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Abstract. In this paper, we prove the generalized Hyers-Ulam-Rassias stability of the quartic functional

equation
fRx+y)+ f2x—y)=4f(x+y) +4f(x —y) +24f(z) - 6f(y)
by using the direct method and the fixed point method in 2-Banach spaces.
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1. Introduction and preliminaries

In 1940, S. M. Ulam [19] asked the first question on the stability problem for mappings.
In 1941, D. H. Hyers [12] solved the problem of Ulam. This result was generalized by
Aoki [4] for additive mappings and by Th. M. Rassias [18] for linear mappings by con-
sidering an unbounded Cauchy difference. The paper of Th. M. Rassias has provided
a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability

of functional equations. In 1994, a further generalization was obtained by P. Gavruta
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[11]. During the last two decades, a number of papers and research monographs have

been published on various generalizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings.

In the middle of 1960s, S. Gahler [9,10] introduced the concept of linear 2-normed spaces.

We recall some basic facts concerning 2-normed spaces and some preliminary results.

Definition 1.1. let X be a real linear space with dimX > 1 and ||, .|| : X x X — R be

a function satisfying the following properties:

1) ||z,y|| = 0 if and only if x and y are linearly dependent,
2) Nz yll = lly, .

3) [[Az, yll = [Alll, yll,

(1)
(2)
(3)
4) e,y + 2l < llz, yll + [l 2]

for all z,y,z € X and A € R. Then the function ||.,.|| is called a 2-norm on X and the
pair (X, ||.,.]|) is called a linear 2-normed space. Sometimes the condition (4) called the

triangle inequality.

Example 1.2. For x = (11, 23), y = (y1,42) € E = R?, the Euclidean 2-norm ||z, y||g is
defined by

HxayHE = |5513/2 - 962191\ .

Definition 1.3. A sequence {x}} in a 2-normed space X is called a convergent sequence

if there is an x € X such that
lim ||z — x,y|| =0,
k—o0
for ally € X. If {xx} converges to x, write x;, — x as k — oo and call x the limit of

{zx}. In this case, we also write limg_,o T = .

Definition 1.4. A sequence {zy} in a 2-normed space X is said to be a Cauchy sequence

with respect to the 2-norm if

lim |z — 21,y[| =0,
[e.e]

)
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for ally € X. If every Cauchy sequence in X converges to some v € X, then X is said
to be complete with respect to the 2-norm. Any complete 2-normed space is said to be a

2-Banach space.
Now, we state the following results as lemma (See [16] for the details).

Lemma 1.5. Let X be a 2-normed space. Then,

(W) M, 2l = My, 2lll < [l =y, 2| for all 2,y,z € X,
(2) if ||z, z|| = 0 for all z € X, then x =0,

(3) for a convergent sequence x,, in X,

lim ||z, z| = H lim z,,z

forall z € X.

In [16], Won-Gil Park has investigated approximate additive mappings, approximate
Jensen mappings and approximate quadratic mappings in 2-Banach spaces. In [3], A.
Alotaibi and S.A. Mohiuddine have investigated stability of the cubic functional equation
in random 2-normed spaces.

In [15], S.H. Lee, S.M. Im and 1.S. Hwang considered the following functional equation

(1) fQr+y)+ f2r —y) =4f(x+y) +4f(x —y) + 24f(x) — 6f(y)

and they established the general solution and the stability problem for the functional
equation (1) (see also [17]). It is easy to show that the function f(x) = z* satisfies the
functional equation (1), which is called a quartic functional equation and every solution
of the quartic functional equation is said to be a quartic mapping.

In this paper, we prove the Hyers-Ulam-Rassias stability of the quartic functional e-

quation (1) in 2-Banach spaces by using the direct method and fixed point method.
2. Stability of the functional equation (1): Direct method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quar-

tic functional equation (1) in 2-Banach spaces. Let X be a linear space and Y be a
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2-Banach space with dimY > 1. For convenience, we use the following abbreviation for a
given mapping f: X =Y

(2)  Df(zy):=fRe+y)+ f2r—y)—4f(x+y) —4f(x —y) — 24f () + 6f(y)

for all x,y € X.

Theorem 2.1. Let p: X x X — [0, +00) be a function such that

_ =1
(3) Bley) =) oe(2'n,2%) < oo
k=0

1
(4) lim —(2"z,2"y) =0

n—>o00 24n

for all z,y € X. Suppose that f : X — Y be a mapping with

(5) IDf(x,y), 2|l < w(z,y)

forall x,y € X and all z € Y. Then, there exists a unique quartic mapping @ : X — Y
such that

1
©) 1) - Qa). 2l < (w0
forallz e X and all z €Y.
Proof. Putting x =y =0 in (5), we obtain f(0) = 0. Putting y =0 in (5), we get

< igo(:zc 0)

@ |57 - fta).2] <

for allxz € X and all z € Y. If we replace x by 2"z in (7) and divide both sides of (7) by

24n we infer that

1 n+1 1 n n
|2 70) = 5p .| < et
forallz € X, all z € Y and integers n > 1. Hence, we have
e PRy — L pma) o < 30| ey - L peia)
24(n+1) L 924m T L 24 z+1) 94i x), =
I — 1
< — —p(2'

=m
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forallx € X, all z € Y and all non-negative integers m and n with n > m. Therefore,

we conclude from (3), (4) and (8) that the sequence {5 f(2"x)} is a Cauchy sequence in

Y forall z € X. Since Y is complete, the sequence { 1nf(2”m)} converges in Y for all

24

x € X. So, we can define the mapping () : X — Y by

(9) Qz) = lim 2% (2"2)

n—»ao0

for all x € X. That is

2% (2"x) — Q(x),z|| =0

lim '
n——oo

forallz € X and all z € Y. Letting m = 0 and passing the limit n — oo in (8), we get
the inequality (6). Now, we show that @ : X — Y is a quartic mapping. It follows from
(3), (5), (9) and Lemma 1.5 that

1 1
— 1 . n n < 1 o n n —
IDQ(w, )2l = lim_ oo D2, 2"), 2] < T (27, 27) = 0

for all x,y € X and all z € Y. By Lemma 1.6, we obtain that DQ(z,y) = 0 for all
r,y € X. So, the mapping QQ : X — Y s quartic. To prove the uniqueness of QQ, let
A: X — Y be another quartic mapping satisfying (6). Since the mapping A : X — Y
satisfies (1), then by letting y = 0 in (1) we get A(2x) = 21 f(x) for all x € X. Therefore,

we have
) 1 1 -
[Q(x) — A(x), 2] = lim —~||Q(2"x) — A(2"x),2]| < o5 lim $(2"z,0) =0
n—>o00 24n 32 n—ro0

for all x € X and all z € Y. By Lemma 1.6, ||Q(z) — A(z)|| = 0 for all z € X. So
Q = A. This proves the uniqueness of Q).

Corollary 2.2. Let (X,||.||x) be a normed space and (Y, |.,.||y) be a 2-Banach space.

Let € and p be nonnegative real numbers with p < 4 and let f : X — Y be a mapping

fulfilling

(10) 1Df(,y), zlly < e(ll=lx + [lyllx)
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forall z,y € X and all z € Y. Then there exists a unique quartic mapping () : X — Y
such that

€
(1) 17(@) ~ Q). 2lly <zl
forallxz € X and all z €Y.

Proof. In Theorem 2.1, let p(z,y) = € (||z|[% + |ly||%) for allz,y € X. Then (10) implies
that f(0) = 0. So we obtain (11) from (6).

Theorem 2.3. Let p: X x X — [0, +00) be a function such that

(12) 231 2,3Fy) < oo

k=0

1
(13) lim —p(3"z,3"y) =0

n—so00 34n

for all x,y € X. Suppose that f : X — Y be a mapping with

(14) I1Df(z,y), 2|l < w(z,y)

forallx,y € X and all z € Y. Then, there exists a unique quartic mapping Q@ : X — Y
such that

(15) 1f () = Q(x), 2|l < 811< o(z,x) +24(x,0))

forallz € X and all z €Y.

Proof. Putting x =y =0 in (14), we get f(0) = 0. Replacing y by x in (14), we get
(16) If(3x) —4f(2z) = 17f(z), 2[| < o(z, z)

forall x,y € X and all z € Y. Letting y = 0 in (14), we obtain

(17) 12f(22) = 32f(2), 2[| < ¢(x,0)

for all x,y € X and all z € Y. From (16) and (17), we get

(13) 5 32) = F@), 2l < g7 (ol ) + 2(2,0))
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forallz,y € X and all z € Y. We replace x by 3"z in (18) and divide both sides of (18)
by 3", we infer that

forall x € X, all z €Y and integers n > 1. Hence, we have

1

1
saern f

1

n+1 )

2/ (3"), 2

n

1 n+1 1 m 1 (i4+1) %
‘ 34(n+1)f(3( i )I) 34mf(3 ) < Z 34 z+1)f( = ) 34zf(3 )
=1 . . 1 <1
< - i i L . i
(19) P 341.90(3 x,3'z) + 812 3m (3'x,0)

forallx € X, all z € Y and all non-negative integers m and n with n > m. Therefore,
we conclude from (12), (13) and (19) that the sequence {1 f(3"x)} is a Cauchy sequence
'Y for all x € X. Since'Y is complete, there exists a mapping Q) : X — Y defined by

(20) Q(x) := lim —f(3” )

TL—)OO

for all x € X. Letting m = 0 and passing the limit n — oo in (19), we get the inequality
(15). The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let (X,||.||x) be a normed space and (Y,|.,.||y) be a 2-Banach space.

Let € and p be nonnegative real numbers with p < 4 and lat f : X — Y be a mapping

fulfilling
(21) IDf(z,9), zlly < e(llzllk + [lyl%)

forall z,y € X and all z € Y. Then there exists a unique quartic mapping () : X — Y
such that

(22) 1f(2) = Q(x), 2[ly <

sl

forallx € X and all z €Y.

Proof. In Theorem 2.3, let p(z,y) = € (||z||% + ||y||%) for allz,y € X. Then (21) implies
that f(0) = 0. So we obtain (22) from (15).
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Corollary 2.5. Let (X, ||.||x) be a normed space and (Y, ||.,.||y) be a 2-Banach space. Let

€,p and q be nonnegative real numbers with p+q < 4 and let f : X — Y be a mapping
fulfilling

(23) IDf(z,y), 2lly < e(llz]%-vll%)

forall z,y € X and all z € Y. Then there exists a unique quartic mapping () : X — Y
such that

(24) 1£(@) = Q). 2lly < =gy Iall5

forallz e X and all z €Y.

Proof. In Theorem 2.3, let p(z,y) = € (||z|[% + ||y||%) for allz,y € X. Then (23) implies
that f(0) = 0. So we obtain (24) from (15).

3. Stability of the functional equation (1): Fixed point method

In this section, we investigate the generalized Hyers-Ulam-Rassias stability of the quar-
tic functional equation (1) by using fixed point method in 2-Banach spaces. We recall a
fundamental result in fixed point theory.

Let X be a set. A function d : X x X — [0,00) is called a generalized metric on X if d

satisfies :

e d(z,y) =0 if and only if z =y,

y) =20
e d(z,y) =d(y,z) for all z,y € X,
o d(z,z) <d(z,y) +d(y,z) for all z,y,z € X.

Theorem 3.1. [8] Suppose we are given a complete generalized metric space (X,d) and a
strictly contractive mapping J : X — X, with the Lipshitz constant L < 1. If there exists
a nonnegative integer k such that
d(JFz, JFx) < oo
for some x € X, then the following are true:

(1) the sequence J"x converges to a fized point x* of J;
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(II) z* is the unique fized point of J in the set Y = {y € X : d(J*z,y) < oo};
(III) d(y,z*) < 25d(y, Jy) for ally € Y.
In 1996, Isac and Th.M. Rassias [14] were the first to provide applications of stability

theory of functional equations for the proof of new fixed point theorems with applications.

Theorem 3.2. Let f: X — Y be a mapping for which there exists a function
0 X2 —[0,00) satisfying

¢(x) := p(z,x) + 2¢(,0),

(25) IDf(,y), 2 < ()
and

26) li i 3"z, 3"y) =0
( s 3%) =

forallz,y € X andallz €Y. Let0 < L < 1 be a constant such that p(x,y) < 81Lp(3, %)

for all x,y € X. Then, there exists a unique quartic mapping Q@ : X — Y satisfying

1
(27) If (@) = Q). 2] < ¢(z)

-1
forallx € X and all z €Y.

Proof. Let us consider the set S := {g: X — Y} and introduce the generalized metric

on S as follows:
d(g,h) =inf{a €0,00) : ||g(x) — h(x), z|| < ap(z),Vo € X andVz € Y}

where, as usual, infQ = 4+o00. The proof of the fact that (S,d) is a complete generalized

metric space can be found in [6]. Now, we consider the linear mapping J : S — S defined

by

Jg(z) = % (32)

forallg € S and all x € X. First we assert that J is strictly contractive on S. For given

g,h €S, let a € [0,00) be an arbitrary constant with d(g, h) < «, that is

lg(x) = h(z), 2[| < ad(x).
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So we have
I g(e) = Th(a), =l = <= llg(32) — h(32), 2] < 1a6(32) < aLo()

forall g,h € S, allx € X and all z € Y. Then, d(Jg,Jh) < Ld(g,h) , Vg, h € S; that
18, J is a strictly contractive self-mapping on S with the Lipschitz constant L. Replacing
y by x in (25), we have

(28) 1/ (3x) — 4f(22) = 17f(x), z]| < p(x, )

for allx € X and all z € Y. Letting y = 0 in (25), we get

(29) 12 (22) = 32f (), 2[| < ¢(x,0)

for allx € X and all z € Y. From the inequalities (29) and (30), it follows that

1 (32) = 81f(x), 2[| < (p(x, x) + 2¢(x,0))

Then,

(30) 5 (30) = F(@), 2l < ()

forallx € X and all z € Y. Hence,

1

for all f € S. By Theorem 3.1, there exists a unique mapping Q) : X — Y satisfying the
following:
e () is fized point of J, that is, Q(3x) = 81Q(x) for all x € X. The mapping
Q is a unique fized point of J in the set M = {g € S :d(f,g) < oo}. This im-
plies that Q) is a unique mapping such that there exists a € (0,00) satisfying
| f(z) — Q(x), || < ag(x), for allz € X and z € Y.

e d(J",Q) — 0 as n —> oo, which implies the equality

(31) lm Jf(r) = lim L0

n—-+o0 n—+oo 34n

= Q(x)

forallz € X.
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1

(32) d(f,Q) < —d(f Jf) < SI0=1)
which implies the inequality (28)

It follows from (25), (26) and (32), that

1
D", 3%), 2| < lim 23", 3"%) =0

IDQ(z,y), 2] = lim lim o

34n

forallz,y € X and all z € Y. Hence, Q) : X — Y is a quartic mapping, as desired.

Corollary 3.3. Let (X,||.||x) be a normed space and (Y,|.,.||y) be a 2-Banach space.

Let € and p be nonnegative real numbers with p < 4 and let f : X — Y be a mapping
fulfilling

(33) IDf(z,y), zlly < e(llzll% + lyllk)

forall z,y € X and all z € Y. Then there exists a unique quartic mapping ) : X — Y
such that

(34) 1f(2) = Q(x), 2[ly < [E15S

81 — 31’
forallz € X and all z €Y.

Proof. Taking o(z,y) = e(||lz|% + |yll%) for all x,y € X and choosing L = 3P~* in

Theorem 3.2, we get the desired result.

Corollary 3.4. Let (X, |.||x) be a normed space and (Y, ||.,.||y) be a 2-Banach space. Let

€,p and q be nonnegative real numbers with p+q < 4 and let f : X — Y be a mapping
fulfilling

(35) I1Df(z,y), 2lly < e(llzlik-llyl%)

forall z,y € X and all z € Y. Then there exists a unique quartic mapping @ : X — Y
such that

(36) 1£(@) = Q). 2lly < =gy lall5

forallz € X and all z €Y.
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Proof. Taking o(z,y) = € (||z|%-llvll%) for all z,y € X and choosing L = 3774~ in

Theorem 3.2, we get the desired result.
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