

x

µ

+

−0.01

−0.1


where

(56) A =

 0.02 −0.0025

−0.02 −0.02

 , X =

x

µ

 and C =

−0.01

−0.1


The eigenvalues of A are λ1 = 0.02121 and λ2 = −0.02121 and the corresponding eigenvec-

tors are given as U1 =

 0.8997

−0.4366

 and U2 =

0.06055

0.9982

. The complimentary solution of

equation (55) is

(57) V (t) =C1

 0.8997

−0.4366

eλ1t +C2

0.06055

0.9982

eλ2t

Using the initial condition x(0) = 1 and choosing µ(4) = 0, the values of constants C1 and

C2 are obtained as C1 = 1.07404 and C2 = 0.5568 respectively.

(58) Let φ(t) =

 0.8997e0.02121 t 0.06055e−0.02121 t

−0.4366e0.02121 t 0.9982e−0.02121 t


This implies that

(59) φ
−1(t) =

 1.07969e−0.02121 t −0.06549e−0.02121 t

0.4722e0.02121 t 0.9732e0.02121 t


and

(60) φ(t)C =

 0.9663e0.02121 t +0.03371e−0.02121 t

−0.4689e0.02121 t +0.5558e−0.02121 t


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From equation (55), g(t) =

−0.01

−0.1



(61) φ
−1(t)g(t) =

 −0.004248e−0.02121 t

−0.1020e0.02121 t



(62)
∫

φ
−1(t)g(t)dt =

 0.2003e−0.02121 t

−4.8109e0.02121 t



(63) φ(t)
∫

φ
−1(t)g(t)dt =

 −0.1111

−4.88965


The general solution is

(64) X(t) =

 0.9993e0.02121 t +0.03371e−0.02121 t−0.1111

−0.4689e0.02121 t +0.5558e−0.02121 t−4.8896


Since

(65) X(t) =

x∗(t)

µ∗(t)


this implies that

(66) x∗(t) = 0.9663e0.02121 t +0.03371e−0.02121 t−0.1111

and in view of (53)

(67) u∗ = 0.444468+0.23446e0.02121 t−0.277898e−0.02121 t

hence the objective value is

(68) J = 0.4438797318
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3.1.1. Convergence Analysis of Results. Definition 4.1: Consider a sequence {xk} ∈ Rn rep-

resenting the solutions xk that converges to a limit x∗(xk → x∗). Using corresponding error

function defined as e(xk) = ek = |xk−x∗|, where xk ∈R and e(x∗) 6= 0, the convergence ratio ψ

is given by

(69) ψ = lim
k→∞

ek+1

ek
= lim

k→∞

||xk+1− x∗||
||xk− x∗||

, ∀k

(1) When 0 < ψ < 1, the convergence demonstrates a linear behaviour.

(2) When ψ > 1, the sequence diverges.

(3) When ψ = 1, the convergence displays sublinear behaviour.

(4) When ψ = 0, the convergence demonstrates super-linear characteristics.

TABLE 1. The Convergence Ratio Profile for Example 1

µ(Penalty Parameter) J (Objective Function Value) ψ (convergence ratio) Tolerance

1.0×100 0.4284513102 0.0109112649 10×10−5

1.0×101 0.4413507076 0.0010903559 10×10−5

1.0×102 0.4426411917 0.0001105253 10×10−5

1.0×103 0.4427702455 0.0000109030 10×10−5

1.0×104 0.4427841053 0.0000000000 10×10−5

3.1.2. Discussion of Results.

• The function f(x) as defined in equation(46) where Mk,Z,S,Wk and Dk are input as

matrices

• The initial guess is as x0 i.e the initial condition

• The tolerance for Convergence was set as 10×10−5

3.1.3. Initialization.

(1) Setting k=0

(2) The initial guess was set as x0

(3) The initial gradient g0 =5 f (x0) was computed

(4) The search direction p0 =−g0
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(5) An appropriate step size αk was chosen along with the search direction pk

(6) Updating the solution xk+1 and the gradient gk+1

xk+1 = xk +αk pk

gk+1 =5 f (xk+1)

(7) Updating the Conjugate Direction pk+1

βk+1 =
gT

k+1gk+1

gT
k gk

pk+1 =−gk+1 +βk+1 pk

(8) Checking if the convergence criteria as defined above is satisfied otherwise back to step

1 with k incremented by 1.

The numerical analysis of the Conjugate Gradient Method (CGM) Using MATLAB software

on a 64-bit Dell Vostro with a core i7 Intel processor for different penalty parameters reveals

insights into its performance on a specific optimization problem. When the penalty parameter

is set to 1.0×100, the CGM produces an objective value of 0.4284513102 with a convergence

ratio of 0.0109112649 and a tolerance of 1× 10−5. As the penalty parameter increases to

1.0×104, the objective value converges to 0.4427841053, accompanied by an extremely small

convergence ratio of 0.000000000000.

The approximate solutions of the discretized OCP are obtained from FICO Xpress Mosel Using

equations(43) and (44) and its correponding matrices as used in the CGM are first of all stored

in a .txt file placed in the directory in which the mosel is located and then initialized on the

Mosel.

• To improve efficiency, Mosel integrates external solvers such as IPOPT (Interior Point

Optimizer) or SNOPT (Sparse Non-linear Optimization) to generate optimal control

solutions for Optimal Control Problems (OCPs)

• It uses the Newton Barrier Algorithm to iterate through solutions using Interior Point

Optimizer satisfying the Karush-Kuhn-Tucker (KKT) conditions on the feasible regions

to find a close approximation of an Optimal Solution
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The function is then minimized in order to obtain the Objective Value. Comparing these results

with the objective value obtained from Fico Xpress Mosel version 6.43 on a 64-bit Dell Vostro

with a core i7 Intel processor (0.4438797490), and the Analytical Solution (0.4438797318),

it becomes evident that Fico Xpress Mosel consistently outperforms the CGM method for this

specific optimization problem. The objective values from Fico Xpress Mosel and the Analytical

Solution exhibit a very close alignment, suggesting that Fico Xpress Mosel provides a more

solution that compares favourably well with the analytical solution.

3.2. Example 2. Consider the optimal control problem given as

(70) Minimize
∫ 10

0
(2x(t)+4u(t)+3x2(t)+u2(t))dt

(71) ẋ = 3x+u, x(0) = 2

Solution

By introducing the adjoint varible µ(t), the constrained OCP given in equations (70) and (71)

is converted to an unconstrained problem. Hence, the hamiltonian fuction is given by

(72) H(x,u,µ) = 2x(t)+4u(t)+3x2(t)+u2(t)+µ(3x+u)

The Euler-Lagrange system of equations for this hamiltonian function can be written as

(73) 3x+u = ẋ∗

(74) µ̇
∗ =−(2+6x+3µ)

(75) 4+2u+µ = 0

This implies that

(76) u∗ =
−4−µ

2

In view of equation (76) equation (73) becomes

(77) ẋ∗ = 3x− 1
2

µ−2



OPTIMAL CONTROL PROBLEMS CONSTRAINED BY ORDINARY DIFFERENTIAL EQUATIONS 21

Equations (77) and (74) can be represented in matrix form as

(78)

 ẋ∗

µ̇∗

=

 3 −1
2

−6 −3

x

µ

+

−2

−2


where

(79) A =

 3 −1
2

−6 −3

 ,X =

x

µ

 and C =

−2

−2


The eigenvalues of A are λ1 = 3.4641 and λ2 = −3.4641 respectively and the corresponding

eigenvectors are given as: U1 =

−1.07735

1

 and U2 =

0.07735

1

. The complimentary

solution of equation (78) is

(80) V (t) =C1

−1.07735

1

eλ1t +C2

0.07735

1

eλ2t

Using the initial condition x(0) = 1 and choosing µ(4) = 0, the values of constants C1 and C2

are obtained as C1 =−2.1075×10−29 and C2 = 25.8565.

(81) Let φ(t) =

 −1.07735e3.4641 t 0.07735e−3.4641 t

e3.4641 t e−3.4641 t


Hence

(82) φ
−1(t) =

 −0.8660e−3.4641 t 0.06699e−3.4641 t

0.8660e3.4641 t 0.9330e3.4641 t


then

(83) φ(t)C =

 2.2706×10−29 e3.4641 t +2.000000275e−3.4641 t

−2.1076×10−29 e3.4641 t +25.8565e−3.4641 t



From equation (78)

g(t) =

−2

−2


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(84) φ
−1(t)g(t) =

 1.59802 e−3.4641 t

−3.5980e3.4641 t



(85)
∫

φ
−1(t)g(t)dt =

 −0.4613e−3.4641 t

−1.03865e3.4641 t



(86) φ(t)
∫

φ
−1(t)g(t)dt =

 0.4166

−1.49995


The general solution is

(87) X(t) =

 2.2706×10−29 e3.4641 t +2.000000275e−3.4641 t +0.4166

−2.1076×10−29 e3.4641 t +25.8565e−3.4641 t−1.49995


Since

(88) X(t) =

x∗(t)

µ∗(t)


this implies that

(89) x∗ = 2.2706×10−29 e3.4641 t +2.000000275e−3.4641 t +0.4166

and in view of equation (76)

(90) u∗ =−1.250025+1.0538×10−29 e3.4641 t−12.9283e−3.4641 t

Hence the objective function value is

(91) J = 2.019819716

3.2.1. Discussion of Results.
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TABLE 2. The Convergence Ratio Profile for Example 2

µ(Penalty Parameter) J (Objective Function Value) ψ (convergence ratio) Tolerance

1.0×100 -0.2613144906 0.9228396360 10×10−5

1.0×101 1.5682893902 0.22477410505 10×10−5

1.0×102 1.9536035419 0.0205791719 10×10−5

1.0×103 2.0031247797 0.00000082232 10×10−5

1.0×104 2.0085540057 0.0000000000 10×10−5

The same process of initialization and assumptions using CGM as used in example 1 is used

in example 2. The numerical analysis using the Conjugate Gradient Method (CGM) for vari-

ous penalty parameters provides valuable insights into the optimization process. For the specific

penalty parameters investigated, ranging from 1.0×100 to 1.0×104, distinct patterns emerge in

terms of objective values and convergence ratios. Starting with a penalty parameter of 1.0×100,

the CGM yields an objective value of -0.2613144906 and a convergence ratio of 0.9228396360,

suggesting a considerable convergence towards the optimal solution with a relatively high sen-

sitivity to changes in the penalty strength.

As the penalty parameter increases, a notable trend unfolds: the objective value tends to stabi-

lize, indicating diminishing sensitivity to further increases in penalty strength. Simultaneously,

the convergence ratio experiences a significant decline, signifying accelerated convergence to

the solution. This trend is particularly evident for the highest penalty parameter (1.0× 104),

where the convergence ratio becomes exceptionally small, indicative of a remarkably swift con-

vergence of the algorithm to the solution.

Comparing these CGM results with the objective value obtained from Fico Xpress Mosel

(2.019818802), a distinction in accuracy becomes apparent. Fico Xpress Mosel produces

a solution remarkably close to the Analytical Solution (2.019819716) with minimal error

compared to the CGM results. This underscores the superior accuracy of Fico Xpress Mosel in

providing solutions for this specific optimization problem.
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4. CONCLUSION

This paper presents exact solutions for general quadratic optimal control problems con-

strained by first-order ordinary differential equations. It applies necessary conditions of op-

timality to the Hamiltonian function, solving resulting non-homogeneous first-order ODEs us-

ing the method of fundamental matrix to obtain analytical solutions for state variables, control

variables, and objective function values. For numerical solutions, the discretized unconstrained

optimal control problem is tackled using the Conjugate Gradient Method (CGM) and FICO

Xpress Mosel. The CGM’s convergence is analyzed against predefined criteria given in Tables

1 and 2 , demonstrating superlinear convergence under specific conditions. FICO Xpress Mosel

consistently produces objective function values closely matching analytical solutions, show-

casing its reliability and accuracy. Overall, results indicate that FICO Xpress Mosel provides

solutions more closely aligned with analytical solutions compared to CGM.

5. RECOMMENDATION

Future research endeavors should prioritize the utilization of the Fico Xpress model in spe-

cific domains, particularly in addressing optimal control problems characterized by ordinary

differential equations with multiple constraint to harness the strengths of the Fico Xpress model

in handling complex optimization scenarios involving intricate constraints and contributing to a

deeper understanding of its applicability and efficacy in these specific area
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