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Abstract. In this paper, we investigate the relations between maps and residuated (dual residuated,
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1. Introduction

Héjek [7] introduced a complete residuated lattice which is an algebraic structure for
many valued logic. Bélohlavek [1-3] developed the notion of fuzzy contexts using Galois
connections with R € L**Y on a complete residuated lattice. Georgescue and Popescu
[5,6] introduced the non-commutative fuzzy connection on generalized residuated lattice
without commutative conditions. Garcia [4] investigated fuzzy connections categorically.

It is an important mathematical tool for algebraic structure of fuzzy contexts [1-3,8-10].
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MAPS AND FUZZY CONNECTIONS 709

In this paper, we investigate the relations between maps and residuated (dual residuat-
ed, residuated, Galois, dual Galois) connections in complete residuated lattices. We give
their examples.
Definition 1.1. [1,7] An algebra (L,A,V,®,—,0,1) is called a complete residuated
lattice if it satisfies the following conditions:

(Cl) L = (L,<,V,A,1,0) is a complete lattice with the greatest element 1 and the
least element 0;

(C2) (L,®,1) is a commutative monoid;

(C3)rzoy<ziffz <y— zforx,y,z€ L.

In this paper, we assume (L, A, V,®,—,*0,1) is a complete residuated lattice with the
law of double negation;i.e. ** = x.
Lemma 1.2.[1,7] For each z,y, z,x;,y; € L, we have the following properties.

MIfy<z (z0y)<(z0z2),r—y<z—zand z >z <y—

Definition 1.3.[1-3] Let X be a set. A function ex : X x X — L is called:
(E1) reflexive if ex(z,x) =1 for all x € X,
(E2) transitive if ex(x,y) ® ex(y, 2) < ex(x, 2), for all z,y,z € X,
(E3) if ex(z,y) = ex(y,z) = 1, then x = y.
If e satisfies (E1) and (E2), (X, ex) is a fuzzy preorder set. If e satisfies (E1), (E2) and

(E3), (X, ex) is a fuzzy partially order set (simply, fuzzy poset).

Remark 1.4.(1) We define a function epx : LY x LY — L as ezx (A, B) = A,y (A(z) —
B(x)). Then (L*,e;x) is a fuzzy poset from Lemma 1.2 (8).
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(2) We denote ey (z,y) = ex(y,2), (ex)z(y) = ex(z,y) and (ex),* = ex(z,y). More-

over, 1, is a characteristic function such that 1,(z) =0, 1,(y), for otherwise.

Definition 1.5.[1-3] Let (X,ex) and (Y,ey) be a fuzzy poset and f : X — Y and
g:Y — X maps.

(1) (ex, f,g,ey) is called a Galois connection if for all x € X,y € Y,

ey (y, f(x)) = ex(z, 9(y)).

(2)(ex, f,g,ey) is called a dual Galois connection if for all z € X,y € Y,

ey (f(z),y) = ex(g(y), v).

(3) (ex, f, g,ey) is called a residuated connection if for all z € X,y € Y,

ey (f(z),y) = ex(z,9(y)).

(4) (ex, f,g,ey) is called a dual residuated connection if for all x € X,y € Y,

ey (y, f(r)) = ex(9(y), ).

5) Amap f: (X,ex) = (Y, ey) is called an isotone map if for all z,z € X, ex(z,2) <

6) Amap f: (X,ex) — (Y, ey) is called an antitone map if for all x, z € X, ex(z,2) <

2. Maps and fuzzy connections

Theorem 2.1.Let (X,ex) and (Y,ey) be a fuzzy poset and f: X —Y andg:Y — X

maps. For each A € L and B € LY, we define operations as follows:

F(A)y) = N\ (Al2) = ev(y, [(2)), Fa(A)y) = /\ (A@) = ex(f(x)y)),

Gi(B)(z) = ]\ (B(y) = ex(2.9(y)), Ga(B)(z) = N\ (Bly) = ex(9(y),)).

Hy(B)(z) = \/ (ex(z,9(y)) ® B(y)), Ha(B)(z) = \/ (ex(9(y),z) ® B(y)).

yey yey



MAPS AND FUZZY CONNECTIONS 711

L(A)(y) =\ (Alx) O ev(y, f(@), LA =\ (A) © ey (f(2),9)),

zeX zeX

L(B)(x) = N (ex(x,9(y)) = B(y)), J(B)(z) = /\(ex(9(y),x) = B(y)),

Ki(A)(y) = N (ev(y, f(2)) = Al2), Ka2(A)(y) = /\ (ev(f(2),y) = Al)).
Li(B)(x) = \/ (B"(y) ® ex(z,9(»))), La(B)(x) = \/ (B*(y) © ex(g(y). 2)),
Mi(A)(y) =\ (A" (@) @ ex(y, f(2))), Ma(A)(y) = \/ (A7(2) © ex (f(x).)).

Then the following statements hold:

(1) Fi(la) = (ev);y F(le) = (ev)w), Ki(13) = ((ev)yey)*, Ko
Mi(13) = (ev) 7y, Ma(13) = (ev) @), Di(1e) = (ev) 5 and I(1,) = (ev) )

(2) Gi(ly) = (ex)yq): Ga(ly) = (ex)guy: Hi(lw) = (ex)ypy: H2(lu) = (ex)gw)-
J(13) = ((ex) )75 J2(15) = (ex)iys La(1) = (ex) g, and La(13) = (ex)g()-

(3)(ex, f,g,ey) is a Galois connection iff (erx, F1,Gy,ery) is a Galois connection with

1) = (ev)f

(
)

antitone maps f and g iff (epx, K1, Hy,ery) is a dual residuated connection with antitone
maps f and g iff (epx, My, L1,erv) is a dual Galois connection with antitone maps f and
g iff (epx, 11, Ji,erv) is a residuated connection with antitone maps f and g .

(4) (ex, f,g,ey) is a residuated connection iff (epx, Fs, Gy, epy) is a Galois connection
with isotone maps f and g iff (epx, Ko, Hy,epy) is a dual residuated connection with
isotone maps f and g iff (epx, Ms, L1, erv) is a dual Galois connection with isotone maps
f and g iff (epx, Iz, J1,ery) is a residuated connection with isotone maps f and g.

(5) (ex, f,g,ey) is a dual Galois connection iff (erx, Fy, Ga, ery) is a Galois connection
with antitone maps f and g iff (erx, Ko, Ha,epy) is a dual residuated connection with
antitone maps f and g iff (epx, My, Lo, ery) is a dual Galois connection with antitone
maps f and g iff (epx, I, Jo,epy) is a residuated connection with antitone maps f and g.

(6) (ex, f,g,ey) is a dual residuated connection iff (eyx, Fi,Ge,ery) is a Galois con-
nection with isotone maps f and g iff (epx, K1, Hy,erv) is a dual residuated connection
with isotone maps f and g iff (epx, My, Lo, ery) is a dual Galois connection with isotone

maps [ and g iff (erx, I, Jo,ery) is a residuated connection with isotone maps f and g.
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(7) If ex(z,y) <ev(f(x), f(y)), then

Fl((ex)z) = (GY);(IZy FQ((GX)gl) = (ey)f(z)7
EKi(((ex):1)") = ((ev)7iy)7s Eal(ex)s) = (ev)ie
L((ex'):) = (ev)iiy: La((ex)z) = (ev)se,

Mi((ex")) = (ev)iiy:  Ma((ex):) = (ev)see-
(8) If ex(z,y) <ey(f(y), f(z)), then
Fi((ex)z) = (ev)jsy,  Fallex):) = (ev)ge,
Ki(((ex)2)") = ((ev)7i)" Kallex'):) = (ev)je):
L(ex):) = (ev)yey  Da(ex)s!) = (ev)ses
Mi((ex):) = (ev)siy  Ma((ex'):) = (ev)see)-

(9) If ey (z,9) < ex(g(x),9(y)), then

Ji(((ev); 1)) = ((ex)yy)™s La((ev)y) = (ex)y,
Li((ey)y) = (ex)yqys  La((ev)y) = (ex)ow)

)
Ji(((ev)y)") = ((ex) )" al(ey)y) = (ex)y,).
) (

Proof. (1) and (2) follow from their definitions.

(3) Let ex(7,9(y)) = ey(y, f(x)) be given. Since ex(g9(y),9(y)) = ev(y, f(9(y)) = 1,

then g is an antitone map from:

ey (y1,¥2) = ey(y1,v2) © ey (y2, f(9(y2)))
< ey (y1, [(9(y2))) = ex(9(y2), 9(11)).
Similarly, f is an antitone map.

First, we will show that ex(z,g(y)) = ey (y, f(x)) iff exx (A, G1(B)) = ey (B, F1(A4)).
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Let ex(z,9(y)) = ey (y, f(x)) be given. By Lemma 1.2 (2,5), we have

er (B Fi(4) = A,er (By) = F(A))
= Aer (B) = Auex(A
= Aer Auex ( (#) > (B(y) > ex(z,9(9))))
= Nuex (4@) = Gi(B)(@))
= e1¢(A,Gi(B)).

)
(2) = ex(y, f(2))))

Conversely, put A =1, and B = 1,. By (1) and (2), we have

ey(y, f(z)) = Fi(1.)(y) = erv (1, Fi(1))
= epx(1e, Gi(1,)) = Gi (1) (z) = ex(z,9(y)).

Second, we will show that ex(z, g(y)) = ey (y, f(z)) iff erx (H1(B), A) = ery (B, K1(A)).

Let ex(z,9(y)) = ey (y, f(x)) be given. By Lemma 1.2 (3,5), we have

epx(F1(B), 4) = A,ex(Hi(B)(x) — A())
= Nvex (Vyer lex (@, g(y >> © B(y) > A(x))
= Neex Aver (B) = (ex(@.9(y) = Alx))

A

= Apey (Bw) = A;,;GX(ey( ) - A(2))
= Ayer (Bly) > Ki(A)(y)
=erv (B, Ki(A))

Conversely, put A = 1% and B =1,. By (1) and (2), we have

ex(2,9(y)) = Hi(ly)"(x) = epx (Hi(1,), 17)
= epr (ly, Ki(13)) = Ku(15)(y) = e5(y, f(2)).

Third, we will show that ex(z, g(y)) = ey (y, f(x)) iff e x(L1(B), A) = erv (M1(A), B).
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Let ex(z,9(y)) = ey (y, f(x)) be given. By Lemma 1.2 (3,5,6), we have

ery (Mi(A4), B) = N\yey (Mi(A)(y) = B(y))
= Nyer (Voex (A7(2) @ v (y, f(2)
= Nyey Noex(A7(2) = (e (y, f(2)) =
= Noex(A7(2) = Ayey (ev (y, f(2)) =
= Noex(A7(2) = (Vyey ©
= /\zGX(VyEY(eY(yv f(z
= erx(Li(B), A).
Conversely, put A = 1; and B = 1;. Since M;(1;)(y) = ey(y, f(x)) and Li(1})(r) =

ex(z,g(y)) from (1) and (2). Hence we have

ey (y, f(x)) = Mi(13)"(y) = erv (Mi(13),17)
= erx(L1(1),17) = L1 (1})"(z) = ek (@, 9(y))-
Finally, we will show that ex(z, g(y)) = ey (y, f(z)) iff epx (A, Jy(B)) = ey (I (A), B).
Let ex(z, g(y)) = ey (y, f(z)). Then

ey (I1(A), B) = \yey (11(A)(y) = B(y))
= Nyey (Vaex (Alz) © ex (y,
= Nyey Naex(Alz) = (ex(y,
= Noex(A(@) = Ayey (ev (v,
= Neex(A(z) = Ji(B)(2)
= erx (4, Ji(B)).
Conversely, put A = 1, and B = 1%. Since I;((ex).)(y) = ey (v, £(z)) and Ji((ey):)(x) =
ex(z,9(y))” from (1) and (2),
ey (y, [(z)) = [1(1:)"(y) = erv (11(12), 1})
= epx (1, 11(1))) = J1(1))(2) = €3 (2, g(y)).
(4) Let ex(z,9(y)) = ey (f(x),y) be given. Since ex(g(y),9(y)) = ev(f(9(y),y) = 1,

then g is an isotone map from:

ey (y1,2) =ev(yi,v2) @ ey (f(g9(y1)), v1)
<ey(f(9(y1)), y2) = ex(9(v1), 9(y2))-
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Similarly, f is an isotone map.
First, we will show that ex(z,g(y)) = ey (f(2),y) iff exx (A, G1(B)) = ey (B, F»(A)).

Let ex(z,9(y)) = ey (f(x),y) be given. By Lemma 1.2(2,5), we have

er (B Fy(4)) = \,ey (Bly) = Fa(A)(y)
= Aver (BO) = Avex(A(@) = v (£(@),0)))
= Aer Nuex (A@) > (Bly) = ex(w,9(y)) )
= Nuex (A@) = Aoy (B(y) = ex(z.9))))
= Avex (Al2) = G1(B)(@))
= e x(A,G1(B)).
Conversely, put A =1, and B = 1,. By (1) and (2), F5(1,) = (ey)y() and Gi(1,) =

(ex)g)-

ey (f(z),y) = F2(1:)(y) = erv (1, F2(15))

= erx (1, Gi(1y)) = Gi(1y)(x) = ex(z, 9(y))-
Second, we will show that ex (z, g(y)) = ey (y, f(2)) iff epx (Hy(B), A) = ezv (B, Ka(A)).
If ex(z,9(y)) = ey (f(x),y), then

esx(Hi(B),A) = N,ex(Hi(B)(x) = A@))
= Nuex ((V,er(ex(a. 9) © Bw)) — A(x))
= Nuex Aoy (By) = (ex(, 9(0) = A()))
= Ner (B) = Aex(er(F(2).5) = A@)))
= Ao (By) = Ko A)(w)
=erv(B, K3(A)).

Put A =17 and B = 1,. By (1) and (2), K5(13) = (ey)},) and Hi(l,) = (ex)gfév).

Hence
ex (1, 9(y)) = Ko(13)(y) = epx (Hi(ly, 13)
= epr (ly, K5(13) = Hi(1y)"(2) = ex (2, 9(y))-
Other cases, (5) and (6) are similarly proved in (3).
(7) We have Fy((ex);') = (ey) () from:
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Fy((ex)Z)W) = Npex((ex)7(x) = ev(f(2),9))
< (ex)7'(2) = ev(f(2).y) = ex(f(2),9).

Since f is an isotone map,
ey (f(2),y) @ ex(z,2) < ex((f(2),9) @ ey (f(2), [(2)) < ev(f(),y),
ey (f(2),9) < N\ ((ex): (@) = ev (f(2),y)) = Fal(ex))(v)-

zeX

Ko((ex):)(y) = N.ex(ev(f(2),y) = (ex)i(2))
< (eY(f(x)7y> — —L) = GY(f(x)vy)*'

Thus, K>((ex);) < (ey)}(,)- Furthermore, Ks((ex);) = (ey)}, from:

ey (f(2),y) ©ex(z,2) <ey(f(2),y) ©ev(f(x), f(2)) < ev(f(2),y)
i (ex (F(2), )" < ex((2),9) = (ex(z, 2))"
(9) We have G1((ey),) < (eX)_ly) from:

g(

Gil(ev)y)(@) = /\ ((ev)y(w) = ex(a, g(w))) < ex(x, g(y))-

weY

Moreover, G1((ey)y) > (eX)g_é/) from:

ex(7,9(y) ©ey(y,w) < ex(x,9(y) ©ex(g9(y), g(w)) < ex(x, g(w))

ex(z,9(y)) < ey(y,w) — ex(z, g(w)).

We have Hy((ey),!) = (ex)g_év) from:

Hi((ev)u) (@) = N\ ((ev)a' (9) © ex(2,9(9))) = (ex) g (2)-

yey

ex(7,9(y) ©ey(y,w) < ex(z,9(y) ©ex(g9(y), g(w)) < ex(x, g(w).

Since Ji(((ey), ")) (@) = Ayey(ex(z, g(w)) = ((ev), ) (w) < (ex(z, 9(y)))", then
I((ev)y 1)) < ((ex) )"
Since ex (z, g(w)) © ey (w,y) < ex(z, g(w)) © ex(g(w), 9(y)) < ex(x, g(y)), then

ex(w, g(w)) — ey(w,y)* > (ex(x,9(y)))"

Thus, Ji(((ev),')*) = ((ex)yq,)"- Hence Ji(((ey), ")) = ((ex) )"
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Other cases in (7) and (9), (8) and (10) are similarly proved.

Example 2.2.Define a binary operation ® (called Lukasiewicz conjection) on L = [0, 1] by
rOy=max{0,z+y—1}, r >y =min{l —z +y, 1}.

Let (X = {a,b,c},ex) and (Y = {x,y,2},ey) be a fuzzy poset with ex = (ex(a,b)),

ey = (ey(z,y)) and € = (e%(z,y)) as follows:

1.0 0.7 04 1.0 0.8 0.6
ex=1 03 1.0 0.6 ey=1| 06 1.0 0.5
0.5 0.5 1.0 0.7 0.6 1.0

04 0.6 1.0
ey =| 1.0 03 05
0.7 1.0 0.5
(1) We define f: X — Y with f(a) =z, f(b) = f(¢) =y. Then f is an isotone map. It

satisfies Theorem 2.1(7). For examples,
Fy((ex);V) = Fy(1,0.3,0.5) = (1,0.8,0.6) = (ey) y(a) = (€x)a,

Fy((ex); ") = F2(0.7,1,0.5) = (0.6,1,0.5) = (ey) ) = (ev)y,
FQ((@)()C_l) = FQ(O4,O3, 1) = (06, 1,05) = (ey)f(c) = (Gy)y.

8 |

S

(2) We define h : X — Y with h(a) = z,h(b) = h(c) = z. Then f is an antitone map.

It satisfies Theorem 2.1(8). For examples,

K>((ex')s) = K>3(0,0.7,0.5) = (0,0.2,0.4) = (ey )},
Ks((ex');) = K2(0.3,0,0.5) = (0.3,0.4,0) = (ey )},
Ky((ex'):) = K5(0.6,0.4,0) = (0.3,0.4,0) = (ey)} (-

(3) We define f and g as f(a) =z, f(b) =y, f(c) = z and g(x) = ¢, 9(y) = a, f(z) =b.
Then €).(x, f(a)) = ex(a,g(z)) for all @ € X,z € Y. By Theorem 2.1, (ex, f,g,€eY)
is a Galois connection, (erx, Fi,Gy,ery) is a Galois connection with antitone maps f
and g, (erx, Ky, Hy,epy) is a dual residuated connection with antitone maps f and g,

(epx, My, L1, ery) is a dual Galois connection with antitone maps f and g and (e x, I1, Ji,erv)
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is a residuated connection with antitone maps f and g. It satisfies Theorem 2.1(8)and

(10). For examples,

Fi((ex);")(z) = Fi(1,0.3,0.5)(2) = 0.7 = €\ (2, x)
Fy((ex);l) = F(0.7,1,0.5) = (0.7,0.6,1)
FQ((ex)gl) = FQ(O4, 0.3, 1) = (07, 0.6, 1)

(ev) sy
(ev) s
Example 2.3.Let X = {a,b,c} be aset and f: X — X a function as f(a) = b, f(b) =
a, f(c) = c¢. Define a binary operation ® (called Lukasiewicz conjection) on L = [0, 1] as

Example 2.2.

(1) Let (X ={a,b,c},e1 = (ex(a,b))) be a fuzzy poset as follows:

1.0 0.6 0.5
et=1 0.6 1.0 0.5
0.7 0.7 1.0

Since e1(f(z),y) = e1(z, f(y)), then (e, f, f,e1) are both residuated and dual residuated
connections. It satisfies Theorem 2.1 (4) and (6). Since f is an isotone map, it satisfies

Theorem 2.1 (7) and (9). For examples,

= epx((e1)e Fal(e):)) = (0.7 = 0.6) A (0.7 = 1) A (1 — 0.5)

= erx((e);!, Gal(er)e)) = (1 — 0.5) A (0.6 — 0.5) A (0.7 — 0.8)

= Gi((e1)o)(a) = (0.7 = 0.6) A (0.7 — 1) A (1 = 0.5)

= ei(a, f(0) = (1) (a).

e1(f(c),a) = 0.3 = Ka((e1)")(a) = (0.6 = 0.3) A (1 — 0.3) A (0.7 — 0)
= epr ()7 Ka((e1)?) = (1 — 0.3) A (0.6 = 0.3) A (0.7 — 0)

= epx (Hi((e):h), (e1)F) = (0.6 — 0.3) A (1 = 0.3) A (0.7 — 0)

= Hi((e1); ") () = eile, f(a)).
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(2) Let (X = {a,b,c},es = (e2(a,b))) be a fuzzy poset as follows:

1.0 0.6 0.5
e2=1 06 1.0 0.7
0.7 0.5 1.0

Since ey (y, f(x)) = ei(x, f(y)), then (ey, f, f,e1) are both both Galois and dual Galois
connections. It satisfies Theorem 2.1 (3) and (5). Since f is an antitone map, it satisfies

Theorem 2.1 (8) and (10). For examples,

ea(b, fc)) =0.7=F((e);2)(b) = (0.5 — 1) A (0.7 = 0.6) A (1 — 0.7)
= epv((ev); " Fi((ex);") = (0.6 = 0.5) A (1 — 0.7) A (0.5 — 1)
=epx((ex); ", Gi((ey), ) = (0.5 = 1) A (0.7 = 0.6) A (1 = 0.7)
= Gi((e2)y )(c) = ea(c, f(b))-

e3(a, (@) =04=H((e:)i@) = ((0601) V(1006 V(0506 o.5)>*
— epx (Hy((€2)a, (€2)7) = (0.6 — 0) A (1 — 0.4) A (0.5 — 0.5)
— ey ((e2)a, Ki((€2)5)) = (1 — 0.4) A (0.6 — 0) A (0.5 — 0.5)
= Ki((e2)3)(a) = ea(a, f(a)).
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