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Abstract. The results on ordered semigroups can be transferred to fuzzy ordered semigroups, and from

the results on fuzzy ordered semigroups one can get the corresponding results on ordered semigroups in

the way indicated in the present paper. So not only ordered semigroups give information about fuzzy

ordered semigroups, but fuzzy ordered semigroups give information about ordered semigroups as well.
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1. Introduction and prerequisites

Let (S, .,≤) be an ordered semigroup. For a subset H of S, (H] denotes the subset of

S defined by (H] := {t ∈ S | t ≤ h for some h ∈ H}. Clearly S = (S], and for any

subsets A,B of S, we have A ⊆ (A], if A ⊆ B then (A] ⊆ (B], and ((A)] = (A]. A

nonempty subset A of S is called a left (resp. right) ideal of S if (1) SA ⊆ A (resp.

AS ⊆ A) and (2) if a ∈ A and S 3 b ≤ a, then b ∈ A, that is (A] = A. A is called

an ideal of S if it is both a left and a right ideal of S. A left (resp. right) ideal A of

S is clearly a subsemigroup of S i.e. A2 ⊆ A. A nonempty subset A of S is called a

bi-ideal of S if (1) ASA ⊆ A and 2) if a ∈ A and S 3 b ≤ a, then b ∈ A. For an
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element a of S, L(a), R(a), I(a), B(a) denote the left ideal, right ideal, the ideal, and the

bi-ideal of S, respectively, generated by a, and we have L(a) = (a∪ Sa], R(a) = (a∪ aS],

I(a) = (a∪Sa∪aS∪aSa], B(a) = (a∪aSa]. For any nonempty subset A of S, the set (SA]

(resp. (AS]) is a left (resp. right) ideal of S, the set (SAS] is an ideal, and the set (ASA]

is a bi-ideal of S. Indeed, the sets (SA], (AS], (SAS] and (ASA] are nonempty subsets of

S, S(SA] = (S](SA] ⊆ (S2A] ⊆ (SA], (AS]S ⊆ (AS], S(SAS] = (S](SAS] ⊆ (S2AS] ⊆

(SAS], (SAS]S ⊆ (SAS], (ASA]S(ASA] = (ASA](S](ASA] ⊆ (ASASASA] ⊆ (ASA],

((SA]] = (SA], ((AS]] = (AS], ((SAS]] = (SAS] and ((ASA]] = (ASA]. For A = {a},

we write (Sa], (aS], (SaS], (aSa] instead of (S{a}], ({a}S], (S{a}S], ({a}S{a}] thus, for

any a ∈ S, (Sa] (resp. (aS]) is a left (resp. right) ideal of S, (SaS] is an ideal, and (aSa]

is a bi-ideal of S.

An ordered semigroup (S, .,≤) is called left regular if for every a ∈ S there exists x ∈ S

such that a ≤ xa2, that is a ∈ (Sa2] for all a ∈ S or A ⊆ (SA2] for all A ⊆ S. It is called

right regular if for every a ∈ S there exists x ∈ S such that a ≤ a2x, that is a ∈ (a2S]

for all a ∈ S or A ⊆ (A2S] for all A ⊆ S. An ordered semigroup (S, .,≤) is called regular

if for any a ∈ S there exists x ∈ S such that a ≤ axa i.e. a ∈ (aSa] for every a ∈ S or

A ⊆ (ASA] for every A ⊆ S. It is called intra-regular if for each a ∈ S there exist x, y ∈ S

such that a ≤ xa2y, that is a ∈ (Sa2S] for all a ∈ S or A ⊆ (SA2S] for all A ⊆ S. We

say that S is left (resp. right) duo if every left (resp. right) ideal of S is two-sided. It

is called duo if it is both left and right duo. An ordered semigroup S is called left (resp.

right) simple if there is no proper left (resp. right) ideals in S i.e. if A is a left (resp.

right) ideal of S, then A = S. S is called simple if S does not contain proper ideals. An

ordered semigroup S is left (resp. right) simple if and only if (Sa] = S (resp. (aS] = S)

for every a ∈ S. It is simple if and only if S = (SaS] for all a ∈ S which is equivalent

to saying that for all a, b ∈ S, we have b ∈ (SaS]. A subset T of S is called semiprime if

for any a ∈ S such that a2 ∈ T , we have a ∈ T , equivalently, if A ⊆ S such that A2 ⊆ T ,

then A ⊆ T .

A fuzzy subset of S (or fuzzy set) in S is a mapping f of S into the real closed interval

[0, 1] of real numbers. For a subset A of S, denote by fA the characteristic function on A,
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that is the mapping of S into the set {0, 1}(⊆ [0, 1]) defined by

fA : S → {0, 1} | fA(x) :=

 1 if x ∈ A

0 if x /∈ A.

which is clearly a fuzzy subset of S. A fuzzy subset f of S is called a fuzzy left ideal of S

if

(1) f(xy) ≥ f(y) for all x, y ∈ S and

(2) if x ≤ y, then f(x) ≥ f(y).

It is called fuzzy right ideal of S if

(1) f(xy) ≥ f(x) for all x, y ∈ S and

(2) if x ≤ y, then f(x) ≥ f(y).

A fuzzy subset of S which is both a fuzzy left and a fuzzy right ideal of S is called a fuzzy

ideal of S. A fuzzy subset f of S is called a fuzzy bi-ideal of S if

(1) f(xyz) ≥ min{f(x), f(z)} for all x, y, z ∈ S and

(2) if x ≤ y, then f(x) ≥ f(y).

We say that S is fuzzy left duo if every fuzzy left ideal of S is at the same time a fuzzy

right ideal of S. It is fuzzy right duo if every fuzzy right ideal of S is a fuzzy left ideal of

S. S is called fuzzy duo if it is both fuzzy left duo and fuzzy right duo.

By a fuzzy ordered semigroup we mean an ordered semigroup having a fuzzy set. Our

aim is to show the relation between ordered semigroups and fuzzy ordered semigroups and

show that not only ordered semigroups give information about fuzzy ordered semigroups

but fuzzy ordered semigroups give information about ordered semigroups as well. A subset

A of an ordered semigroup S has a property if and only if the characteristic function fA

has its fuzzy analogous. A is a left (right) ideal, bi-ideal, quasi-ideal, semiprime subset,

prime subset of S, etc. if and only if fA is so. But if S has a property, then S does not

always equivalently have its fuzzy analogous. For example, if S is fuzzy left duo, then

S is left duo, but if S is left regular and left duo (or regular and left duo), then it is

fuzzy left duo. If every fuzzy bi-ideal of S is a fuzzy right ideal of S, then every bi-ideal

of S is a right ideal of S, but if S is regular and every bi-ideal of S is a right ideal of

S, then every fuzzy bi-ideal of S is a fuzzy right ideal of S. We prove that an ordered
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semigroup is left (resp. right) simple if and only if it is fuzzy left (resp. fuzzy right)

simple. In left simple ordered semigroups, the fuzzy bi-ideals are fuzzy right ideals. As a

consequence, in left simple ordered semigroups, the bi-ideals are right ideals. Denote by

N the set {1, 2, 3, ..., } of natural numbers. Assuming that S is an ordered semigroup and

k a natural number such that k ≥ 2, we prove that for every a ∈ S there exist x, y ∈ S

such that a ≤ xaky if and only if for every fuzzy ideal f of S and every a ∈ S, we have

f(a) = f(ak) which is a generalized form of intra-regularity. Using fuzzy left (resp. fuzzy

right) ideals, we characterize the ordered semigroups in which a ≤ xak (resp. a ≤ akx)

for some N 3 k ≥ 2. As a result, if an ordered semigroup S is intra-regular and f a fuzzy

ideal of S, then f(ab) = f(ba) for all a, b ∈ S. An ordered semigroup S is intra-regular

if and only if for every fuzzy ideal f of S and any a ∈ S, we have f(a) = f(a2). An

ordered semigroup S is left (resp. right) regular if and only if for every fuzzy left (resp.

fuzzy right) ideal f of S and any a ∈ S, we have f(a) = f(a2). We show that if S

is an archimedean ordered semigroup, then every fuzzy semiprime fuzzy ideal of S is a

constant function. The archimedean ordered semigroups do not contain proper semiprime

ideals. An ordered semigroup S is intra-regular if and only if every fuzzy ideal of S is

fuzzy semiprime. As a consequence, an ordered semigroup S is intra-regular if and only

if every ideal of S is semiprime. Using fuzzy sets, we prove that an ordered semigroup

is simple if and only if it is intra-regular and archimedean. Finally, we characterize the

semilattices of left (and right) simple (ordered) semigroups in terms of fuzzy sets. An

ordered semigroup S is a semilattice of left (resp. right) simple semigroups if and only if

it is decomposable into pairwise disjoint left (resp. right) simple components Sα indexed

by a semilattice (: idempotent and commutative semigroup) Y such that SαSβ ⊆ Sαβ for

every α, β ∈ Y . Fuzzy semigroups (without order) have been systematically studied by

N. Kuroki. We refer, for example, to his papers in [6, 7].

2. Main results

Lemma 1. (cf. also [1; Proposition 2]) Let S be an ordered groupoid. If A is a left (resp.

right) ideal of S, then the characteristic function fA is a fuzzy left (resp. fuzzy right) ideal
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of S. Conversely, if A is a nonempty set and fA a fuzzy left (resp. fuzzy right) ideal of S,

then A is a left (resp. right) ideal of S.

Theorem 2. Let S be an ordered semigroup. We consider the statements:

(1) S is fuzzy left duo.

(2) S is left duo.

Then (1)⇒ (2). In particular, if S is left regular (or regular), then (1)⇔ (2).

Proof. (1) =⇒ (2). Let S be fuzzy left duo and A a left ideal of S. By Lemma 1, fA is a

fuzzy left ideal of S. By hypothesis, fA is a fuzzy right ideal of S. Since A is nonempty,

by Lemma 1, A is a right ideal of S, so S is left duo.

(2) =⇒ (1). Let S be left regular and left duo, f a fuzzy left ideal of S and a, b ∈ S.

As (Sa] is a left ideal of S, by hypothesis, it is a right ideal of S as well. Since S is left

regular, we have ab ∈ (Sa2]b ⊆ (Sa]S ⊆ (Sa]. Then ab ≤ xa for some x ∈ S. Since f is

a fuzzy left ideal of S, we have f(ab) ≥ f(xa) ≥ f(a) i.e. f is a fuzzy right ideal of S.

Thus S is fuzzy left duo. �

The right analogue of Theorem 2 also holds, and we have

Corollary 3. The fuzzy duo ordered semigroups are duo.

Lemma 4. (cf. also [2; Theorem 1]) Let S be an ordered semigroup. If A is a bi-ideal

of S, then the characteristic function fA is a fuzzy bi-ideal of S. Conversely, if A is a

nonempty set and fA a fuzzy bi-ideal of S, then A is a bi-ideal of S.

Theorem 5. Let (S, .,≤) be an ordered semigroup. We consider the following statements:

(1) Every fuzzy bi-ideal of S is a fuzzy right ideal of S.

(2) Every bi-ideal of S is a right ideal of S.

Then (1)⇒ (2). In particular, if S is regular, then (1)⇔ (2).

Proof. (1) =⇒ (2). Let A be a bi-ideal of S. By Lemma 4, fA is a fuzzy bi-ideal of S.

By hypothesis, fA is a fuzzy right ideal of S. Since A is nonempty, by Lemma 1, A is a

right ideal of S.
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(2) =⇒ (1). Let S be regular, f a fuzzy bi-ideal of S and a, b ∈ S. Since (aSa] is

a bi-ideal of S, by hypothesis, it is a right ideal of S. Since S is regular, we have

ab ∈ (aSa]S ⊆ (aSa]. Then there exists x ∈ S such that ab ≤ axa. Since f is a fuzzy

bi-ideal of S, we have f(ab) ≥ f(axa) ≥ min{f(a), f(a)} = f(a), so f is a fuzzy right

ideal of S. �

Remark 6. Theorem 5 remains true if we replace the word ”right” by ”left”. As a

consequence, if S is a regular ordered semigroup, then the bi-ideals of S are ideals of S if

and only if the fuzzy bi-ideals of S are fuzzy ideals of S.

We characterize the ordered semigroups in which, for any element a of S, we have

a ≤ xaky (or a ≤ xak) for some x, y ∈ S.

Theorem 7. Let (S, .,≤) be an ordered semigroup, a ∈ S and N 3 k ≥ 2. The following

are equivalent:

(1) There exist x, y ∈ S such that a ≤ xaky.

(2) For every fuzzy ideal f of S, we have f(a) = f(ak).

Proof. (1) =⇒ (2). Let f be a fuzzy ideal of S. By hypothesis, there exist x, y ∈ S

such that a ≤ xaky. Since f is a fuzzy ideal of S, we have f(a) ≥ f(xaky) ≥ f(ak) =

f(aak−1) ≥ f(a), so f(a) = f(ak).

(2) =⇒ (1). Since I(ak) is an ideal of S, by Lemma 1, fI(ak) is a fuzzy ideal of S. By

hypothesis, fI(ak)(a) = fI(ak)(a
k) = 1, then a ∈ I(ak) = (ak ∪ Sak ∪ akS ∪ SakS]. If

a ≤ ak, then a ≤ aaak−2 ≤ aakak−2, where a, ak−2 ∈ S, and property (1) is satisfied. If

a ≤ xak for some x ∈ S, then a ≤ xaak−1 ≤ x(xak)ak−1 = x2akak−1, where x2, ak−1 ∈ S,

and (1) holds. If a ≤ akx for some x ∈ S, then a ≤ ak−1ax ≤ ak−1(akx)x = ak−1akx2,

again property (1) is true. Finally, we have the case a ≤ xaky for some x, y ∈ S, which is

condition (1). �

As an immediate consequence of Theorem 7, we have the following theorem.

Theorem 8. For an ordered semigroup S and a natural number k such that k ≥ 2, the

following are equivalent:

(1) For every a ∈ S, there exist x, y ∈ S such that a ≤ xaky.
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(2) For every fuzzy ideal f of S and every a ∈ S, we have f(a) = f(ak).

Corollary 9. [8; Theorem 5.3] An ordered semigroup S is intra-regular if and only if for

every fuzzy ideal f of S and any a ∈ S, we have f(a) = f(a2).

Proposition 10. Let (S, .,≤) be an ordered semigroup and N 3 k ≥ 2. If for every

a ∈ S there exist x, y ∈ S such that a ≤ xaky, then for every fuzzy ideal f of S and every

a, b ∈ S, we have f(ab) ≥ f((ba)k−1).

Proof. Let f be a fuzzy ideal of S and a, b ∈ S. By Theorem 8, we have

f(ab) = f((ab)k) = f(a(ba)k−1b) ≥ f((ba)k−1).

�

Corollary 11. [8; Theorem 5.4] If S is an intra-regular ordered semigroup, f a fuzzy ideal

of S and a, b ∈ S, then f(ab) = f(ba).

Proof. By Proposition 10, we have f(ab) ≥ f(ba). By symmetry, we get f(ba) ≥ f(ab),

thus we have f(ab) = f(ba). �

In a similar way we prove the following theorem.

Theorem 12. Let (S, .,≤) be an ordered semigroup, a ∈ S and N 3 k ≥ 2. The following

are equivalent:

(1) There exists x ∈ S such that a ≤ xak (resp. a ≤ akx).

(2) For every fuzzy left (resp. right) ideal f of S, we have f(a) = f(ak).

Theorem 13. For an ordered semigroup S and a natural number k such that k ≥ 2, the

following are equivalent:

(1) For every a ∈ S, there exists x ∈ S such that a ≤ xak (resp. a ≤ akx).

(2) For every fuzzy left (resp. right) ideal f of S and every a ∈ S, we have

f(a) = f(ak).

Corollary 14. An ordered semigroup S is left (resp. right) regular if and only if for every

fuzzy left (resp. fuzzy right) ideal f of S, we have f(a) = f(a2).

We deal now with semiprime subsets of ordered semigroups and with simple, archimedean

and intra-regular ordered semigroups.
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Definition 15. An ordered semigroup S is called fuzzy left (resp. right) simple if every

fuzzy left (resp. right) ideal f of S is a constant function, that is

f(a) = f(b) for every a, b ∈ S.

S is called fuzzy simple if for any fuzzy ideal f of S and any a, b ∈ S, we have f(a) = f(b).

Theorem 16. An ordered semigroup S is left simple if and only if it is fuzzy left simple.

Proof. =⇒. Let f be a fuzzy left ideal of S and a, b ∈ S. Since (Sa], (Sb] are left ideals of

S and S is left simple, we have (Sa] = S and (Sb] = S. Then b ≤ xa and a ≤ yb for some

x, y ∈ S. Since f is a fuzzy left ideal of S, we have f(b) ≥ f(xa) ≥ f(a) ≥ f(yb) ≥ f(b),

thus f(a) = f(b).

⇐=. Let A be a left ideal of S and a ∈ S. Take an element b ∈ A (A 6= ∅). Since fA is a

fuzzy left ideal of S, by hypothesis, we have fA(a) = fA(b) = 1, then a ∈ A. So A = S,

and S is left simple. �

Theorem 17. [3; Theorem 3.7] An ordered semigroup S is simple if and only if it is fuzzy

simple.

Definition 18. Let S be an ordered semigroup. A fuzzy subset f of S is called fuzzy

semiprime if

f(a) ≥ f(a2) for every a ∈ S.

Lemma 19. Let S be an ordered semigroup, f a fuzzy semiprime fuzzy left ideal of S and

a ∈ S. Then

f(a) = f(an) for every n ∈ N.

Proof. For n = 2, we have f(a2) = f(aa) ≥ f(a) ≥ f(a2), so f(a) = f(a2). Suppose

f(a) = f(an) for some N 3 n ≥ 2. Then

f(an+1) = f(aan) ≥ f(an) ≥ f(a2n) = f(an−1an+1) ≥ f(an+1).

Thus we have f(an+1) = f(an) = f(a). �

For the sake of completeness, we give the following lemma.
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Lemma 20. Let S be an ordered semigroup. A subset A of S is semiprime if and only if

the characteristic function fA is fuzzy semiprime.

Proof. =⇒. Let A be a semiprime subset of S and a ∈ S. If a2 ∈ A then, since S is

semiprime, we have a ∈ A, and 1 = fA(a) = fA(a2). If a2 6∈ A, then fA(a2) = 0 ≤ fA(a).

Thus we have fA(a) ≥ fA(a2) for every a ∈ S, and fA is fuzzy semiprime.

⇐=. Let A be a subset of S such that fA is fuzzy semiprime, and let a ∈ S such that

a2 ∈ A. Since fA is fuzzy semiprime, we have fA(a) ≥ fA(a2) = 1. Since fA is a fuzzy

subset of S, we have fA(a) ≤ 1. Then fA(a) = 1, and a ∈ A. Thus S is semiprime. �

The results on ordered semigroups can be also obtained from corresponding results

obtained via fuzzy sets. In the rest of the paper, for a statement on ordered semigroups,

we first give an independent proof, then we prove the same using fuzzy sets.

Theorem 21. Let S be a left simple ordered semigroup. Then every bi-ideal of S is a

right ideal of S.

Proof. Let B be a bi-ideal of S. Since (SB] is a left ideal of S and S is left simple, we

have (SB] = S. Then we have BS = B(SB] ⊆ (B](SB] ⊆ (BSB] ⊆ (B] = B, and B is

a right ideal of S. �

Theorem 22. Let S be a left simple ordered semigroup. Then every fuzzy bi-ideal of S is

a fuzzy right ideal of S.

Proof. Let f be a fuzzy bi-ideal of S and a, b ∈ S. Since (Sa] is a left ideal of S and S

is left simple, we have (Sa] = S, then b ≤ xa for some x ∈ S, and ab ≤ axa. Since f is a

fuzzy bi-ideal of S, we obtain f(ab) ≥ f(axa) ≥ min{f(a), f(a)} = f(a), so f is a fuzzy

right ideal of S. �

Second proof of Theorem 21 using fuzzy sets

Theorem 21 can be obtained as a Corollary of Theorem 22, as follows:

Let B be a bi-ideal of S. By Lemma 4, fB is a fuzzy bi-ideal of S. By Theorem 22, fB is

a fuzzy right ideal of S. Since B is nonempty, by Lemma 1, B is a right ideal of S. �
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Theorem 23. An ordered semigroup S is intra-regular if and only if every ideal of S is

semiprime.

Proof. =⇒. Let A be an ideal of S, a ∈ S and a2 ∈ A. Since S is intra-regular, we have

a ∈ (Sa2S] ⊆ (SAS] ⊆ (A] = A, and a ∈ A. Thus S is semiprime.

⇐=. Let a ∈ S. Since (Sa2S] is an ideal of S, by hypothesis, (Sa2S] is semiprime. Since

a4 ∈ (Sa2S], we have a2 ∈ (Sa2S], and a ∈ (Sa2S]. Thus S is intra-regular. �

Theorem 24. An ordered semigroup S is intra-regular if and only if every fuzzy ideal of

S is fuzzy semiprime.

Proof. =⇒. Let f be a fuzzy ideal of S and a ∈ S. Since S is intra-regular, there exist

x, y ∈ S such that a ≤ xa2y. Since f is a fuzzy ideal of S, we get f(a) ≥ f(xa2y) ≥ f(a2).

⇐=. Let a ∈ S. Since I(a2) is an ideal of S, by Lemma 1, fI(a2) is a fuzzy ideal of S.

By hypothesis, we have fI(a2)(a) ≥ fI(a2)(a
2) = 1. Then fI(a2)(a) = 1, by easy calculation

we have a ∈ I(a2) = (a2 ∪ Sa2 ∪ a2S ∪ Sa2S] = (Sa2S], then a ∈ (Sa2S], and S is

intra-regular. �

Second proof of Theorem 23 using fuzzy sets

Theorem 23 can be also obtained as an application of Theorem 24, using fuzzy sets, as

follows:

=⇒. Let S be intra-regular and A an ideal of S. By Lemma 1, fA is a fuzzy ideal of S,

by Theorem 24, fA is fuzzy semiprime, by Lemma 20, A is semiprime.

⇐=. Suppose every ideal of S is semiprime. Then every fuzzy ideal of S is fuzzy semiprime.

Indeed: Let f be a fuzzy ideal of S and a ∈ S. Since (Sa2S] is an ideal of S, by hypothesis,

(Sa2S] is semiprime. Since a4 ∈ (Sa2S], we have a2 ∈ (Sa2S], and a ∈ (Sa2S]. Then

a ≤ xa2y for some x, y ∈ S. Since f is a fuzzy ideal of S, we get f(a) ≥ f(xa2y) ≥ f(a2),

so f is fuzzy semiprime. By Theorem 24, S is intra-regular. �

Definition 25. (cf., for example [4]) An ordered semigroup S is called archimedean if for

every a, b ∈ S there exists n ∈ N such that bn ∈ (SaS] (or an ∈ (SbS]).

That is, for every a, b ∈ S there exists n ∈ N such that bn ≤ xay for some x, y ∈ S.
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Theorem 26. Let S be an archimedean ordered semigroup. Then S does not contain

proper semiprime ideals.

Proof. Let A be a semiprime ideal of S and a ∈ S. Take an element b ∈ A (A 6= ∅).

Since b, a ∈ S and S is archimedean, there exists n ∈ N such that an ∈ (SbS] ⊆ (SAS] ⊆

(A] = A, so an ∈ A. If n = 1, then a ∈ A. If n = 2 then, since S is semiprime, we have

a ∈ A. Let us prove it, for example for n = 17, and this is the way we work for any n.

Let a17 ∈ A. Then, since A is a subsemigroup of S, we have a17a15 ∈ A, then (a16)2 ∈ A.

Since A is semiprime, we have (a8)2 = a16 ∈ A, (a4)2 = a8 ∈ A, (a2)2 = a4 ∈ A, a2 ∈ A,

and a ∈ A. �

Theorem 27. Let S be an archimedean ordered semigroup. Then every fuzzy semiprime

fuzzy ideal of S is a constant function.

Proof. Let f be a fuzzy semiprime fuzzy ideal of S and a, b ∈ S. Since S is archimedean,

there exist n ∈ N and x, y ∈ S such that an ≤ xby. By Lemma 19, we have f(a) =

f(an) ≥ f(xby) ≥ f(b). By symmetry, we get f(b) ≥ f(a), so f(a) = f(b). �

Second proof of Theorem 26 using fuzzy sets

Theorem 26 can be also obtained as a Corollary of Theorem 27 using fuzzy sets, as follows:

Let A be a semiprime ideal of S and b ∈ S. By Lemmas 1 and 20, fA is a fuzzy

semiprime fuzzy ideal of S. Take an element a ∈ A (A 6= ∅). By Theorem 27, we have

1 = fA(a) = fA(b), and b ∈ A. Thus we have A = S. �

Theorem 28. An ordered semigroup S is simple if and only if it is intra-regular and

archimedean.

Proof. =⇒. Let a ∈ S. Since a, a2 ∈ S and S is simple, we have a ∈ (Sa2S], and S is

intra-regular. Let now a, b ∈ S. Since S is simple, we have a1 = a ∈ (SbS], thus S is

archimedean.

⇐=. Let a, b ∈ S. By hypothesis, a ∈ (Sa2S] and there exists n ∈ N such that an ∈ (SbS].

If n = 1, then a ∈ (SbS], so S is simple. If n = 2, then a ∈ (Sa2S] ⊆ (S(SbS]S] =

(S(SbS)S] ⊆ (SbS]. If n = 3 then, since S is intra-regular, we have a ∈ (Sa2S] ⊆
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(S(Sa4S]S] ⊆ (S(Sa4S)S] ⊆ (Sa4S] ⊆ (S(SbS]aS] ⊆ (SbS]. If n = 4, then a ∈ (Sa2S] ⊆

(Sa4S] ⊆ (S(SbS]S] ⊆ (SbS]. If n = 5 then, since S is intra-regular, we have a ∈

(Sa2S] ⊆ (Sa4S] ⊆ (S(Sa8S]S] ⊆ (Sa8S] ⊆ (S(SbS]a3S] ⊆ (SbS]. If n = 6, then

a ∈ (Sa2S] ⊆ (Sa4S] ⊆ (Sa8S] ⊆ (S(SbS]a2S] ⊆ (SbS]. If n = 7 then, since S is intra-

regular, we have a ∈ (Sa2S] ⊆ (Sa4S] ⊆ (Sa8S] ⊆ (S(SbS]aS] ⊆ (SbS]. Suppose, for

example, n = 17. Then, since S is intra-regular, we have

a ∈ (Sa2S] ⊆ (Sa4S] ⊆ (Sa8S] ⊆ (Sa16S] ⊆ (Sa32S] = (Sa17a15S]

⊆ (S(SbS]a15S] = (S(SbS)a15S] ⊆ (SbS].

Continuing this way, for every n ∈ N , an ∈ (SbS] implies a ∈ (SbS], and so S is simple.

�

Second proof of Theorem 28 using fuzzy sets

=⇒. Let S be simple. By Theorem 17, it is fuzzy simple, that is, for any fuzzy ideal f of

S and any a, b ∈ S, we have f(a) = f(b). Then for any fuzzy ideal f of S and any a ∈ S,

we have f(a) = f(a2). By Corollary 9, S is intra-regular. Let now a, b ∈ S. Since S is

simple, we have b1 := b ∈ (SaS], and S is archimedean.

⇐=. By Theorem 17, it is enough to prove that S is fuzzy simple. For this purpose, let

f be a fuzzy ideal of S. Since S is intra-regular, by Corollary 9, we have f(a) = f(a2) for

every a ∈ S, then f is fuzzy semiprime. Since S is archimedean and f a fuzzy semiprime

fuzzy ideal of S, by Theorem 27, f is a constant function, which means that S is fuzzy

simple. �

Finally, we characterize the ordered semigroups which are left regular and left duo in

terms of fuzzy left ideals. We need the following lemma.

Lemma 29. (cf. [5; Theorem 6]) Let S be ordered semigroup. The following are equiva-

lent:

(1) S left regular and left duo.

(2) If A, B are left ideals of S, then (AB] = (BA] and (A2] = A.
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Theorem 30. An ordered semigroup S is left regular and left duo if and only if for every

fuzzy left ideal f of S and every a, b ∈ S, we have f(a) = f(a2) and f(ab) = f(ba).

Proof. =⇒. Let f be a fuzzy left ideal of S and a, b ∈ S. Since S is left regular, by

Corollary 14, we have f(a) = f(a2) and f(ab) = f((ab)2). Since S is left regular and left

duo, by Theorem 2, S is fuzzy left duo. Thus we have

f(ab) = f((ab)2) = f((aba)b)

≥ f(aba) (since f is a fuzzy right ideal of S)

= f(a(ba)) ≥ f(ba) (since f is a fuzzy left ideal of S).

By symmetry, we get f(ba) ≥ f(ba), so f(ab) = f(ba).

⇐=. Let A, B be left ideals of S, a ∈ A and b ∈ B. Since L(ba) is a left ideal of S, by

Lemma 1, fL(ba) is a fuzzy left ideal of S. By hypothesis, we have fL(ba)(ab) = fL(ba)(ba) =

1, so ab ∈ L(ba) = (ba ∪ Sba] ⊆ (BA ∪ (SB)A] = (BA]. Thus we have AB ⊆ (BA],

then (AB] ⊆ ((BA]] = (BA]. By symmetry, we get (BA] ⊆ (AB], so (AB] = (BA].

Since L(a2) is a left ideal of S, by Lemma 1, fL(a2) is a fuzzy left ideal of S. Again by

hypothesis, we obtain fL(a2)(a) = fL(a2)(a
2) = 1, hence

a ∈ L(a2) = (a2 ∪ Sa2] ⊆ (A2 ∪ (SA)A] = (A2].

Therefore we have A ⊆ (A2] ⊆ (SA] ⊆ A, and (A2] = A. By Lemma 29, S is left regular

and left duo. �

The right analog of the results of this paper also hold.

As the ordered semigroups which are both left regular and left duo and the semilattices

of left regular and left duo (ordered) semigroups are the same (cf. [5; Theorem 6]), we

have the following corollary which gives a necessary sufficient condition under which an

ordered semigroup is decomposable into left (or right) simple components.

Corollary 31. An ordered semigroup S is a semilattice of left (resp. right) simple

semigroups if and only if for every fuzzy left (resp. fuzzy right) ideal f of S and every

a, b ∈ S, we have f(a) = f(a2) and f(ab) = f(ba).
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Problem 1. Using computer find an example of an ordered semigroup S of order, prefer-

able 5, which is not regular, it is left duo but it is not fuzzy left duo (that is, there exists

a fuzzy left ideal of S which is not a fuzzy right ideal of S).

Problem 2. Using computer find an example of an ordered semigroup S of order, prefer-

able 5, which is is not regular, every bi-ideal of S is a right ideal of S and there is a fuzzy

bi-ideal of S which is not a fuzzy right ideal of S.
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