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Abstract.We study the maximum temperature rise induced by a rotating or dithering Gaussian laser

beam on a two-layer body. First, we derive semi-analytical solutions by solving the transient three-

dimensional heat equation in a semi-infinite domain with insulating surface. Second, we provide numerical

solutions for a two-layer structure in a finite domain. Our results show that the maximum temperature

rise can be reduced significantly either by applying a thin layer of coating on the protected object or by

moving the beam or equivalently the object.
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1. Introduction

Laser-induced heating plays an important role in materials processing [11]. The theoret-

ical modeling of temperature profiles induced by laser radiation in solids has been exten-

sively studied. For example, in [7] Lax modeled the spatial distribution of the temperature

rise induced by a stationary Gaussian laser beam in a solid sample using a one-dimensional
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integral based on thermal conduction in the material. Since the closed-form solution in [7]

is a steady state solution to the heat equation, it is limited to stationary or slow moving

beams. Later Lax extended his analysis in [7] to allow temperature-dependent thermal

conductivity [8]. Further theoretical and numerical developments include time-dependent

solution for a scanning Gaussian beam [6], laser-melted front [3], continuous wave (cw)

laser annealing of heterogeneous multilayer structures [5], temperature profiles induced

by a moving cw elliptical laser beam with the inclusion of the temperature-dependent

surface reflectivity and thermal diffusivity [9], a general analytic solution for the temper-

ature rise produced by scanning Gaussian laser beams [12], the Green’s function solution

to the heat equation for a two-layer structure with scanning circular energy beams [4],

the transient three-dimensional analytical solution of the temperature distribution in a

finite solid when heated by a moving heat source [1], and the laser forming of plates using

rotating or dithering Gaussian beams [13].

However, the main purpose of this paper is to find ways to reduce the maximum tem-

perature rise induced by a laser beam, which is relevant to military applications. In [15]

we have derived the analytical solution for the temperature rise induced by a rotating or

dithering laser beam in a semi-infinite domain by solving a transient three-dimensional

non-homogeneous heat equation. In [14] we have carried out numerical simulations to

obtain the temperature rise induced by a rotating or dithering laser beam on a finite

body. These studies have shown that the maximum temperature rise can be reduced by

increasing the frequency of the rotating or dithering beam. In this paper we would like

to extend our previous studies to a two-layer structure. In particular, we would like to

investigate the effect of a thin layer of coating on the temperature rise induced by a laser

beam.

We organize our presentation as follows. In Section 2 we derive semi-analytical solutions

of the transient temperature distributions induced by a rotating or dithering laser beam

in a semi-infinite domain. We present our numerical results for a finite domain in Section

3. Our main results are summarized in Section 4.

2. Semi-analytical solution in a semi-infinite domain
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Consider a laser beam along the z direction, hitting a solid surface in the x-y plane and

rotating in the x-y plane. The solid has a two-layer structure which consists of a film of

thickness a in the z-direction (region 1) and a substrate of infinite thickness (region 2).

The material of the solid is assumed to be isotropic and the solid is infinite in the x and y

directions. Figure 1 depicts the geometries of the problem to be solved and the coordinate

system that we have chosen. A semi-infinite geometry is a reasonably good approximation

if the laser beam is small compared to the object. Heat loss from the target surface is

assumed to be negligible compared to conduction into the solid.

Figure 1. A schematic diagram shows a rotating laser beam on a two-layer object.

In general, the heat equation for an isotropic medium with a temperature-dependent

thermal conductivity K can be written as

(1)
∂T

∂t
− 1

ρC
∇ · (K(T )∇T ) =

Q(x, y, z, t)

ρC
,
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where T (x, y, z, t) is the solid’s temperature rise above ambient (i.e. the difference between

the solid temperature and the ambient temperature) and it is a function of space (x, y, z)

and time t, ∇ is the gradient operator, ρ is the density, C is the heat capacity, K is the

thermal conductivity, and Q(x, y, z, t) is the incident heat source term. The temperature-

dependent thermal conductivityK(T ) can be removed from the heat equation by applying

a Kirchhoff transformation.

The Kirchhoff transformation introduces a linearized temperature rise θ defined as

(2) θ(T ) = θ(T0) +

∫ T

T0

K(T
′
)

K(T0)
dT

′
, or

dθ

dT
=

K(T )

K(T0)
,

where θ(T0) and K(T0) are constants. Note that when the thermal conductivity is con-

stant, then (2) implies that θ(T ) = T if we choose θ(T0) = T0. Applying the chain rule,

we have

(3)
∂θ

∂t
=

dθ

dT

∂T

∂t
=

K(T )

K(T0)

∂T

∂t
, or

∂T

∂t
=

K(T0)

K(T )

∂θ

∂t
,

and

(4) ∇θ =
dθ

dT
∇T =

K(T )

K(T0)
∇T, or ∇T =

K(T0)

K(T )
∇θ.

Substituting the expressions (3) and (4) into the heat equation (1), we can express the

heat equation (1) in terms of the linearized temperature rise θ as

(5)
∂θ

∂t
−D∆θ =

Q(x, y, z, t)D

K(T0)
,

where D = K(θ)/ρC(θ) is the thermal diffusivity of the material, and ∆ is the Laplacian

operator. Under the assumption of constant thermal diffusivity, equation (5) becomes a

partial differential equation with constant coefficients.

For the two-layer structure depicted in Figure 1, the laser beam hits the surface z = 0.

The linear heat equation for region 1 is

(6)
∂θ1
∂t

−D1∆θ1 =
Q(x, y, z, t)D1

K1(T0)
,

and the linear heat equation for region 2 is

(7)
∂θ2
∂t

−D2∆θ2 =
Q(x, y, z, t)D2

K2(T0)
,
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where D1, D2 are the thermal diffusivities of the materials in region 1 and region 2,

respectively. Initially the temperature rise is assumed to be zero. The boundary conditions

for θ1 and θ2 are

∂θ1
∂z

= 0 at z = 0;(8)

K1(T )
∂θ1
∂z

= K2(T )
∂θ2
∂z

at z = a;(9)

θ1 = θ2 at z = a;(10)

θ2 = 0 at infinity.(11)

The first boundary condition (8) imposes the insulating boundary condition at the air/material

interface which assumes that no energy escapes into the air at the air/material interface.

This is a reasonable approximation for most materials under consideration, since heat flow

by conduction through the substrate far exceeds the loss by radiation or convection at the

air/material interface. The second boundary condition (9) requires energy conservation

for heat flow across the interface between regions 1 and 2. Here we have assumed that

K1(T )/K2(T ) ≡ α is a constant independent of temperature. This approximation can be

met by many material combinations (e.g. silicon on sapphire). The third boundary con-

dition (10) corresponds to temperature continuity at the interface between two regions,

and the last boundary condition (11) implies that the temperature rise becomes zero at

infinity, or equivalently, the temperature of the solid approaches the ambient temperature

at infinity.

The energy absorbed in the top surface of region 1 (z = 0) is

(12) Q(x, y, z, t) =
3Q0

πr20
exp

−(x− a1 cos
2πt

s∗
)2 + (y + b1 sin

2πt

s∗
)2

r20/3

 δ(z),

in the case of a rotating laser beam. Here Q0 is the power absorbed and it is the product

of the absorptivity and the laser power [13], r0 is the characteristic beam radius typically

defined as the radius at which the intensity of the laser beam drops to 5% of the maximum

intensity, s∗ is the rotating period. The Dirac delta function in z expresses the assumption

that all the energy is absorbed at the surface. (12) describes a clockwise rotating beam
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in the x-y plane. If a1 = b1, then a1 denotes the beam radius of the rotation along the

z-axis. When a1 = 0, (12) depicts the case of a dithering laser beam.

The general solution of (6) and (7) can be obtained by a Green’s function method [2, 4].

Denote the Green’s functions for regions 1 and 2 as G1 and G2, respectively. Then the

Green’s functions G1 and G2 satisfy

(13)
∂G1

∂t
−D1∆G1 = −δ(r⃗ − r⃗′)δ(t− t

′
),

and

(14)
∂G2

∂t
−D2∆G2 = 0,

where |r⃗ − r⃗′| = (x− x
′
)2 + (y − y

′
)2 + (z − z

′
)2. The initial conditions are

(15) G1 = 0 at t = t
′
for r⃗ ̸= r⃗′ ; G2 = 0 at t = t

′
,

whereas the boundary conditions for G1 and G2 are the same as (8)-(9) with θ1 replaced

by G1 and θ2 replaced by G2.

Following the work of [2, 4], one can express the Laplace transformed Green’s functions

as

(16)

Ḡ1 =
1

2πD1

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξJ0(ξR)

η1
dξ

Ḡ2 =
1

2πD1

∫ ∞

0

[
exp(−η2z) +

(αη1 − η2) exp(−η2z) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp[a(η2 − η1)]

ξJ0(ξR)

η1
dξ

where Ḡ1 and Ḡ2 are the Laplace transforms of G1 and G2, respectively:

(17) Ḡi ≡
∫ ∞

0

exp[−p(t− t′)]Gid(t− t′), i = 1, 2,

and J0 is the Bessel function of tbe first kind or order zero,

(18)

ηi =
√
ξ2 + p

Di
, i = 1, 2,

R =
√
(x− x′)2 + (y − y′)2,

α = K1(T )/K2(T ) = constant.
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In the appendix we verify that the expressions of Ḡ1 and Ḡ2 in (16) are correct.

With the help of the three-dimensional Green’s function, the solution of the inhomoge-

neous heat equations (6) and (7) for a semi-infinite medium can be expressed as

(19)

θ1(x, y, z, t) =
3Q0

2π2r20D1K1(T0)

∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ δ+i∞

δ−i∞

exp[p(t− t
′
)]

2πi

×
[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξJ0(ξ

√
(x− x′)2 + (y − y′)2)

η1

× exp

−(x
′ − a1 cos

2πt
′

s∗
)2 + (y

′
+ b1 sin

2πt
′

s∗
)2

r20/3

 dp dξ dy
′
dx

′
dt

′

for region 1 and

(20)

θ2(x, y, z, t) =
3Q0

2π2r20D1K2(T0)

∫ t

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ δ+i∞

δ−i∞

exp[p(t− t
′
)]

2πi

×
[
exp(−η2z) +

(αη1 − η2) exp(−η2z) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
exp[a(η2 − η1)]

ξJ0(ξ
√

(x− x′)2 + (y − y′)2)

η1

× exp

−(x
′ − a1 cos

2πt
′

s∗
)2 + (y

′
+ b1 sin

2πt
′

s∗
)2

r20/3

 dp dξ dy
′
dx

′
dt

′

for region 2.

The formulas in both (19) and (20) involve quintuple integrals. In order to reduce

them to expressions with double integrals, we apply the same procedure as in [4]. First,

we consider the integral over x
′
and y

′
in (19) which is denoted as I1:

(21)

I1 =

∫ ∞

−∞

∫ ∞

−∞
J0

(
ξ
√

(x− x′)2 + (y − y′)2
)

× exp

−(x
′ − a1 cos

2πt
′

s∗
)2 + (y

′
+ b1 sin

2πt
′

s∗
)2

r20/3

dy′
dx

′
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Introducing the new independent variables X = x−x
′
and Y = y−y

′
into (21), we obtain

(22)

I1 =

∫ ∞

−∞

∫ ∞

−∞
J0

(
ξ
√
X2 + Y 2

)

× exp

−(X − x+ a1 cos
2πt

′

s∗
)2 + (Y − y − b1 sin

2πt
′

s∗
)2

r20/3

dY dX

=

∫ ∞

−∞

∫ ∞

−∞
J0

(
ξ
√
X2 + Y 2

)
exp

[
−||R⃗ab − L⃗||2

r20/3

]
dY dX.

Here R⃗ab = (x − a1 cos
2πt

′

s∗
)⃗i + (y + b1 sin

2πt
′

s∗
)⃗j and L⃗ = Xi⃗ + Y j⃗. It is convenient to

write (22) in polar coordinates:

(23)

I1 =

∫ ∞

0

∫ 2π

0

J0(ξL) exp

[
−R2

ab + L2 − 2RabL cosϕ

r20/3

]
Ldϕ dL

= 2π

∫ ∞

0

J0(ξL)I0(
2RabL

r20/3
) exp

[
−R2

ab + L2

r20/3

]
L dL,

where R2
ab = (x− a1 cos

2πt
′

s∗
)2 + (y + b1 sin

2πt
′

s∗
)2, L2 = X2 + Y 2 and I0 is the modified

Bessel function of the first kind defined by I0(z) =
1
π

∫ π

0
exp[z cos θ]dθ.

In order to reduce (23) further, we employ an identity from [10] (Page 963, Eq. (8.5.10)

and Eq. (a)):

(24)
1

2p2
exp

[
−x2 + x2

0

4p2

]
I0(

xx0

2p2
) =

∫ ∞

0

J0(kx) exp[−p2k2]J0(kx0)kdk.

Introducing x = L, x0 = Rab and p2 = r20/12 into (24), we obtain

(25) exp

[
−L2 +R2

ab

r20/3

]
I0(

2RabL

r20/3
) =

r20
6

∫ ∞

0

J0(kL) exp[−r20k
2/12]J0(kRab)kdk.

Inserting (25) back in (23) ,we find

(26) I1 =
πr20
3

∫ ∞

0

∫ ∞

0

J0(ξL)J0(kL)J0(kRab)k exp

[
−k2r20

12

]
L dL dk.

Substituting the orthogonality property of Bessel functions (also called the closure equa-

tion)

(27)

∫ ∞

0

LJ0(kL)J0(ξL)dL =
1√
kξ

δ(k − ξ) =
1

k
δ(k − ξ),
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in (26) yields

(28) I1 =
πr20
3

∫ ∞

0

δ(k − ξ)J0(kRab) exp

[
−k2r20

12

]
dk =

πr20
3

J0(ξRab) exp

[
−ξ2r20

12

]
.

We may now return to (19). The linear heat rise in region 1 can be written as

(29)

θ1(x, y, z, t) =
Q0

4π2iD1K1(T0)

∫ t

−∞

∫ ∞

0

∫ δ+i∞

δ−i∞
exp[p(t− t

′
)]

×
[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
×ξ J0(ξRab)

η1
exp

[
−ξ2r20

12

]
dp dξ dt

′

In [4] a scanning laser beam was used and the steady state solution was studied. With the

help of the residue theorem one was able to find the integral with respect to the variable

p and thereby reduce the triple integral to a double integral. Here a rotating or dithering

laser beam is considered and we are interested in time-dependent solution. As a result,

the techniques used in [4] cannot be extended here.

Now making a change of variables t̄ = t− t
′
, we can rewrite (29) as

(30)

θ1(x, y, z, t) =
Q0

4π2iD1K1(T0)

∫ ∞

0

∫ ∞

0

∫ δ+i∞

δ−i∞
exp[pt̄]

×
[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]

×ξ J0(ξR̄ab)

η1
exp

[
−ξ2r20

12

]
dp dξ dt̄

=
Q0

2πD1K1(T0)

∫ ∞

0

∫ ∞

0

ξ J0(ξR̄ab) exp

[
−ξ2r20

12

]
F1(t̄, ξ)dξ dt̄,

where R̄2
ab = (x−a1 cos

2π(t− t̄)

s∗
)2+(y+ b1 sin

2π(t− t̄)

s∗
)2, F1(t̄, ξ) is the inverse Laplace

transform of a complicated function given explicitly by

(31) F1(t̄, ξ) =
1

2πi

∫ δ+i∞

δ−i∞
exp[pt̄]

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
1

η1
dp,

and recall that ηi =
√

ξ2 + p/Di, i = 1, 2.

In a similar fashion, the temperature for region 2 can be expressed in the form

(32) θ2(x, y, z, t) =
Q0

2πD1K2(T0)

∫ ∞

0

∫ ∞

0

ξ J0(ξR̄ab) exp

[
−ξ2r20

12

]
F2(t̄, ξ)dξ dt̄,
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where F2(t̄, ξ) is the inverse Laplace transform

(33)

F2(t̄, ξ) =
1

2πi

∫ δ+i∞

δ−i∞
exp[pt̄]

[
exp(−η2z) +

(αη1 − η2) exp(−η2z) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
×exp[a(η2 − η1)]

η1
dp.

The analytical solutions above involve the inverse Laplace transform and multiple integrals

and thus it is numerically difficult to obtain meaningful solutions. As a future work we

will try to simplify the expressions. In the next section we will solve the heat equations

directly in a finite domain.

3. Numerical solutions in a finite domain

In this section we use the commerical software COMSOL to solve the heat equations

directly for a two-layer structure in a finite domain. In the simulations below we model a

two-layer structure where the substrate is made of aluminum and the thin coating layer

is made of copper.

Figure 2 depicts the model geometry for a two-layer structure. It consists of a substrate

made of one material and a thin layer of coating of different material. Ideally the coating

materials should have larger thermal conductivity than the substrate materials. We as-

sume that there is no energy escaping into the ambient at the air/structure interface so

the boundaries are treated as insulating boundaries. For most situations this is a reason-

able assumption since heat loss by radiation or convection at the interface is often much

smaller than heat flow by conduction through the material. Furthermore, the structure is

assumed to have the same temperature as the ambient initially so the initial temperature

rise is set to zero.

For all the computations presented in this paper, we choose aluminum as the substrate

material and copper as the coating material. Their thermal properties are listed in Table

1. For laser beams described in (12) we choose Q0 = 1.0 × 105W/m2, r0/
√
6 = 0.02m,

s∗ = 1s, a1 = 0.25m, b1 = 0m (for a dithering laser beam), b1 = 0.25m (for a rotating laser
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Figure 2. A plot of a two-dimensional two-layer structure.

beam). The two-layer structure is a three-dimensional box with dimension 1m×1m×1m

and the center of the laser beam hits the center of the top surface.

Table 1: Thermal properties of copper and aluminum

Property Name Copper Aluminum

specific heat (J/(kg ·K)) 385 900

thermal conductivity (W/(m ·K)) 400 160

thermal diffusivity (m2/s) 1.1942× 10−4 6.5844× 10−5

melting point (K) 1356 933

density (kg/m3) 8700 2700

In Figure 3(a) we plot the temperature rise in an aluminum box induced by a Gaussian

beam at time = 1s whereas Figure 3(b) shows the temperature rise on a horizontal slice

of Figure 3(a) through z = 0.99m. The maximum temperature (1609K) is reached at the

top surface where the beam hits the box. The maximum temperature rise drops to 937K

at the horizontal slice 0.01m below the top surface. Figure 3(c) shows the temperature
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rise in an aluminum box coated with 0.1% thin copper layer on the top surface. The

maximum temperature rise falls to 1352K, which is about 16% reduction from the case

without coating. Figure 3(d) depictes the corresponding temperature rise at the horizontal

slice 0.01m below the top surface. Now the maximum temperature is reduced to 797K.

(a) (b)

(c) (d)

Figure 3. (a) Temperature rise of an aluminum box induced by a Gaussian

beam with no coating; (b) a horizontal slice of part (a) through z = 0.99;

(c) Temperature rise of an aluminum box with 0.1% copper skin on the top

surface; (d) a horizontal slice of part (c) through z = 0.99
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Figure 4(a) shows further the dependence of the maximum temperature rise of the two-

layer box on the thickness of the coating layer. As expected, the maximum temperature

rise decreases when the thickness of the coating layer increases. Figure 4(b) predicts

the asymptotic behavior of the maximum temperature rise (in K) as a function of the

thickness of the coating layer (in mm) using the least squares fitting:

(34) Tmax =
−3290.32

a2
+

3459.76

a
+ 252.79.

0 2 4 6 8 10

500

1000

1500

thickness of coating layer (mm)

T
max

 (K)

2 3 4 5 6 7 8 9 10
500

800

1100

thickness of coating layer (mm)

T
max

 (K)

least square fitting

(a) (b)

Figure 4. (a)The maximum temperature rise of the two-layer aluminum

box induced by a Gaussian beam as a function of the thickness of the copper

coating layer. The computed data are represented by the red diamonds

whereas the solid curve is obtained by a cubic spline interpolation. (b)The

asymptoic behavior of the maximum temperature temperature rise (Tmax)

as a function of the thickness of the coating layer (a). The solid curve

corresponds to the least squares fitting function Tmax = −3290.32
a2

+ 3459.76
a

+

252.79.

Next we let the laser beam dither or rotate and study the effect on the maximum

temperature rise. We first apply a dithering Gaussian beam on the top surface of the

aluminum box without coating and the temperature rise is depicted in Figure 5(a). Then
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we apply the same dithering Gaussian beam on the top surface of the aluminum box

coated with 0.1% thin copper layer on the top surface. The corresponding temperature

rise is shown in Figure 5(b). Due to the effect of the dithering beam the maximum

temperature rise falls to 329K and it is further reduced to 268K if a thin layer (0.1%)

of coating is applied. For the model case considered here, moving beam is more efficient

than coating in reducing maximum temperature rise.

(a) (b)

Figure 5. (a)The maximum temperature rise of an aluminum box induced

by a dithering Gaussian beam. (b)The maximum temperature rise due to

a dithering Gaussian beam on an aluminum box coated with 0.1% copper

layer.

Figure 6 is similar to Figure 5, but for a rotating Gaussian beam. The maximum

temperature rise induced by a rotating beam is smaller than the one induced by a dithering

beam.

The dependence of the maximum temperature rise on the thickness of the coating

layer induced by a dithering or rotating laser beam is demonstrated in Figure 7(a) and

(b) respectively together with least squares fitting curves. Figure 7(a) shows that for a

dithering beam the maximum temperature rise depends on the thickness of the coating
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(a) (b)

Figure 6. (a)The maximum temperature rise of an aluminum box induced

by a rotating Gaussian beam. (b)The maximum temperature rise due to a

rotating Gaussian beam on an aluminum box coated with 0.1% copper layer.

layer as a function

(35) Tmax =
−15.5595

a2
+

72.7360

a
+ 210.9354,

whereas for a rotating beam the dependence is different:

(36) Tmax =
−5.9499

a2
+

28.0879

a
+ 64.0152,

as shown in Figure 7(b).

Finally, for comparison purpose, we summarize the results of Figures 3, 5 and 6 in

Table 2 which shows quantitatively how the maximum temperature rise can be reduced

for various cases. From Table 2, we summarize our observations: (1) rotating an object

reduces the maximum temperature rise more than dithering the object; (2) moving an

object is more efficient than coating in reducing maximum temperature rise. Finally, it

is obvious from Table 2 that the most effective way to reduce the maximum temperature

rise is to combine coating with a rotating Gaussian beam. From a practical defense point

of view, this implies that in order to reduce the maximum temperature rise in an object
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Figure 7. The maximum temperature rise of the two-layer aluminum box

as a function of the thickness of the copper coating layer. The computed

data are represented by symbols whereas the solid curves are obtained by

the least squares approach. (a) The beam is a dithering Gaussian beam and

the fitting function is Tmax = −15.5595
a2

+ 72.7360
a

+ 210.9354. (b) The beam is

a rotating Gaussian beam and the fitting function is Tmax = −5.9499
a2

+ 28.0879
a

+

64.0152.

hit by a laser beam, one possible way to protect the object is to apply a thin layer of

coating materials on the object and also rotate the object.

Table 2: Summary of maximum temperature rise in various cases

Gaussian beam Dithering Gaussian beam Rotating Gaussian beam

T
no coating
max 1609 329 109

(K) (reference temperature) (79.55% reduction) (93.23% reduction)

T
0.1% coating
max 1352 268 86

(K) (15.97% reduction) (83.34% reduction) (94.66% reduction)
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4. Conclusions

In this paper we have derived the temperature rise induced by a rotating or dithering

Gaussian laser beam for a semi-infinite two-layer structure. Numerical solutions for a

finite two-layer structure are provided using COMSOL. It is found that the maximum

temperature rise can be reduced significantly by applying a thin layer of coating or by

moving the beam (or object).
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Appendix. Verification of the Green Functions

In this appendix we verify that the Lapace tranformed Green functions in (16) are

correct. For simplicity we consider only the case r⃗′ = 0⃗ (otherwise one can make a shift

to obtain this case).

First, we check the expression of Ḡ1. Taking the Laplace transform of (13) and using

the initial condition (15), we have an equation for Ḡ1:

(37) pḠ1 −D1∆Ḡ1 = δ(r⃗ − r⃗′).

Using the cylindrical coordiates, we can express (37) explicitly as

(38) pḠ1 −D1

(
∂2Ḡ1

∂R2
+

1

R

∂Ḡ1

∂R
+

∂2Ḡ1

∂z2

)
= δ(r⃗).

We consider the case where r⃗ ̸= 0⃗. For Ḡ1 given in (16), it is straightforward to obtain

that

(39)
∂Ḡ1

∂R
=

1

2πD1

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξ

η1

∂J0(ξR)

∂R
dξ

∂2Ḡ1

∂R2
=

1

2πD1

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξ

η1

∂2J0(ξR)

∂R2
dξ

∂2Ḡ1

∂z2
=

1

2πD1

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
η21

ξ

η1
J0(ξR)dξ

=
1

2πD1

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξ2

ξ

η1
J0(ξR)dξ +

p

D1

Ḡ1
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Thus, we have

(40)

pḠ1 −D1

(
∂2Ḡ1

∂R2
+

1

R

∂Ḡ1

∂R
+

∂2Ḡ1

∂z2

)
= − 1

2π

∫ ∞

0

[
exp(−η1z) +

(αη1 − η2) exp(−η1a) cosh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξ

η1

×
[
∂2J0(ξR)

∂R2
+

1

R

∂J0(ξR)

∂R
+ ξ2J0(ξR)

]
dξ

Introducing a new variable s = ξR, we get

(41)

J0(ξR) ≡ J0(s),

dJ0
ds

=
∂J0
∂R

∂R

∂s
=

1

ξ

∂J0
∂R

,

d2J0
ds2

=
1

ξ2
∂2J0
∂R2

.

It follows immediately that

(42)
∂2J0(ξR)

∂R2
+

1

R

∂J0(ξR)

∂R
+ ξ2J0(ξR) =

1

R2

[
s2J

′′

0 (s) + sJ
′

0(s) + s2J0(s)
]
= 0

where in the last step we have used the fact that J0 is the Bessel equation of order zero.

Substituing (42) in Eq. (40), we obtain, finally,

(43) pḠ1 −D1∆Ḡ1 = 0 for r⃗ ̸= 0⃗.

In a similar way one can confirm that Ḡ2 satisfies

(44) pḠ2 −D2∆Ḡ2 = 0.

Finally, we check the boundary conditions.

(45)
∂Ḡ1

∂z
=

1

2πD1

∫ ∞

0

[
− exp(−η1z) +

(αη1 − η2) exp(−η1a) sinh(η1z)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξJ0(ξR)dξ

This gives

(46)
∂Ḡ1

∂z
|z=0 = − 1

2πD1

∫ ∞

0

ξJ0(ξR)dξ = − 1

2πD1R2

∫ ∞

0

sJ0(s)ds,

where we have made a change of variables s = ξR. Since J0(s) satisfies Bessel’s equation

of order zero, we have

(47) s2J
′′

0 (s) + sJ
′

0 + s2J0(s) = 0,
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or,

(48) sJ0(s) = −[sJ
′′

0 (s) + J
′

0(s)] = − d

ds
[sJ

′

0(s)].

Applying this result to
∂Ḡ1

∂z
|z=0 from Eq. (46), we find that

(49)
∂Ḡ1

∂z
|z=0 = 0,

provided that sJ
′
0(s) → 0 as s → ∞.

Note that from (16), we obtain

(50)

Ḡ1|z=a =
1

2πD1

∫ ∞

0

[
exp(−η1a) +

(αη1 − η2) exp(−η1a) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξJ0(ξR)

η1
dξ,

Ḡ2|z=a =
1

2πD1

∫ ∞

0

[
exp(−η2a) +

(αη1 − η2) exp(−η2a) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp[a(η2 − η1)]

ξJ0(ξR)

η1
dξ

=
1

2πD1

∫ ∞

0

[
exp(−η1a) +

(αη1 − η2) exp(−η1a) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
ξJ0(ξR)

η1
dξ.

Consequently, Ḡ1|z=a = Ḡ2|z=a.

Now we take the partial derivative of Ḡ2 with respect to z, thereby obtaining

(51)

∂Ḡ2

∂z
|z=a =

1

2πD1

∫ ∞

0

[
−η2 exp(−η2a) +

(αη1 − η2)(−η2) exp(−η2a) cosh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp[a(η2 − η1)]

ξJ0(ξR)

η1
dξ

=
1

2πD1

∫ ∞

0

[
−η2 +

(αη1 − η2)[−η2 cosh(η1a)− αη1 sinh(η1a) + αη1 sinh(η1a)]

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp(−aη1)

ξJ0(ξR)

η1
dξ

=
1

2πD1

∫ ∞

0

[
−η2 − (αη1 − η2) +

(αη1 − η2)αη1 sinh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp(−aη1)

ξJ0(ξR)

η1
dξ

=
α

2πD1

∫ ∞

0

[
−1 +

(αη1 − η2) sinh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
× exp(−aη1)ξJ0(ξR)dξ
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On the other hand, from (45) we obtain

(52)
∂Ḡ1

∂z
|z=a =

1

2πD1

∫ ∞

0

[
−1 +

(αη1 − η2) sinh(η1a)

αη1 sinh(η1a) + η2 cosh(η1a)

]
exp(−η1a)ξJ0(ξR)dξ

It then follows immediately that

(53)
∂Ḡ2

∂z
|z=a = α

∂Ḡ1

∂z
|z=a.

or,

(54) K1(T )
∂Ḡ1

∂z
|z=a = K2(T )

∂Ḡ2

∂z
|z=a.

recalling that α = K1(T )/K2(T ). The boundary condition Ḡ2 → 0 at infinity (i.e.

z → ∞) is obvious.


