Available online at http://scik.org J. Math. Comput. Sci. 3 (2013), No. 2, 708-719 ISSN: 1927-5307

MAPS AND FUZZY CONNECTIONS

YONG CHAN KIM

Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea

Abstract. In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices.

Keywords: complete residuated lattices; isotone (antitone) maps; residuated (dual residuated, residuated, Galois, dual Galois) connections

2000 AMS Subject Classification: 03E72; 03G10; 06A15; 06F07

1. Introduction

Hájek [7] introduced a complete residuated lattice which is an algebraic structure for many valued logic. Bělohlávek [1-3] developed the notion of fuzzy contexts using Galois connections with $R \in L^{X \times Y}$ on a complete residuated lattice. Georgescue and Popescu [5,6] introduced the non-commutative fuzzy connection on generalized residuated lattice without commutative conditions. Garcia [4] investigated fuzzy connections categorically. It is an important mathematical tool for algebraic structure of fuzzy contexts [1-3,8-10].

Received February 25, 2013

In this paper, we investigate the relations between maps and residuated (dual residuated, residuated, Galois, dual Galois) connections in complete residuated lattices. We give their examples.

Definition 1.1. [1,7] An algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$ is called a complete residuated lattice if it satisfies the following conditions:

(C1) $L = (L, \leq, \lor, \land, 1, 0)$ is a complete lattice with the greatest element 1 and the least element 0;

- (C2) $(L, \odot, 1)$ is a commutative monoid;
- (C3) $x \odot y \le z$ iff $x \le y \to z$ for $x, y, z \in L$.

In this paper, we assume $(L, \land, \lor, \odot, \rightarrow, {}^*0, 1)$ is a complete residuated lattice with the law of double negation; i.e. $x^{**} = x$.

Lemma 1.2.[1,7] For each $x, y, z, x_i, y_i \in L$, we have the following properties.

(1) If $y \leq z$, $(x \odot y) \leq (x \odot z)$, $x \to y \leq x \to z$ and $z \to x \leq y \to x$. (2) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i)$. (3) $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y)$. (4) $\bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*$ and $\bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*$. (5) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$. (6) $x \odot y = (x \to y^*)^*$ and $x \to y = y^* \to x^*$. (7) $x \odot (x \to y) \leq y$. (8) $(x \to y) \odot (y \to z) \leq x \to z$. (9) $x \leq y \to z$ iff $y \leq x \to z$.

Definition 1.3.[1-3] Let X be a set. A function $e_X : X \times X \to L$ is called:

- (E1) reflexive if $e_X(x, x) = 1$ for all $x \in X$,
- (E2) transitive if $e_X(x,y) \odot e_X(y,z) \le e_X(x,z)$, for all $x, y, z \in X$,
- (E3) if $e_X(x, y) = e_X(y, x) = 1$, then x = y.

If e satisfies (E1) and (E2), (X, e_X) is a fuzzy preorder set. If e satisfies (E1), (E2) and (E3), (X, e_X) is a fuzzy partially order set (simply, fuzzy poset).

Remark 1.4.(1) We define a function $e_{L^X} : L^X \times L^X \to L$ as $e_{L^X}(A, B) = \bigwedge_{x \in X} (A(x) \to B(x))$. Then (L^X, e_{L^X}) is a fuzzy poset from Lemma 1.2 (8).

(2) We denote $e_X^{-1}(x, y) = e_X(y, x)$, $(e_X)_x(y) = e_X(x, y)$ and $(e_X)_y^{-1} = e_X(x, y)$. Moreover, 1_x is a characteristic function such that $1_x(x) = 0$, $1_x(y)$, for otherwise.

Definition 1.5.[1-3] Let (X, e_X) and (Y, e_Y) be a fuzzy poset and $f : X \to Y$ and $g: Y \to X$ maps.

(1) (e_X, f, g, e_Y) is called a Galois connection if for all $x \in X, y \in Y$,

$$e_Y(y, f(x)) = e_X(x, g(y))$$

 $(2)(e_X, f, g, e_Y)$ is called a dual Galois connection if for all $x \in X, y \in Y$,

$$e_Y(f(x), y) = e_X(g(y), x)$$

(3) (e_X, f, g, e_Y) is called a residuated connection if for all $x \in X, y \in Y$,

$$e_Y(f(x), y) = e_X(x, g(y)).$$

(4) (e_X, f, g, e_Y) is called a dual residuated connection if for all $x \in X, y \in Y$,

$$e_Y(y, f(x)) = e_X(g(y), x)$$

(5) A map $f: (X, e_X) \to (Y, e_Y)$ is called an isotone map if for all $x, z \in X, e_X(x, z) \le e_Y(f(x), f(z)).$

(6) A map $f: (X, e_X) \to (Y, e_Y)$ is called an antitone map if for all $x, z \in X, e_X(x, z) \le e_Y(f(z), f(x))$.

2. Maps and fuzzy connections

Theorem 2.1.Let (X, e_X) and (Y, e_Y) be a fuzzy poset and $f : X \to Y$ and $g : Y \to X$ maps. For each $A \in L^X$ and $B \in L^Y$, we define operations as follows:

$$F_{1}(A)(y) = \bigwedge_{x \in X} (A(x) \to e_{Y}(y, f(x))), \quad F_{2}(A)(y) = \bigwedge_{x \in X} (A(x) \to e_{Y}(f(x), y)),$$

$$G_{1}(B)(x) = \bigwedge_{y \in Y} (B(y) \to e_{X}(x, g(y))), \quad G_{2}(B)(x) = \bigwedge_{y \in Y} (B(y) \to e_{X}(g(y), x)),$$

$$H_{1}(B)(x) = \bigvee_{y \in Y} (e_{X}(x, g(y)) \odot B(y)), \quad H_{2}(B)(x) = \bigvee_{y \in Y} (e_{X}(g(y), x) \odot B(y)),$$

710

$$\begin{split} I_1(A)(y) &= \bigvee_{x \in X} (A(x) \odot e_Y(y, f(x))), \quad I_2(A)(y) = \bigvee_{x \in X} (A(x) \odot e_Y(f(x), y)), \\ J_1(B)(x) &= \bigwedge_{y \in Y} (e_X(x, g(y)) \to B(y)), \quad J_2(B)(x) = \bigwedge_{y \in Y} (e_X(g(y), x) \to B(y)), \\ K_1(A)(y) &= \bigwedge_{x \in X} (e_Y(y, f(x)) \to A(x)), \quad K_2(A)(y) = \bigwedge_{x \in X} (e_Y(f(x), y) \to A(x)). \\ L_1(B)(x) &= \bigvee_{y \in Y} (B^*(y) \odot e_X(x, g(y))), \quad L_2(B)(x) = \bigvee_{y \in Y} (B^*(y) \odot e_X(g(y), x)), \\ M_1(A)(y) &= \bigvee (A^*(x) \odot e_Y(y, f(x))), M_2(A)(y) = \bigvee (A^*(x) \odot e_Y(f(x), y)). \end{split}$$

 $x \in X$ Then the following statements hold:

(1) $F_1(1_x) = (e_Y)_{f(x)}^{-1}, F_2(1_x) = (e_Y)_{f(x)}, K_1(1_x^*) = ((e_Y)_{f(x)}^{-1})^*, K_2(1_x^*) = (e_Y)_{f(x)}^*, M_1(1_x^*) = (e_Y)_{f(x)}^{-1}, M_2(1_x^*) = (e_Y)_{f(x)}, I_1(1_x) = (e_Y)_{f(x)}^{-1} and I_2(1_x) = (e_Y)_{f(x)}.$

 $x \in X$

(2) $G_1(1_y) = (e_X)_{g(y)}^{-1}, \ G_2(1_y) = (e_X)_{g(y)}, \ H_1(1_w) = (e_X)_{g(w)}^{-1}, \ H_2(1_w) = (e_X)_{g(w)},$ $J_1(1_y^*) = ((e_X)_{g(y)}^{-1})^*, \ J_2(1_y^*) = (e_X)_{g(y)}^*, \ L_1(1_y^*) = (e_X)_{g(y)}^{-1} \ and \ L_2(1_y^*) = (e_X)_{g(y)}.$

 $(3)(e_X, f, g, e_Y)$ is a Galois connection iff $(e_{L^X}, F_1, G_1, e_{L^Y})$ is a Galois connection with antitone maps f and g iff $(e_{L^X}, K_1, H_1, e_{L^Y})$ is a dual residuated connection with antitone maps f and g iff $(e_{L^X}, M_1, L_1, e_{L^Y})$ is a dual Galois connection with antitone maps f and g iff $(e_{L^X}, I_1, J_1, e_{L^Y})$ is a residuated connection with antitone maps f and g.

(4) (e_X, f, g, e_Y) is a residuated connection iff $(e_{L^X}, F_2, G_1, e_{L^Y})$ is a Galois connection with isotone maps f and g iff $(e_{L^X}, K_2, H_1, e_{L^Y})$ is a dual residuated connection with isotone maps f and g iff $(e_{L^X}, M_2, L_1, e_{L^Y})$ is a dual Galois connection with isotone maps f and g iff $(e_{L^X}, I_2, J_1, e_{L^Y})$ is a residuated connection with isotone maps f and g.

(5) (e_X, f, g, e_Y) is a dual Galois connection iff $(e_{L^X}, F_2, G_2, e_{L^Y})$ is a Galois connection with antitone maps f and g iff $(e_{L^X}, K_2, H_2, e_{L^Y})$ is a dual residuated connection with antitone maps f and g iff $(e_{L^X}, M_2, L_2, e_{L^Y})$ is a dual Galois connection with antitone maps f and g iff $(e_{L^X}, I_2, J_2, e_{L^Y})$ is a residuated connection with antitone maps f and g.

(6) (e_X, f, g, e_Y) is a dual residuated connection iff $(e_{L^X}, F_1, G_2, e_{L^Y})$ is a Galois connection with isotone maps f and g iff $(e_{L^X}, K_1, H_2, e_{L^Y})$ is a dual residuated connection with isotone maps f and g iff $(e_{L^X}, M_1, L_2, e_{L^Y})$ is a dual Galois connection with isotone maps f and g iff $(e_{L^X}, I_1, J_2, e_{L^Y})$ is a residuated connection with isotone maps f and g.

(7) If $e_X(x, y) \le e_Y(f(x), f(y))$, then

$$F_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \qquad F_2((e_X)_z^{-1}) = (e_Y)_{f(z)},$$

$$K_1(((e_X)_z^{-1})^*) = ((e_Y)_{f(z)}^{-1})^*, \qquad K_2((e_X)_z^*) = (e_Y)_{f(z)}^*,$$

$$I_1((e_X^{-1})_z) = (e_Y)_{f(z)}^{-1}, \qquad I_2((e_X)_z) = (e_Y)_{f(z)},$$

$$M_1((e_X^{-1})_z^*) = (e_Y)_{f(z)}^{-1}, \qquad M_2((e_X)_z^*) = (e_Y)_{f(z)}.$$

(8) If $e_X(x, y) \le e_Y(f(y), f(x))$, then

$$F_1((e_X)_z^{-1}) = (e_Y)_{f(z)}^{-1}, \qquad F_2((e_X)_z) = (e_Y)_{f(z)},$$

$$K_1(((e_X)_z)^*) = ((e_Y)_{f(z)}^{-1})^*, \qquad K_2((e_X^{-1})_z^*) = (e_Y)_{f(z)}^*,$$

$$I_1((e_X)_z) = (e_Y)_{f(z)}^{-1}, \qquad I_2((e_X)_z^{-1}) = (e_Y)_{f(z)},$$

$$M_1((e_X)_z^*) = (e_Y)_{f(z)}^{-1}, \qquad M_2((e_X^{-1})_z^*) = (e_Y)_{f(z)}.$$

(9) If $e_Y(x, y) \le e_X(g(x), g(y))$, then

$$G_{1}((e_{Y})_{y}) = (e_{X})_{g(y)}^{-1}, \qquad G_{2}((e_{Y})_{y}^{-1}) = (e_{X})_{g(y)},$$

$$H_{1}((e_{Y})_{y}^{-1}) = (e_{X})_{g(y)}^{-1}, \qquad H_{2}((e_{Y})_{y}) = (e_{X})_{g(y)},$$

$$J_{1}(((e_{Y})_{y}^{-1})^{*}) = ((e_{X})_{g(y)}^{-1})^{*}, \qquad J_{2}((e_{Y})_{y}^{*}) = (e_{X})_{g(y)}^{*},$$

$$L_{1}((e_{Y}^{-1})_{y}^{*}) = (e_{X})_{g(y)}^{-1}, \qquad L_{2}((e_{Y})_{y}^{*}) = (e_{X})_{g(y)}.$$

(10) If $e_Y(x, y) \le e_X(g(y), g(x))$, then

$$G_1((e_Y)_y^{-1}) = (e_X)_{g(y)}^{-1}, \qquad G_2((e_Y)_y) = (e_X)_{g(y)},$$
$$H_1((e_Y)_y) = (e_X)_{g(y)}^{-1}, \qquad H_2((e_Y)_y^{-1}) = (e_X)_{g(y)},$$
$$J_1(((e_Y)_y)^*) = ((e_X)_{g(y)}^{-1})^*, \quad J_2((e_Y^{-1})_y^*) = (e_X)_{g(y)}^*,$$
$$L_1((e_Y)_y^*) = (e_X)_{g(y)}^{-1}, \qquad L_2((e_Y^{-1})_y^*) = (e_X)_{g(y)}.$$

Proof. (1) and (2) follow from their definitions.

(3) Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. Since $e_X(g(y), g(y)) = e_Y(y, f(g(y))) = 1$, then g is an antitone map from:

$$e_Y(y_1, y_2) = e_Y(y_1, y_2) \odot e_Y(y_2, f(g(y_2)))$$

$$\leq e_Y(y_1, f(g(y_2))) = e_X(g(y_2), g(y_1)).$$

Similarly, f is an antitone map.

First, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{L^X}(A, G_1(B)) = e_{L^Y}(B, F_1(A))$.

712

Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (2,5), we have

$$e_{L^{Y}}(B, F_{1}(A)) = \bigwedge_{y \in Y} (B(y) \to F_{1}(A)(y))$$

$$= \bigwedge_{y \in Y} \left(B(y) \to \bigwedge_{x \in X} (A(x) \to e_{Y}(y, f(x))) \right)$$

$$= \bigwedge_{y \in Y} \bigwedge_{x \in X} \left(A(x) \to (B(y) \to e_{X}(x, g(y))) \right)$$

$$= \bigwedge_{x \in X} \left(A(x) \to G_{1}(B)(x) \right)$$

$$= e_{L^{X}}(A, G_{1}(B)).$$

Conversely, put $A = 1_x$ and $B = 1_y$. By (1) and (2), we have

$$e_Y(y, f(x)) = F_1(1_x)(y) = e_{L^Y}(1_y, F_1(1_x))$$

= $e_{L^X}(1_x, G_1(1_y)) = G_1(1_y)(x) = e_X(x, g(y)).$

Second, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{L^X}(H_1(B), A) = e_{L^Y}(B, K_1(A))$. Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (3,5), we have

$$e_{L^{X}}(H_{1}(B), A) = \bigwedge_{x \in X} (H_{1}(B)(x) \to A(x))$$

$$= \bigwedge_{x \in X} \left(\bigvee_{y \in Y} (e_{X}(x, g(y)) \odot B(y)) \to A(x) \right)$$

$$= \bigwedge_{x \in X} \bigwedge_{y \in Y} \left(B(y) \to (e_{X}(x, g(y)) \to A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \to \bigwedge_{x \in X} (e_{Y}(y, f(x)) \to A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \to K_{1}(A)(y) \right)$$

$$= e_{L^{Y}}(B, K_{1}(A))$$

Conversely, put $A = 1_x^*$ and $B = 1_y$. By (1) and (2), we have

$$e_X^*(x, g(y)) = H_1(1_y)^*(x) = e_{L^X}(H_1(1_y), 1_x^*)$$

= $e_{L^Y}(1_y, K_1(1_x^*)) = K_1(1_x^*)(y) = e_Y^*(y, f(x)).$

Third, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{L^X}(L_1(B), A) = e_{L^Y}(M_1(A), B)$.

Let $e_X(x, g(y)) = e_Y(y, f(x))$ be given. By Lemma 1.2 (3,5,6), we have

$$\begin{split} e_{L^{Y}}(M_{1}(A),B) &= \bigwedge_{y \in Y}(M_{1}(A)(y) \to B(y)) \\ &= \bigwedge_{y \in Y}((\bigvee_{z \in X}(A^{*}(z) \odot e_{Y}(y,f(z))) \to B(y))) \\ &= \bigwedge_{y \in Y}\bigwedge_{z \in X}(A^{*}(z) \to (e_{Y}(y,f(z)) \to B(y))) \\ &= \bigwedge_{z \in X}(A^{*}(z) \to \bigwedge_{y \in Y}(e_{Y}(y,f(z)) \to B(y))) \\ &= \bigwedge_{z \in X}(A^{*}(z) \to (\bigvee_{y \in Y}(e_{Y}(y,f(z)) \odot B^{*}(y)))^{*}) \\ &= \bigwedge_{z \in X}(\bigvee_{y \in Y}(e_{Y}(y,f(z)) \odot B^{*}(y))) \to A(z)) \\ &= e_{L^{X}}(L_{1}(B),A). \end{split}$$

Conversely, put $A = 1_x^*$ and $B = 1_y^*$. Since $M_1(1_x^*)(y) = e_Y(y, f(x))$ and $L_1(1_y^*)(x) = e_X(x, g(y))$ from (1) and (2). Hence we have

$$e_Y^*(y, f(x)) = M_1(1_x^*)^*(y) = e_{L^Y}(M_1(1_x^*), 1_y^*)$$

= $e_{L^X}(L_1(1_y^*), 1_x^*) = L_1(1_y^*)^*(x) = e_X^*(x, g(y)).$

Finally, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{L^X}(A, J_1(B)) = e_{L^Y}(I_1(A), B)$. Let $e_X(x, g(y)) = e_Y(y, f(x))$. Then

$$e_{L^{Y}}(I_{1}(A), B) = \bigwedge_{y \in Y} (I_{1}(A)(y) \to B(y))$$

$$= \bigwedge_{y \in Y} ((\bigvee_{x \in X} (A(x) \odot e_{Y}(y, f(x))) \to B(y)))$$

$$= \bigwedge_{y \in Y} \bigwedge_{x \in X} (A(x) \to (e_{Y}(y, f(x)) \to B(y)))$$

$$= \bigwedge_{x \in X} (A(x) \to \bigwedge_{y \in Y} (e_{Y}(y, f(x)) \to B(y)))$$

$$= \bigwedge_{x \in X} (A(x) \to J_{1}(B)(x))$$

$$= e_{L^{X}}(A, J_{1}(B)).$$

Conversely, put $A = 1_x$ and $B = 1_y^*$. Since $I_1((e_X)_x)(y) = e_Y(y, f(x))$ and $J_1((e_Y)_y^*)(x) = e_X(x, g(y))^*$ from (1) and (2),

$$e_Y^*(y, f(x)) = I_1(1_x)^*(y) = e_{L^Y}(I_1(1_x), 1_y^*)$$

= $e_{L^X}(1_x, J_1(1_y^*)) = J_1(1_y^*)(x) = e_Y^*(x, g(y))$

(4) Let $e_X(x, g(y)) = e_Y(f(x), y)$ be given. Since $e_X(g(y), g(y)) = e_Y(f(g(y), y)) = 1$, then g is an isotone map from:

$$e_Y(y_1, y_2) = e_Y(y_1, y_2) \odot e_Y(f(g(y_1)), y_1)$$

$$\leq e_Y(f(g(y_1)), y_2) = e_X(g(y_1), g(y_2)).$$

Similarly, f is an isotone map.

First, we will show that $e_X(x, g(y)) = e_Y(f(x), y)$ iff $e_{L^X}(A, G_1(B)) = e_{L^Y}(B, F_2(A))$. Let $e_X(x, g(y)) = e_Y(f(x), y)$ be given. By Lemma 1.2(2,5), we have

$$e_{L^{Y}}(B, F_{2}(A)) = \bigwedge_{y \in Y} (B(y) \to F_{2}(A)(y))$$

$$= \bigwedge_{y \in Y} \left(B(y) \to \bigwedge_{x \in X} (A(x) \to e_{Y}(f(x), y)) \right)$$

$$= \bigwedge_{y \in Y} \bigwedge_{x \in X} \left(A(x) \to (B(y) \to e_{X}(x, g(y))) \right)$$

$$= \bigwedge_{x \in X} \left(A(x) \to \bigwedge_{y \in Y} (B(y) \to e_{X}(x, g(y))) \right)$$

$$= \bigwedge_{x \in X} \left(A(x) \to G_{1}(B)(x) \right)$$

$$= e_{L^{X}}(A, G_{1}(B)).$$

Conversely, put $A = 1_x$ and $B = 1_y$. By (1) and (2), $F_2(1_x) = (e_Y)_{f(x)}$ and $G_1(1_y) = (e_X)_{g(y)}^{-1}$.

$$e_Y(f(x), y) = F_2(1_x)(y) = e_{L^Y}(1_y, F_2(1_x))$$
$$= e_{L^X}(1_x, G_1(1_y)) = G_1(1_y)(x) = e_X(x, g(y)).$$

Second, we will show that $e_X(x, g(y)) = e_Y(y, f(x))$ iff $e_{L^X}(H_1(B), A) = e_{L^Y}(B, K_2(A))$. If $e_X(x, g(y)) = e_Y(f(x), y)$, then

$$e_{L^{X}}(H_{1}(B), A) = \bigwedge_{x \in X} (H_{1}(B)(x) \to A(x))$$

$$= \bigwedge_{x \in X} \left(\left(\bigvee_{y \in Y} (e_{X}(x, g(y)) \odot B(y)) \right) \to A(x) \right)$$

$$= \bigwedge_{x \in X} \bigwedge_{y \in Y} \left(B(y) \to (e_{X}(x, g(y)) \to A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \to \bigwedge_{x \in X} (e_{Y}(f(x), y) \to A(x)) \right)$$

$$= \bigwedge_{y \in Y} \left(B(y) \to K_{2}(A)(y) \right)$$

$$= e_{L^{Y}}(B, K_{2}(A)).$$

Put $A = 1_x^*$ and $B = 1_y$. By (1) and (2), $K_2(1_x^*) = (e_Y)_{f(x)}^*$ and $H_1(1_w) = (e_X)_{g(w)}^{-1}$. Hence

$$e_X^*(x, g(y)) = K_2(1_x^*)(y) = e_{L^X}(H_1(1_y, 1_x^*))$$
$$= e_{L^Y}(1_y, K_2(1_x^*)) = H_1(1_y)^*(x) = e_X^*(x, g(y)).$$

Other cases, (5) and (6) are similarly proved in (3).

(7) We have $F_2((e_X)_z^{-1}) = (e_Y)_{f(z)}$ from:

$$F_2((e_X)_z^{-1})(y) = \bigwedge_{x \in X} ((e_X)_z^{-1}(x) \to e_Y(f(x), y))$$

$$\leq (e_X)_z^{-1}(z) \to e_Y(f(z), y) = e_Y(f(z), y)$$

Since f is an isotone map,

$$e_{Y}(f(z), y) \odot e_{X}(x, z) \leq e_{Y}((f(z), y) \odot e_{Y}(f(x), f(z))) \leq e_{Y}(f(x), y),$$

$$e_{Y}(f(z), y) \leq \bigwedge_{z \in X} ((e_{X})_{z}^{-1}(x) \to e_{Y}(f(x), y)) = F_{2}((e_{X})_{z}^{-1})(y).$$

$$K_{2}((e_{X})_{x}^{*})(y) = \bigwedge_{z \in X} (e_{Y}(f(z), y) \to (e_{X})_{x}^{*}(z))$$

$$\leq (e_{Y}(f(x), y) \to \bot) = e_{Y}(f(x), y)^{*}.$$

Thus, $K_2((e_X)_x^*) \le (e_Y)_{f(x)}^*$. Furthermore, $K_2((e_X)_x^*) \ge (e_Y)_{f(x)}^*$ from:

$$e_Y(f(z), y) \odot e_X(x, z) \le e_Y(f(z), y) \odot e_Y(f(x), f(z)) \le e_Y(f(x), y)$$

iff $(e_Y(f(x), y))^* \le e_Y(f(z), y) \to (e_X(x, z))^*.$

(9) We have $G_1((e_Y)_y) \le (e_X)_{g(y)}^{-1}$ from:

$$G_1((e_Y)_y)(x) = \bigwedge_{w \in Y} ((e_Y)_y(w) \to e_X(x, g(w))) \le e_X(x, g(y)).$$

Moreover, $G_1((e_Y)_y) \ge (e_X)_{g(y)}^{-1}$ from:

$$e_X(x,g(y)) \odot e_Y(y,w) \le e_X(x,g(y)) \odot e_X(g(y),g(w)) \le e_X(x,g(w))$$
$$e_X(x,g(y)) \le e_Y(y,w) \to e_X(x,g(w)).$$

We have $H_1((e_Y)_w^{-1}) = (e_X)_{g(w)}^{-1}$ from:

$$H_1((e_Y)_w^{-1})(x) = \bigwedge_{y \in Y} ((e_Y)_w^{-1}(y) \odot e_X(x, g(y))) \ge (e_X)_{g(w)}(x).$$
$$e_X(x, g(y)) \odot e_Y(y, w) \le e_X(x, g(y)) \odot e_X(g(y), g(w)) \le e_X(x, g(w).$$

Since $J_1(((e_Y)_y^{-1})^*)(x) = \bigwedge_{w \in Y} (e_X(x, g(w)) \to ((e_Y)_y^{-1})^*(w) \le (e_X(x, g(y)))^*$, then $J_1(((e_Y)_y^{-1})^*) \le ((e_X)_{g(y)}^{-1})^*$.

Since $e_X(x, g(w)) \odot e_Y(w, y) \le e_X(x, g(w)) \odot e_X(g(w), g(y)) \le e_X(x, g(y))$, then

$$e_X(x, g(w)) \to e_Y(w, y)^* \ge (e_X(x, g(y)))^*.$$

Thus, $J_1(((e_Y)_y^{-1})^*) \ge ((e_X)_{g(y)}^{-1})^*$. Hence $J_1(((e_Y)_y^{-1})^*) = ((e_X)_{g(y)}^{-1})^*$.

Other cases in (7) and (9), (8) and (10) are similarly proved.

Example 2.2. Define a binary operation \odot (called Łukasiewicz conjection) on L = [0, 1] by

$$x \odot y = \max\{0, x + y - 1\}, \ x \to y = \min\{1 - x + y, 1\}.$$

Let $(X = \{a, b, c\}, e_X)$ and $(Y = \{x, y, z\}, e_Y)$ be a fuzzy poset with $e_X = (e_X(a, b))$, $e_Y = (e_Y(x, y))$ and $e_Y^0 = (e_Y^0(x, y))$ as follows:

$$e_X = \begin{pmatrix} 1.0 & 0.7 & 0.4 \\ 0.3 & 1.0 & 0.6 \\ 0.5 & 0.5 & 1.0 \end{pmatrix} e_Y = \begin{pmatrix} 1.0 & 0.8 & 0.6 \\ 0.6 & 1.0 & 0.5 \\ 0.7 & 0.6 & 1.0 \end{pmatrix}$$
$$e_Y^0 = \begin{pmatrix} 0.4 & 0.6 & 1.0 \\ 1.0 & 0.3 & 0.5 \\ 0.7 & 1.0 & 0.5 \end{pmatrix}$$

(1) We define $f: X \to Y$ with f(a) = x, f(b) = f(c) = y. Then f is an isotone map. It satisfies Theorem 2.1(7). For examples,

$$F_2((e_X)_a^{-1}) = F_2(1, 0.3, 0.5) = (1, 0.8, 0.6) = (e_Y)_{f(a)} = (e_Y)_x,$$

$$F_2((e_X)_b^{-1}) = F_2(0.7, 1, 0.5) = (0.6, 1, 0.5) = (e_Y)_{f(b)} = (e_Y)_y,$$

$$F_2((e_X)_c^{-1}) = F_2(0.4, 0.3, 1) = (0.6, 1, 0.5) = (e_Y)_{f(c)} = (e_Y)_y.$$

(2) We define $h: X \to Y$ with h(a) = x, h(b) = h(c) = z. Then f is an antitone map. It satisfies Theorem 2.1(8). For examples,

$$K_2((e_X^{-1})_a^*) = K_2(0, 0.7, 0.5) = (0, 0.2, 0.4) = (e_Y)_{h(a)}^*,$$

$$K_2((e_X^{-1})_b^*) = K_2(0.3, 0, 0.5) = (0.3, 0.4, 0) = (e_Y)_{h(b)}^*,$$

$$K_2((e_X^{-1})_c^*) = K_2(0.6, 0.4, 0) = (0.3, 0.4, 0) = (e_Y)_{h(c)}^*.$$

(3) We define f and g as f(a) = x, f(b) = y, f(c) = z and g(x) = c, g(y) = a, f(z) = b. Then $e_Y^0(x, f(a)) = e_X(a, g(x))$ for all $a \in X, x \in Y$. By Theorem 2.1, (e_X, f, g, e_Y^0) is a Galois connection, $(e_{L^X}, F_1, G_1, e_{L^Y})$ is a Galois connection with antitone maps f and g, $(e_{L^X}, K_1, H_1, e_{L^Y})$ is a dual residuated connection with antitone maps f and g, $(e_{L^X}, M_1, L_1, e_{L^Y})$ is a dual Galois connection with antitone maps f and g and $(e_{L^X}, I_1, J_1, e_{L^Y})$

is a residuated connection with antitone maps f and g. It satisfies Theorem 2.1(8) and (10). For examples,

$$F_1((e_X)_a^{-1})(z) = F_1(1, 0.3, 0.5)(z) = 0.7 = e_Y^0(z, x)$$

$$F_2((e_X)_b^{-1}) = F_2(0.7, 1, 0.5) = (0.7, 0.6, 1) = (e_Y)_{f(b)}$$

$$F_2((e_X)_c^{-1}) = F_2(0.4, 0.3, 1) = (0.7, 0.6, 1) = (e_Y)_{f(c)}$$

Example 2.3.Let $X = \{a, b, c\}$ be a set and $f : X \to X$ a function as f(a) = b, f(b) = a, f(c) = c. Define a binary operation \odot (called Lukasiewicz conjection) on L = [0, 1] as Example 2.2.

(1) Let $(X = \{a, b, c\}, e_1 = (e_X(a, b)))$ be a fuzzy poset as follows:

$$e_1 = \left(\begin{array}{rrrr} 1.0 & 0.6 & 0.5 \\ 0.6 & 1.0 & 0.5 \\ 0.7 & 0.7 & 1.0 \end{array}\right)$$

Since $e_1(f(x), y) = e_1(x, f(y))$, then (e_1, f, f, e_1) are both residuated and dual residuated connections. It satisfies Theorem 2.1 (4) and (6). Since f is an isotone map, it satisfies Theorem 2.1 (7) and (9). For examples,

$$e_{1}(f(a), c) = 0.5 = F_{2}((e_{1})_{a}^{-1})(c) = (1 \to 0.5) \land (0.6 \to 0.5) \land (0.7 \to 1)$$

$$= e_{L^{X}}((e_{1})_{c}, F_{2}((e_{1})_{a}^{-1})) = (0.7 \to 0.6) \land (0.7 \to 1) \land (1 \to 0.5)$$

$$= e_{L^{X}}((e_{1})_{a}^{-1}, G_{1}((e_{1})_{c})) = (1 \to 0.5) \land (0.6 \to 0.5) \land (0.7 \to 0.8)$$

$$= G_{1}((e_{1})_{c})(a) = (0.7 \to 0.6) \land (0.7 \to 1) \land (1 \to 0.5)$$

$$= e_{1}(a, f(c)) = (e_{1})_{f(c)}^{-1}(a).$$

$$\begin{aligned} e_1^*(f(c), a) &= 0.3 = K_2((e_1)_c^*)(a) = (0.6 \to 0.3) \land (1 \to 0.3) \land (0.7 \to 0) \\ &= e_{L^Y}((e_1)_a^{-1}, K_2((e_1)_c^*) = (1 \to 0.3) \land (0.6 \to 0.3) \land (0.7 \to 0) \\ &= e_{L^X}(H_1((e_1)_a^{-1}), (e_1)_c^*) = (0.6 \to 0.3) \land (1 \to 0.3) \land (0.7 \to 0) \\ &= H_1((e_1)_a^{-1})^*(c) = e_1^*(c, f(a)). \end{aligned}$$

(2) Let $(X = \{a, b, c\}, e_2 = (e_2(a, b)))$ be a fuzzy poset as follows:

$$e_2 = \left(\begin{array}{rrrr} 1.0 & 0.6 & 0.5 \\ 0.6 & 1.0 & 0.7 \\ 0.7 & 0.5 & 1.0 \end{array}\right)$$

Since $e_1(y, f(x)) = e_1(x, f(y))$, then (e_1, f, f, e_1) are both both Galois and dual Galois connections. It satisfies Theorem 2.1 (3) and (5). Since f is an antitone map, it satisfies Theorem 2.1 (8) and (10). For examples,

$$e_{2}(b, f(c)) = 0.7 = F_{1}((e_{2})_{c}^{-1})(b) = (0.5 \to 1) \land (0.7 \to 0.6) \land (1 \to 0.7)$$

$$= e_{L^{Y}}((e_{Y})_{y}^{-1}, F_{1}((e_{X})_{x}^{-1})) = (0.6 \to 0.5) \land (1 \to 0.7) \land (0.5 \to 1)$$

$$= e_{L^{X}}((e_{X})_{x}^{-1}, G_{1}((e_{Y})_{y}^{-1})) = (0.5 \to 1) \land (0.7 \to 0.6) \land (1 \to 0.7)$$

$$= G_{1}((e_{2})_{b}^{-1})(c) = e_{2}(c, f(b)).$$

$$e_{2}^{*}(a, f(a)) = 0.4 = H_{1}((e_{2})_{a}^{*}(a) = \left((0.6 \odot 1) \lor (1 \odot 0.6) \lor (0.5 \odot 0.5)\right)^{*}$$

= $e_{L^{X}}(H_{1}((e_{2})_{a}, (e_{2})_{a}^{*}) = (0.6 \to 0) \land (1 \to 0.4) \land (0.5 \to 0.5)$
= $e_{L^{Y}}((e_{2})_{2}, K_{1}((e_{2})_{a}^{*})) = (1 \to 0.4) \land (0.6 \to 0) \land (0.5 \to 0.5)$
= $K_{1}((e_{2})_{a}^{*})(a) = e_{2}(a, f(a)).$

References

- [1] R. Bělohlávek, Fuzzy Galois connections, Math. Log. Quart., 45 (1999), 497-504.
- [2] R. Bělohlávek, Concept lattices and order in fuzzy logic, Ann. Pure Appl. Logic, 128(2004), 277-298.
- [3] R. Bělohlávek, Lattices of fixed points of Galois connections, Math. Logic Quart., 47 (2001), 111-116.
- [4] J.G. Garcia, I.M. Perez, M.A. Vicente, D. Zhang, Fuzzy Galois connections categorically, Math. Log. Quart., 56(2) (2010), 131-147.
- [5] G. Georgescu, A. Popescue, Non-commutative Galois connections, Soft Computing, 7 (2003), 458-467.
- [6] G. Georgescu, A. Popescue, Non-dual fuzzy connections, Arch. Math. Log. 43(2004), 1009-1039.
- [7] P. Hájek, Metamathematices of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht (1998).
- [8] H. Lai, D. Zhang, Complete and directed complete Ω-categories, Theoretical Computer Science, 388(2007), 1-25.
- H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, Int. J. Approx. Reasoning, 50(2009), 695-707.
- [10] W. Yao, L.X. Lu, Fuzzy Galois connections on fuzzy posets, Math. Log. Quart., 55(1)(2009), 105-112.