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1. Introduction

Hájek [7] introduced a complete residuated lattice which is an algebraic structure for

many valued logic. Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois

connections with R ∈ LX×Y on a complete residuated lattice. Georgescue and Popescu

[5,6] introduced the non-commutative fuzzy connection on generalized residuated lattice

without commutative conditions. Garcia [4] investigated fuzzy connections categorically.

It is an important mathematical tool for algebraic structure of fuzzy contexts [1-3,8-10].
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In this paper, we investigate the relations between maps and residuated (dual residuat-

ed, residuated, Galois, dual Galois) connections in complete residuated lattices. We give

their examples.

Definition 1.1. [1,7] An algebra (L,∧,∨,�,→, 0, 1) is called a complete residuated

lattice if it satisfies the following conditions:

(C1) L = (L,≤,∨,∧, 1, 0) is a complete lattice with the greatest element 1 and the

least element 0;

(C2) (L,�, 1) is a commutative monoid;

(C3) x� y ≤ z iff x ≤ y → z for x, y, z ∈ L.

In this paper, we assume (L,∧,∨,�,→,∗ 0, 1) is a complete residuated lattice with the

law of double negation;i.e. x∗∗ = x.

Lemma 1.2.[1,7] For each x, y, z, xi, yi ∈ L, we have the following properties.

(1) If y ≤ z, (x� y) ≤ (x� z), x→ y ≤ x→ z and z → x ≤ y → x.

(2) x→ (
∧

i∈Γ yi) =
∧

i∈Γ(x→ yi).

(3) (
∨

i∈Γ xi)→ y =
∧

i∈Γ(xi → y).

(4)
∧

i∈Γ y
∗
i = (

∨
i∈Γ yi)

∗ and
∨

i∈Γ y
∗
i = (

∧
i∈Γ yi)

∗.

(5) (x� y)→ z = x→ (y → z) = y → (x→ z).

(6) x� y = (x→ y∗)∗ and x→ y = y∗ → x∗.

(7) x� (x→ y) ≤ y.

(8) (x→ y)� (y → z) ≤ x→ z.

(9) x ≤ y → z iff y ≤ x→ z.

Definition 1.3.[1-3] Let X be a set. A function eX : X ×X → L is called:

(E1) reflexive if eX(x, x) = 1 for all x ∈ X,

(E2) transitive if eX(x, y)� eX(y, z) ≤ eX(x, z), for all x, y, z ∈ X,

(E3) if eX(x, y) = eX(y, x) = 1, then x = y.

If e satisfies (E1) and (E2), (X, eX) is a fuzzy preorder set. If e satisfies (E1), (E2) and

(E3), (X, eX) is a fuzzy partially order set (simply, fuzzy poset).

Remark 1.4.(1) We define a function eLX : LX×LX → L as eLX (A,B) =
∧

x∈X(A(x)→

B(x)). Then (LX , eLX ) is a fuzzy poset from Lemma 1.2 (8).
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(2) We denote e−1
X (x, y) = eX(y, x), (eX)x(y) = eX(x, y) and (eX)−1

y = eX(x, y). More-

over, 1x is a characteristic function such that 1x(x) = 0, 1x(y), for otherwise.

Definition 1.5.[1-3] Let (X, eX) and (Y, eY ) be a fuzzy poset and f : X → Y and

g : Y → X maps.

(1) (eX , f, g, eY ) is called a Galois connection if for all x ∈ X, y ∈ Y ,

eY (y, f(x)) = eX(x, g(y)).

(2)(eX , f, g, eY ) is called a dual Galois connection if for all x ∈ X, y ∈ Y ,

eY (f(x), y) = eX(g(y), x).

(3) (eX , f, g, eY ) is called a residuated connection if for all x ∈ X, y ∈ Y ,

eY (f(x), y) = eX(x, g(y)).

(4) (eX , f, g, eY ) is called a dual residuated connection if for all x ∈ X, y ∈ Y ,

eY (y, f(x)) = eX(g(y), x).

(5) A map f : (X, eX)→ (Y, eY ) is called an isotone map if for all x, z ∈ X, eX(x, z) ≤

eY (f(x), f(z)).

(6) A map f : (X, eX)→ (Y, eY ) is called an antitone map if for all x, z ∈ X, eX(x, z) ≤

eY (f(z), f(x)).

2. Maps and fuzzy connections

Theorem 2.1.Let (X, eX) and (Y, eY ) be a fuzzy poset and f : X → Y and g : Y → X

maps. For each A ∈ LX and B ∈ LY , we define operations as follows:

F1(A)(y) =
∧
x∈X

(A(x)→ eY (y, f(x))), F2(A)(y) =
∧
x∈X

(A(x)→ eY (f(x), y)),

G1(B)(x) =
∧
y∈Y

(B(y)→ eX(x, g(y))), G2(B)(x) =
∧
y∈Y

(B(y)→ eX(g(y), x)),

H1(B)(x) =
∨
y∈Y

(eX(x, g(y))�B(y)), H2(B)(x) =
∨
y∈Y

(eX(g(y), x)�B(y)),
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I1(A)(y) =
∨
x∈X

(A(x)� eY (y, f(x))), I2(A)(y) =
∨
x∈X

(A(x)� eY (f(x), y)),

J1(B)(x) =
∧
y∈Y

(eX(x, g(y))→ B(y)), J2(B)(x) =
∧
y∈Y

(eX(g(y), x)→ B(y)),

K1(A)(y) =
∧
x∈X

(eY (y, f(x))→ A(x)), K2(A)(y) =
∧
x∈X

(eY (f(x), y)→ A(x)).

L1(B)(x) =
∨
y∈Y

(B∗(y)� eX(x, g(y))), L2(B)(x) =
∨
y∈Y

(B∗(y)� eX(g(y), x)),

M1(A)(y) =
∨
x∈X

(A∗(x)� eY (y, f(x))),M2(A)(y) =
∨
x∈X

(A∗(x)� eY (f(x), y)).

Then the following statements hold:

(1) F1(1x) = (eY )−1
f(x), F2(1x) = (eY )f(x), K1(1∗x) = ((eY )−1

f(x))
∗, K2(1∗x) = (eY )∗f(x),

M1(1∗x) = (eY )−1
f(x), M2(1∗x) = (eY )f(x), I1(1x) = (eY )−1

f(x) and I2(1x) = (eY )f(x).

(2) G1(1y) = (eX)−1
g(y), G2(1y) = (eX)g(y), H1(1w) = (eX)−1

g(w), H2(1w) = (eX)g(w),

J1(1∗y) = ((eX)−1
g(y))

∗, J2(1∗y) = (eX)∗g(y), L1(1∗y) = (eX)−1
g(y) and L2(1∗y) = (eX)g(y).

(3)(eX , f, g, eY ) is a Galois connection iff (eLX , F1, G1, eLY ) is a Galois connection with

antitone maps f and g iff (eLX , K1, H1, eLY ) is a dual residuated connection with antitone

maps f and g iff (eLX ,M1, L1, eLY ) is a dual Galois connection with antitone maps f and

g iff (eLX , I1, J1, eLY ) is a residuated connection with antitone maps f and g .

(4) (eX , f, g, eY ) is a residuated connection iff (eLX , F2, G1, eLY ) is a Galois connection

with isotone maps f and g iff (eLX , K2, H1, eLY ) is a dual residuated connection with

isotone maps f and g iff (eLX ,M2, L1, eLY ) is a dual Galois connection with isotone maps

f and g iff (eLX , I2, J1, eLY ) is a residuated connection with isotone maps f and g.

(5) (eX , f, g, eY ) is a dual Galois connection iff (eLX , F2, G2, eLY ) is a Galois connection

with antitone maps f and g iff (eLX , K2, H2, eLY ) is a dual residuated connection with

antitone maps f and g iff (eLX ,M2, L2, eLY ) is a dual Galois connection with antitone

maps f and g iff (eLX , I2, J2, eLY ) is a residuated connection with antitone maps f and g.

(6) (eX , f, g, eY ) is a dual residuated connection iff (eLX , F1, G2, eLY ) is a Galois con-

nection with isotone maps f and g iff (eLX , K1, H2, eLY ) is a dual residuated connection

with isotone maps f and g iff (eLX ,M1, L2, eLY ) is a dual Galois connection with isotone

maps f and g iff (eLX , I1, J2, eLY ) is a residuated connection with isotone maps f and g.
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(7) If eX(x, y) ≤ eY (f(x), f(y)), then

F1((eX)z) = (eY )−1
f(z), F2((eX)−1

z ) = (eY )f(z),

K1(((eX)−1
z )∗) = ((eY )−1

f(z))
∗, K2((eX)∗z) = (eY )∗f(z)

I1((e−1
X )z) = (eY )−1

f(z), I2((eX)z) = (eY )f(z),

M1((e−1
X )∗z) = (eY )−1

f(z), M2((eX)∗z) = (eY )f(z).

(8) If eX(x, y) ≤ eY (f(y), f(x)), then

F1((eX)−1
z ) = (eY )−1

f(z), F2((eX)z) = (eY )f(z),

K1(((eX)z)
∗) = ((eY )−1

f(z))
∗, K2((e−1

X )∗z) = (eY )∗f(z),

I1((eX)z) = (eY )−1
f(z), I2((eX)−1

z ) = (eY )f(z),

M1((eX)∗z) = (eY )−1
f(z), M2((e−1

X )∗z) = (eY )f(z).

(9) If eY (x, y) ≤ eX(g(x), g(y)), then

G1((eY )y) = (eX)−1
g(y), G2((eY )−1

y ) = (eX)g(y),

H1((eY )−1
y ) = (eX)−1

g(y) H2((eY )y) = (eX)g(y),

J1(((eY )−1
y )∗) = ((eX)−1

g(y))
∗, J2((eY )∗y) = (eX)∗g(y),

L1((e−1
Y )∗y) = (eX)−1

g(y), L2((eY )∗y) = (eX)g(y).

(10) If eY (x, y) ≤ eX(g(y), g(x)), then

G1((eY )−1
y ) = (eX)−1

g(y), G2((eY )y) = (eX)g(y),

H1((eY )y) = (eX)−1
g(y), H2((eY )−1

y ) = (eX)g(y),

J1(((eY )y)
∗) = ((eX)−1

g(y))
∗, J2((e−1

Y )∗y) = (eX)∗g(y),

L1((eY )∗y) = (eX)−1
g(y), L2((e−1

Y )∗y) = (eX)g(y).

Proof. (1) and (2) follow from their definitions.

(3) Let eX(x, g(y)) = eY (y, f(x)) be given. Since eX(g(y), g(y)) = eY (y, f(g(y)) = 1,

then g is an antitone map from:

eY (y1, y2) = eY (y1, y2)� eY (y2, f(g(y2)))

≤ eY (y1, f(g(y2))) = eX(g(y2), g(y1)).

Similarly, f is an antitone map.

First, we will show that eX(x, g(y)) = eY (y, f(x)) iff eLX (A,G1(B)) = eLY (B,F1(A)).
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Let eX(x, g(y)) = eY (y, f(x)) be given. By Lemma 1.2 (2,5), we have

eLY (B,F1(A)) =
∧

y∈Y (B(y)→ F1(A)(y))

=
∧

y∈Y

(
B(y)→

∧
x∈X(A(x)→ eY (y, f(x)))

)
=
∧

y∈Y
∧

x∈X

(
A(x)→ (B(y)→ eX(x, g(y)))

)
=
∧

x∈X

(
A(x)→ G1(B)(x)

)
= eLX (A,G1(B)).

Conversely, put A = 1x and B = 1y. By (1) and (2), we have

eY (y, f(x)) = F1(1x)(y) = eLY (1y, F1(1x))

= eLX (1x, G1(1y)) = G1(1y)(x) = eX(x, g(y)).

Second, we will show that eX(x, g(y)) = eY (y, f(x)) iff eLX (H1(B), A) = eLY (B,K1(A)).

Let eX(x, g(y)) = eY (y, f(x)) be given. By Lemma 1.2 (3,5), we have

eLX (H1(B), A) =
∧

x∈X(H1(B)(x)→ A(x))

=
∧

x∈X

(∨
y∈Y (eX(x, g(y))�B(y))→ A(x)

)
=
∧

x∈X
∧

y∈Y

(
B(y)→ (eX(x, g(y))→ A(x))

)
=
∧

y∈Y

(
B(y)→

∧
x∈X(eY (y, f(x))→ A(x))

)
=
∧

y∈Y

(
B(y)→ K1(A)(y)

)
= eLY (B,K1(A))

Conversely, put A = 1∗x and B = 1y. By (1) and (2), we have

e∗X(x, g(y)) = H1(1y)
∗(x) = eLX (H1(1y), 1

∗
x)

= eLY (1y, K1(1∗x)) = K1(1∗x)(y) = e∗Y (y, f(x)).

Third, we will show that eX(x, g(y)) = eY (y, f(x)) iff eLX (L1(B), A) = eLY (M1(A), B).
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Let eX(x, g(y)) = eY (y, f(x)) be given. By Lemma 1.2 (3,5,6), we have

eLY (M1(A), B) =
∧

y∈Y (M1(A)(y)→ B(y))

=
∧

y∈Y ((
∨

z∈X(A∗(z)� eY (y, f(z)))→ B(y))

=
∧

y∈Y
∧

z∈X(A∗(z)→ (eY (y, f(z))→ B(y)))

=
∧

z∈X(A∗(z)→
∧

y∈Y (eY (y, f(z))→ B(y))

=
∧

z∈X(A∗(z)→ (
∨

y∈Y (eY (y, f(z))�B∗(y)))∗)

=
∧

z∈X(
∨

y∈Y (eY (y, f(z))�B∗(y)))→ A(z))

= eLX (L1(B), A).

Conversely, put A = 1∗x and B = 1∗y. Since M1(1∗x)(y) = eY (y, f(x)) and L1(1∗y)(x) =

eX(x, g(y)) from (1) and (2). Hence we have

e∗Y (y, f(x)) = M1(1∗x)∗(y) = eLY (M1(1∗x), 1∗y)

= eLX (L1(1∗y), 1
∗
x) = L1(1∗y)

∗(x) = e∗X(x, g(y)).

Finally, we will show that eX(x, g(y)) = eY (y, f(x)) iff eLX (A, J1(B)) = eLY (I1(A), B).

Let eX(x, g(y)) = eY (y, f(x)). Then

eLY (I1(A), B) =
∧

y∈Y (I1(A)(y)→ B(y))

=
∧

y∈Y ((
∨

x∈X(A(x)� eY (y, f(x)))→ B(y))

=
∧

y∈Y
∧

x∈X(A(x)→ (eY (y, f(x))→ B(y)))

=
∧

x∈X(A(x)→
∧

y∈Y (eY (y, f(x))→ B(y)))

=
∧

x∈X(A(x)→ J1(B)(x))

= eLX (A, J1(B)).

Conversely, put A = 1x and B = 1∗y. Since I1((eX)x)(y) = eY (y, f(x)) and J1((eY )∗y)(x) =

eX(x, g(y))∗ from (1) and (2),

e∗Y (y, f(x)) = I1(1x)∗(y) = eLY (I1(1x), 1∗y)

= eLX (1x, J1(1∗y)) = J1(1∗y)(x) = e∗Y (x, g(y)).

(4) Let eX(x, g(y)) = eY (f(x), y) be given. Since eX(g(y), g(y)) = eY (f(g(y), y) = 1,

then g is an isotone map from:

eY (y1, y2) = eY (y1, y2)� eY (f(g(y1)), y1)

≤ eY (f(g(y1)), y2) = eX(g(y1), g(y2)).
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Similarly, f is an isotone map.

First, we will show that eX(x, g(y)) = eY (f(x), y) iff eLX (A,G1(B)) = eLY (B,F2(A)).

Let eX(x, g(y)) = eY (f(x), y) be given. By Lemma 1.2(2,5), we have

eLY (B,F2(A)) =
∧

y∈Y (B(y)→ F2(A)(y))

=
∧

y∈Y

(
B(y)→

∧
x∈X(A(x)→ eY (f(x), y))

)
=
∧

y∈Y
∧

x∈X

(
A(x)→ (B(y)→ eX(x, g(y))

)
=
∧

x∈X

(
A(x)→

∧
y∈Y (B(y)→ eX(x, g(y)))

)
=
∧

x∈X

(
A(x)→ G1(B)(x)

)
= eLX (A,G1(B)).

Conversely, put A = 1x and B = 1y. By (1) and (2), F2(1x) = (eY )f(x) and G1(1y) =

(eX)−1
g(y).

eY (f(x), y) = F2(1x)(y) = eLY (1y, F2(1x))

= eLX (1x, G1(1y)) = G1(1y)(x) = eX(x, g(y)).

Second, we will show that eX(x, g(y)) = eY (y, f(x)) iff eLX (H1(B), A) = eLY (B,K2(A)).

If eX(x, g(y)) = eY (f(x), y), then

eLX (H1(B), A) =
∧

x∈X(H1(B)(x)→ A(x))

=
∧

x∈X

(
(
∨

y∈Y (eX(x, g(y))�B(y)))→ A(x)
)

=
∧

x∈X
∧

y∈Y

(
B(y)→ (eX(x, g(y))→ A(x))

)
=
∧

y∈Y

(
B(y)→

∧
x∈X(eY (f(x), y)→ A(x))

)
=
∧

y∈Y

(
B(y)→ K2(A)(y)

)
= eLY (B,K2(A)).

Put A = 1∗x and B = 1y. By (1) and (2), K2(1∗x) = (eY )∗f(x) and H1(1w) = (eX)−1
g(w).

Hence

e∗X(x, g(y)) = K2(1∗x)(y) = eLX (H1(1y, 1
∗
x)

= eLY (1y, K2(1∗x) = H1(1y)
∗(x) = e∗X(x, g(y)).

Other cases, (5) and (6) are similarly proved in (3).

(7) We have F2((eX)−1
z ) = (eY )f(z) from:
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F2((eX)−1
z )(y) =

∧
x∈X((eX)−1

z (x)→ eY (f(x), y))

≤ (eX)−1
z (z)→ eY (f(z), y) = eY (f(z), y).

Since f is an isotone map,

eY (f(z), y)� eX(x, z) ≤ eY ((f(z), y)� eY (f(x), f(z)) ≤ eY (f(x), y),

eY (f(z), y) ≤
∧
z∈X

((eX)−1
z (x)→ eY (f(x), y)) = F2((eX)−1

z )(y).

K2((eX)∗x)(y) =
∧

z∈X(eY (f(z), y)→ (eX)∗x(z))

≤ (eY (f(x), y)→ ⊥) = eY (f(x), y)∗.

Thus, K2((eX)∗x) ≤ (eY )∗f(x). Furthermore, K2((eX)∗x) ≥ (eY )∗f(x) from:

eY (f(z), y)� eX(x, z) ≤ eY (f(z), y)� eY (f(x), f(z)) ≤ eY (f(x), y)

iff (eY (f(x), y))∗ ≤ eY (f(z), y)→ (eX(x, z))∗.

(9) We have G1((eY )y) ≤ (eX)−1
g(y) from:

G1((eY )y)(x) =
∧
w∈Y

((eY )y(w)→ eX(x, g(w))) ≤ eX(x, g(y)).

Moreover, G1((eY )y) ≥ (eX)−1
g(y) from:

eX(x, g(y))� eY (y, w) ≤ eX(x, g(y))� eX(g(y), g(w)) ≤ eX(x, g(w))

eX(x, g(y)) ≤ eY (y, w)→ eX(x, g(w)).

We have H1((eY )−1
w ) = (eX)−1

g(w) from:

H1((eY )−1
w )(x) =

∧
y∈Y

((eY )−1
w (y)� eX(x, g(y))) ≥ (eX)g(w)(x).

eX(x, g(y))� eY (y, w) ≤ eX(x, g(y))� eX(g(y), g(w)) ≤ eX(x, g(w).

Since J1(((eY )−1
y )∗)(x) =

∧
w∈Y (eX(x, g(w))→ ((eY )−1

y )∗(w) ≤ (eX(x, g(y)))∗, then

J1(((eY )−1
y )∗) ≤ ((eX)−1

g(y))
∗.

Since eX(x, g(w))� eY (w, y) ≤ eX(x, g(w))� eX(g(w), g(y)) ≤ eX(x, g(y)), then

eX(x, g(w))→ eY (w, y)∗ ≥ (eX(x, g(y)))∗.

Thus, J1(((eY )−1
y )∗) ≥ ((eX)−1

g(y))
∗. Hence J1(((eY )−1

y )∗) = ((eX)−1
g(y))

∗.
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Other cases in (7) and (9), (8) and (10) are similarly proved.

Example 2.2.Define a binary operation � (called  Lukasiewicz conjection) on L = [0, 1] by

x� y = max{0, x + y − 1}, x→ y = min{1− x + y, 1}.

Let (X = {a, b, c}, eX) and (Y = {x, y, z}, eY ) be a fuzzy poset with eX = (eX(a, b)),

eY = (eY (x, y)) and e0
Y = (e0

Y (x, y)) as follows:

eX =


1.0 0.7 0.4

0.3 1.0 0.6

0.5 0.5 1.0

 eY =


1.0 0.8 0.6

0.6 1.0 0.5

0.7 0.6 1.0



e0
Y =


0.4 0.6 1.0

1.0 0.3 0.5

0.7 1.0 0.5


(1) We define f : X → Y with f(a) = x, f(b) = f(c) = y. Then f is an isotone map. It

satisfies Theorem 2.1(7). For examples,

F2((eX)−1
a ) = F2(1, 0.3, 0.5) = (1, 0.8, 0.6) = (eY )f(a) = (eY )x,

F2((eX)−1
b ) = F2(0.7, 1, 0.5) = (0.6, 1, 0.5) = (eY )f(b) = (eY )y,

F2((eX)−1
c ) = F2(0.4, 0.3, 1) = (0.6, 1, 0.5) = (eY )f(c) = (eY )y.

(2) We define h : X → Y with h(a) = x, h(b) = h(c) = z. Then f is an antitone map.

It satisfies Theorem 2.1(8). For examples,

K2((e−1
X )∗a) = K2(0, 0.7, 0.5) = (0, 0.2, 0.4) = (eY )∗h(a),

K2((e−1
X )∗b) = K2(0.3, 0, 0.5) = (0.3, 0.4, 0) = (eY )∗h(b),

K2((e−1
X )∗c) = K2(0.6, 0.4, 0) = (0.3, 0.4, 0) = (eY )∗h(c).

(3) We define f and g as f(a) = x, f(b) = y, f(c) = z and g(x) = c, g(y) = a, f(z) = b.

Then e0
Y (x, f(a)) = eX(a, g(x)) for all a ∈ X, x ∈ Y . By Theorem 2.1, (eX , f, g, e

0
Y )

is a Galois connection, (eLX , F1, G1, eLY ) is a Galois connection with antitone maps f

and g, (eLX , K1, H1, eLY ) is a dual residuated connection with antitone maps f and g,

(eLX ,M1, L1, eLY ) is a dual Galois connection with antitone maps f and g and (eLX , I1, J1, eLY )
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is a residuated connection with antitone maps f and g. It satisfies Theorem 2.1(8)and

(10). For examples,

F1((eX)−1
a )(z) = F1(1, 0.3, 0.5)(z) = 0.7 = e0

Y (z, x)

F2((eX)−1
b ) = F2(0.7, 1, 0.5) = (0.7, 0.6, 1) = (eY )f(b)

F2((eX)−1
c ) = F2(0.4, 0.3, 1) = (0.7, 0.6, 1) = (eY )f(c)

Example 2.3.Let X = {a, b, c} be a set and f : X → X a function as f(a) = b, f(b) =

a, f(c) = c. Define a binary operation � (called  Lukasiewicz conjection) on L = [0, 1] as

Example 2.2.

(1) Let (X = {a, b, c}, e1 = (eX(a, b))) be a fuzzy poset as follows:

e1 =


1.0 0.6 0.5

0.6 1.0 0.5

0.7 0.7 1.0


Since e1(f(x), y) = e1(x, f(y)), then (e1, f, f, e1) are both residuated and dual residuated

connections. It satisfies Theorem 2.1 (4) and (6). Since f is an isotone map, it satisfies

Theorem 2.1 (7) and (9). For examples,

e1(f(a), c) = 0.5 = F2((e1)−1
a )(c) = (1→ 0.5) ∧ (0.6→ 0.5) ∧ (0.7→ 1)

= eLX ((e1)c, F2((e1)−1
a )) = (0.7→ 0.6) ∧ (0.7→ 1) ∧ (1→ 0.5)

= eLX ((e1)−1
a , G1((e1)c)) = (1→ 0.5) ∧ (0.6→ 0.5) ∧ (0.7→ 0.8)

= G1((e1)c)(a) = (0.7→ 0.6) ∧ (0.7→ 1) ∧ (1→ 0.5)

= e1(a, f(c)) = (e1)−1
f(c)(a).

e∗1(f(c), a) = 0.3 = K2((e1)∗c)(a) = (0.6→ 0.3) ∧ (1→ 0.3) ∧ (0.7→ 0)

= eLY ((e1)−1
a , K2((e1)∗c) = (1→ 0.3) ∧ (0.6→ 0.3) ∧ (0.7→ 0)

= eLX (H1((e1)−1
a ), (e1)∗c) = (0.6→ 0.3) ∧ (1→ 0.3) ∧ (0.7→ 0)

= H1((e1)−1
a )∗(c) = e∗1(c, f(a)).



MAPS AND FUZZY CONNECTIONS 719

(2) Let (X = {a, b, c}, e2 = (e2(a, b))) be a fuzzy poset as follows:

e2 =


1.0 0.6 0.5

0.6 1.0 0.7

0.7 0.5 1.0


Since e1(y, f(x)) = e1(x, f(y)), then (e1, f, f, e1) are both both Galois and dual Galois

connections. It satisfies Theorem 2.1 (3) and (5). Since f is an antitone map, it satisfies

Theorem 2.1 (8) and (10). For examples,

e2(b, f(c)) = 0.7 = F1((e2)−1
c )(b) = (0.5→ 1) ∧ (0.7→ 0.6) ∧ (1→ 0.7)

= eLY ((eY )−1
y , F1((eX)−1

x )) = (0.6→ 0.5) ∧ (1→ 0.7) ∧ (0.5→ 1)

= eLX ((eX)−1
x , G1((eY )−1

y )) = (0.5→ 1) ∧ (0.7→ 0.6) ∧ (1→ 0.7)

= G1((e2)−1
b )(c) = e2(c, f(b)).

e∗2(a, f(a)) = 0.4 = H1((e2)∗a(a) =
(

(0.6� 1) ∨ (1� 0.6) ∨ (0.5� 0.5)
)∗

= eLX (H1((e2)a, (e2)∗a) = (0.6→ 0) ∧ (1→ 0.4) ∧ (0.5→ 0.5)

= eLY ((e2)2, K1((e2)∗a)) = (1→ 0.4) ∧ (0.6→ 0) ∧ (0.5→ 0.5)

= K1((e2)∗a)(a) = e2(a, f(a)).
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