Available online at http://scik.org
J. Math. Comput. Sci. 3 (2013), No. 2, 631-640
ISSN: 1927-5307

FULLY-DISCRETE H'-GALERKIN MIXED FINITE ELEMENT
METHOD FOR PSEUDO-PARABOLIC INTEGRO-DIFFERENTIAL
EQUATIONS

FENGXIN CHEN

Department of Mathematics and Physics, Shandong Jiaotong University, Jinan, 250023, China

Abstract. In this paper, we discuss a fully-discrete H'-Galerkin mixed finite element method for pseudo-
parabolic integro-differential equations in one dimensional case. Optimal order error estimates for the

scalar unknown and its gradient in L2-norms and H'-norms are obtained.
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1. Introduction

In this paper, we consider the following pseudo-parabolic integro-differential equations

in one dimensional case

up = (a(z,t)um + bz, t)u, + fot C($,t,7‘)ux($,7')d8> + f(z,t), (x,t) €10,1] x J,
u(0,t) = u(l,t) =0, ted,

u(z,0) = ug(x), x € [0,1],
(1)
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where J = (0, 7] is the time interval with 0 < T' < co. f,ug are given functions, and we
make the following assumptions for the coefficients of equation (1): 0 < ag < a(x,t),a; <
ar, |b(z,t)] < by, |e(x,t,7)| < c1, where ag, a1, by, ¢; are all positive constants.

Evolution integro-differential equations are a class of important evolution partial dif-
ferential equations, and have a lot of applications in many physical problems, such as the
transport of reactive and passive contaminates in aquifers. For this class of equations, the
existence of solutions has been studied, such as in [1], [2]. In recent years, the numerical
methods to solve these equations are also proposed, for example, finite element method
in [3] and adaptive least-squares mixed finite element method in [4].

Standard mixed finite element methods were developed and analyzed in [6], [7], [§]
for elliptic equations, [9] for parabolic equations, and [10], [11] for wave equations. In
general, the LBB stability condition is required for the mixed finite element method,
which restricts the choice of finite element spaces. Recently, in order to overcome this
difficulty, an H'-Galerkin mixed finite element method was proposed in [12] for parabolic
problems. The proposed method is a non-symmetric version of least square method. It
has been proved that the H'-Galerkin mixed finite element method has the same rate of
convergence as standard mixed finite element method.

In this paper, we construct a fully-discrete H'-Galerkin mixed finite element method to
the equations (1). By introducing a flux ¢, we split (1) into a system of two equations and
then apply the H'-Galerkin mixed finite element method. For the temporal discretization,
we consider the backward Euler method, which is first order accurate in time. Optimal
error estimates for the scalar unknown v and its flux ¢ in L?-norm and H'-norm are
achieved.

Throughout the paper, we adopt the standard notation W™?(Q) for Sobolev space on
Q with a norm || - ||,n, and a semi-norm | - |,,,. For ¢ = 2, we denote H™(Q2) = W™%(Q),
| - |m=|l - l;mz2 and for m = 0, we denote || - ||=|| - ||o. Moreover, the inner products in

L?(2) are indicated by (-,-). Let X be a Banach space and ¢(t) : [0, 7] — X, we set

T
11122 ) =/ l6(s)xds,  lIgllzex) = ess sup [|6]|x.
0 0<t<T
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In addition, C denotes a generic constant independent of the spatial mesh parameter h

and time discretization parameter AAt, and £ denotes an arbitrarily small positive constant.

2. The Fully discrete H'-Galerkin Mixed Finite Element Approx-

imation Scheme

For simplicity, we set a := a(z,t), b := b(z,t),c = c(z,t,7) and ¢ = a(z,t)uy, +

b(x, t)u, + fot c(x,t, T)ug(x, 7)dT, so equation (1) can be rewritten as

a) u — gz = f(z,1), (x,t) € [0,1] x (0,77,
b) a(z,t)uy + bz, t)u, + fo c(x,t, T)ug(x, 7)dT = g, (x,t) € [0,1] x (0,T]
¢) u(0,t) =wu(l,t) =0, t € (0,7,
d) u(z,0) = uo(x), x € [0,1].

(
(
(
(

\

Let w € H!, multiplying (2a) by w, € H' and integrating on interval [0, 1] we obtain
(ur,we) = (quywe) = (frwy), we H.
Let v € H}, multiplying (2b) by v, € H} and integrating on interval [0, 1] we obtain
(atyz, vz) + (b, v;) + /t(cum,vm)dT =(q,v.), ©v€ Hy.
0
Note that u;(0) = us(1) = 0 and ¢ = a(x, t)us, + b(z, t)ugﬁ—fot c(x,t, T)uy(x, 7)dr. Then

by Green formula we have

(aq,w) + (¢, wz) = (Bug, w) +/O (Yg, w)dT — (f,w,), w € H,

where o = %,6: g,vzi
Then the weak form of H'-Galerkin mixed finite element method for (2) can be defined
by
(atyz, vz) + (btig, vz) + fg(cux,v$)dr = (q,vs), v e HE,
(g, w) + (g, we) = (Buz, w) + [5 (yta, w)d7 = (frws) w € H'.
Let Vj,, W), be finite dimensional subspaces of Hj and H', respectively, with the follow-

(3)

ing approximation properties:

1nf {Hv —vpllze + hllv — vnllwre } < CRE |l lwasrn, v € HE QWP

VhE
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Hellgv {Hw — whHLp + h“w — whHWl,p} < C’hrJrle‘WHl’p, w e I/V?url,p7
REWH,

where 1 < p < o0, k, r are integers.

For the temporal discretization, we consider the backward Euler method, which is first
order accurate in time. Let 0 =t < t!' < ... <tV =T be a given partition of the time
interval [0, 7] with step length At = %, for some positive integer N. Define t" = nAt,
" = o(t"), 09" = (¢" — ¢" 1)/t for a smooth function ¢. Let U™ and Q" be the
approximation of u and ¢ at t = t", then the fully discrete H!'-Galerkin mixed finite

element approximation scheme of (3) is to find {U™, Q"} € V}, x W}, such that

-~ n—1 )
(anatUg?a Uhx) + (anga Uh:r) + At Z (anUga Uhx) = (Qn’ Uh:r)a Vp, € Vh7
Jj=0

—1

(anQ™,wn) + (QF, wha) = (BuUR, wn) + At Y- (UL wn) — (f" Wha), wn € Wi,
j=0
(4)
where a, = a(t"),b, = b(t"), c,; = c(tn, tj), an = (t"), Bn = B(™), Yn; = Y(tn, t;).
For our error estimates, we introduce the following projections.

(i) From [15], we define the Soblev-Volterra projection: to find @, € V}, such that:
¢
(@l = T+ bty = ) + [ el = )i o) =0, )
0
which satisfy the following estimate,

t
Fu—an | +0 | (u = tn)s 1< ME e +/ | {lksa dr). (6)
0

(i) Following [16], we define an elliptic projection ¢, € W), such that:

((¢ = Gn)z> Wha) = 0, Ywy, € Wy, (7)

and also we have

la—anll +0 1| (g = @n)e 1< ME™H ]| g [l - (8)

3. Convergence Analysis

Let

u(t?) — U™ = u(t™) — iin (") + in (") — U™ = 5" + ¢
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q(t") = Q" = q(t") = Gu(t") + Gu(t") — Q" = p" +&"

Set t = t" in (2) and combine (3), (5), (7), we can get the following error equations,

@) (000G )+ () + 58 S Crshtn) = (7 + €800 + €1 (0)
+(an™"™, Vs ),
(5) () - (€0 10) = (B ) — (Bon 0n) + (BuCl0n) ©
1 (g 00) + (o )]
| +At§<%j£g, wn) + (),
where

Tn = 8_t12hx(t") - ah$t<tn)7

n—1

tn
6? = / (Cnahx; th)dT — At Z(anahm (tj)a Uh$)7
0

j=0

n—1

G = [ Guuale)wn)dr = ALY Guga(t). ).

=0
Since the estimates of n™ and p" can be found out easily from (6) and (8) at t = ¢, it is
enough to estimate (" and &".
Theorem 3.1. Assume that U° = 1;(0), Q° = G, (0) and 0 < J < N. Then there exists a
positive constant C independent of h and At such that for j = 0,1 the following estimate
holds
lw” = U+ 1 ¢" = Q7
< O W= = (| | oo sy + | g [lzoeqrresny) (3.1)

—+ CAt(H u ”LQ(Hl) + H Ut HLQ(Hl) + H Ut HLQ(Hl))

Proof. Choose v, = ¢" in (9a) to obtain for n =0,1,--- , N,

n—1
(@B )+ (BuCl )+ O8> (a0 = (07 + €%, C) + 6 + (anr™, ). (10)
7=0
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Note that a > ag, [b] < by, |c| < ¢; and ag, by, ¢ are positive constants, then by Hélder

inequality and e inequality we have

_ n—1 )
_ =0 n—1 (11>
> gao || O 1* =00 || G 1P —e1 st EO ¢ 112 —aaTe || G 1P,
‘7:

and

(p" + &M G + el + (a7, ()

<CUpm PN PP+ Ne P+ 1P+l Gl
Combine (10)-(12), we can get

- n—1
300 || G < er At 2% G 12 +CU e 112+ 1€ 1P+ e 12+ 17 11%)
J:

+(b1 + e+ 01T€> || C:? H2 .

By Taylor formula we can derive

n—1

Ier 12 = 1l Jy (cnting, vha)dT — AL (Cujling(t;), vha) |

J=0

< C(AD? [S g 1>+ || Gnar |2y,

and
t’ﬂ

| 7 |12< CAt/

H ahxtt H2 dT.
tn—1

Therefore, we have

_ n—1
2000 [ GHIP < et 32 G PO 1P+ 16 1)

J=

+ C(At)? fotn{H Ung ||* + || tnar [|PYdT + CAL f;:il | Gnase ||* dr
+ (bi+e+aTe) | P

ie.,

1 g0 M Pl
270 At

IN

n—1
o At ZO 1G>+l o™ 12+ 11 €™ 11%)

=

+ OO [ e 12+ | e |2YdT + CAE [0y || G ||> dr
+ (bl +€+01T€) H Cg ||2 .
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Then, multiplying by At and summing from n =1,2,--- | J, we conclude that

[y

J n— J
300 [| G 1P < (D)’ 21 ZO I & 117 +C Zl(H prIP e %)
n=1j= n=

+ CTOEP [y {ll e 12+ | ot |2Ydr + CAD? [} | inars || dr

J
+ (b1 +e+aTe)At> || ¢ |?.
n=1
Further, we have

J
n n T ~ ~
300 1 GIP < Ol Wieqay +08 35 11 €7 IP) + AL [ e I + | e |?}dr
CAL? [ || e ||2 dr + (b1 + & + e Te) At || ¢ |2

+
J—1

+ (i+e+aTe+aT) Y |7,
n=1

ie.,
[300 = (bi + e+ aTe) At || ¢ |
< Ol gz +0 32 1167 12)+ CCAN? e
+ || inar [2}dr + CAL? f) | Ginane || d7

J—1
+ (i+et+aTle+altT) Y || C?.
n=1

Choosing At such that sag — (by + &+ ¢;Te) At > 0 and using discrete Gronwall’s lemma

we can derive that

J
eI < Ol p ey +48 20 11 €7 1) + C(AD? Jo Il s |12

(13)
W dinee [PHdr + COAL? [ || dneer | .
Choose wy, = £ in (9b) to obtain
(anén, €") + (62, &2) = = (Buns &) — (Bann™, €") + (BnC - €") 14
14

n—1 . . n—1 .
+At ;}[(Vn,jp%gg) + <7znjp]7€n)] + At z%)(%yfﬁnfn) + 63(&%)7
= =
For the left side of (14), we can get

(o, €") + (€,67) Z ao 1€ I+ 1 &2 117 (15)
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Combine (15) and the right side of (14), we can derive the following estimates

ao € IP+ 1 & 1P < U™ 1P+ 11 G I +edll & 11+ 11 €™ 11%)

J .
LRI Wl e L UR e R

n—1 )
+ alt ZO &2+ e |IP,
]:

where
n n—1
les 12 = I fy (vnua(t), wp)dr — At Z()(%jux(tj),wh) 2
]:
< OO [ (Il ua 12 + || wae [1P)ds
Therefore

J
ao [ " IP+ & 1P < CUln™ 1P+ 1 p I (z2) + CAL 2 e I
t" ~ ~ ~
+ C(AD [y (lua 1?4 1l tor [P+ 1| ng 1P 4 1| Gnae 2 + 1] Gnaee [1*)ds
n—1 )
+ alt [P
j=1
Let ap = min{ayg, 1} such that

Goll€ 7 < OO I+ 11 fom) + COL S 1 €7
+ OO f3 (s I+ tar 17+ 1 e 1P+ 1 G [P+ [ Gser )l
voon's e
j=1
For sufficiently small At and by discrete Gronwall’s lemma, we obtain that
€1t < CUa 1P+ 1 p 17 z2)
+ CAD2 [ (e [P+ 1 thar 12+ 1] Tna 112+ 1] et (12 + ] inae [2)ds.

Therefore, we can get

el < ChmMR LB (| || poe sy + 11 ¢ o))
+ COAt([| w2y + || we (2 + || wee lz2cany)

and

I¢ < Crmm b (L || oo sy + || g oo qaren)) (17)
—+ CAt(H U HL2(H1) + || Uy HLQ(HI) + || Ut HLQ(Hl))-
Combining (16), (17), and the estimates of n™ and p", by the triangle inequality we can

complete the proof.
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