ON SRIVASTAVA - ATTIYA INTEGRAL OPERATORS OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS

S. LATHA

Department of Mathematics, Yuvaraja's College, University of Mysore, Mysore - 570 005, INDIA

Abstract. Let \mathcal{S}_{α}^{*} denote the class of functions f analytic in the open unit disc \mathcal{U} with normalizations $f(0)=0=f^{\prime}(0)-1$ satisfying

$$
\left|\frac{\frac{z f^{\prime}(z)}{f(z)}-1}{\frac{z f^{\prime}(z)}{f(z)}+1}\right|<\alpha, \quad z \in \mathcal{U}
$$

We determine β so that whenever $\mathrm{J}_{s, b}(f) \in \mathcal{S}_{\beta}^{*}$, then $\mathrm{J}_{s+1, b}(f) \in \mathcal{S}_{\alpha}^{*}$, for all $s \in \mathbb{C}, b \neq 0,-1,-2, \ldots$ where $\mathrm{J}_{s, b}(f)$ is the Srivastava - Attiya integral operator.

Keywords: Alexander operator, Libera operator and Srivastava - Attiya operator.
2000 AMS Subject Classification: 30C45

1. Introduction

Let \mathcal{A} denote the class of functions $f(z)=z+a_{2} z^{2}+\ldots$, analytic in the unit disc $\mathcal{U}=\{z \in \mathbb{C}| | z \mid<1\}$ and normalized by $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{P}_{α} denote the class of functions p, analytic in \mathcal{U} with $p(0)=1$ and

$$
\left|\frac{p(z)-1}{p(z)+1}\right|<\alpha, \quad 0<\alpha \leq 1, \quad z \in \mathcal{U}
$$

Obviously $\mathcal{P}_{\alpha} \subset \mathcal{P}$, the class of functions with positive real part.
Let \mathcal{S}_{α}^{*} denote the class of functions in \mathcal{A} such that

$$
\frac{z f^{\prime}(z)}{f(z)} \in \mathcal{P}_{\alpha}, \quad z \in \mathcal{U}
$$

\mathcal{S}_{1}^{*} is the well known class \mathcal{S}^{*} of starlike functions with respect to the origin. Srivastava and Attiya [7] defined the operaor $\mathrm{J}_{s, b}(f)$ as

$$
\mathrm{J}_{s, b}(f)(z)=G_{s, b}(z) * f(z), \quad(z \in \mathcal{U}, f \in \mathcal{A})
$$

where $*$ denotes the Hadamard product or convolution and

$$
G_{s, b}(z)=(1+b)^{s}\left[\phi(z, s, b)-b^{-s}\right], \quad(z \in \mathcal{U}, s \in \mathbb{C}, b \neq 0,-1,-2, \ldots .)
$$

Here $\phi(z, s, b)$ is the general Hurwitz - Lerch Zeta function defined by [8]

$$
\phi(z, s, b)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+b)^{s}},
$$

where $s \in \mathbb{C}, b \neq 0,-1,-2, \ldots$. , when $z \in \mathcal{U}, \Re\{s\}>1$ when $|z|=1$.

$$
\begin{aligned}
\mathrm{J}_{0, b}(f)(z) & =f(z) \\
\mathrm{J}_{1,0}(f)(z) & =\int_{0}^{z} \frac{f(t)}{t} d t=\Lambda(f)(z) \\
\mathrm{J}_{1,1}(f)(z) & =\frac{2}{z} \int_{0}^{z} \frac{f(t)}{t} d t=\mathrm{L}(f)(z) \\
\mathrm{J}_{1, \gamma}(f)(z) & =\frac{1+\gamma}{z^{\gamma}} \int_{0}^{z} f(t) t^{\gamma-1} d t=\mathrm{I}_{\gamma}(f)(z) \\
& (\gamma, \text { is real, } \gamma>-1) \\
\mathrm{J}_{\sigma, 1}(f)(z) & =\frac{2^{\sigma}}{z \Gamma(\sigma)} \int_{0}^{z}\left(\log \left(\frac{z}{t}\right)^{\sigma-1}\right) f(t) d t=\mathrm{I}^{\sigma}(f)(z) \\
& (\sigma, \text { is real, } \sigma>0)
\end{aligned}
$$

where $\Lambda(f), \mathrm{L}(f), \mathrm{I}_{\gamma}(f), \mathrm{I}^{\sigma}(f)$ are Alexander [1], Libera [4], Bernardi [2] and Jund [3] operators respectively.

In this paper we determine β so that whenever $\mathrm{J}_{s, b}(f) \in \mathcal{S}_{\beta}^{*}$, then $\mathrm{J}_{s+1, b}(f) \in \mathcal{S}_{\alpha}^{*}$. We also consider a similar problem for

$$
f \in \mathcal{R}_{\alpha}=\left\{f \in \mathcal{A}:\left|\frac{f^{\prime}(z)-1}{f^{\prime}(z)+1}\right|<\alpha\right\}
$$

\mathcal{R}_{1} is the class of $f \in \mathcal{A}$ such that f^{\prime} belong to the Caratheodry class of \mathcal{P} of functions. We need the following Lemmas which we will be using in the sequel.

Lemma 1.1. [7] If the function f belongs to \mathcal{A}, then

$$
\begin{equation*}
z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)=(1+b) \mathrm{J}_{s, b}(f)(z)-b \mathrm{~J}_{s+1, b}(f)(z) \tag{1.1}
\end{equation*}
$$

for $z \in \mathbb{C}, s \in \mathbb{C}, b \neq 0,-1,-2, \ldots$
Lemma 1.2. [5] Suppose that the function $\omega(z)$ is regular in \mathcal{U} with $\omega(0)=0$. Then if $|\omega(z)|$ attains its maximum value on the circle $|z|=r<1$ at a point $z_{0} \in \mathcal{U}$, we have,
(1) $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right)$ and
(2) $\Re\left\{1+\frac{z \omega^{\prime \prime}\left(z_{0}\right)}{\omega^{\prime}\left(z_{0}\right)}\right\} \geq k$ where k is real and $k \geq 1$.

2. MAIN RESULTS

Theorem 2.1. Let $\beta=\alpha\left(\frac{2+\alpha+b(1-\alpha)}{1+2 \alpha+b(1-\alpha)}\right)$ and $\mathrm{J}_{s, b}$ be the Srivastava - Attiya operator. If $\mathrm{J}_{s, b}(f) \in \mathcal{S}_{\beta}^{*}$, then $\mathrm{J}_{s+1, b}(f) \in \mathcal{S}_{\alpha}^{*}$ for $0<\alpha \leq 1, s \in \mathbb{C}, b \neq 0,-1,-2, \ldots$

Proof. Let us define a function $\omega(z)$ by

$$
\begin{equation*}
\omega(z)=\frac{1}{\alpha}\left\{\frac{\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}-1}{\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}+1}\right\}, \quad \text { for, } 0<\alpha \leq 1 \tag{2.1}
\end{equation*}
$$

and $\omega(z) \neq 1$ for $z \in \mathcal{U}$. Then, $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0$. It is sufficient to show that $|\omega(z)|<1$ in \mathcal{U}. From (1.1) we have

$$
\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}=\frac{1+\alpha \omega(z)}{1-\alpha \omega(z)}
$$

Logarithmic differentiation yields

$$
1+\frac{z \mathrm{~J}_{s+1, b}^{\prime \prime}(f)(z)}{\mathrm{J}_{s+1, b}^{\prime}(f)(z)}-\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}-1=\frac{2 \alpha z \omega^{\prime}(z)}{1-\alpha^{2} \omega^{2}(z)}
$$

Taking logarithmic derivative of (1.1) we have

$$
\frac{z \mathrm{~J}_{s, b}^{\prime}(f)(z)}{\mathrm{J}_{s, b}(f)(z)}=\frac{1+\alpha \omega(z)}{1-\alpha \omega(z)}\left\{\frac{2 \alpha z \omega^{\prime}(z)}{(1+\alpha \omega(z))(1+b+(1-b) \alpha \omega(z))}+1\right\}
$$

Thus,

$$
\frac{z \mathrm{~J}_{s, b}^{\prime}(f)(z)}{\mathrm{J}_{s, b}(f)(z)}=\frac{2 \alpha z \omega^{\prime}(z)}{(1-\alpha \omega(z))(1+b+(1-b) \alpha \omega(z))}+\frac{1+\alpha \omega(z)}{1-\alpha \omega(z)}
$$

Let there exist a point $z_{0} \in \mathcal{U}$ such that $\max |\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1$, then by Lemma (1.2), $|z|<\left|z_{0}\right|$.

We have $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geq 1$.
Then we obtain

$$
\left\{\frac{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}-1}{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}+1}\right\}=\frac{\alpha \omega\left(z_{0}\right)\left(k+1+b+(1-b) \alpha \omega\left(z_{0}\right)\right)}{(1+b)+\alpha \omega\left(z_{0}\right)(1-b+k)}
$$

and

$$
\begin{equation*}
\left|\frac{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}-1}{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}+1}\right|=\frac{\alpha\left|(k+1+b)+(1-b) \alpha e^{i \theta}\right|}{\left|1+b+\alpha e^{i \theta}(1-b+k)\right|}=\phi(\cos \theta), \tag{2.2}
\end{equation*}
$$

where $\phi(t)$ is a decreasing function of $t=\cos \theta$ in $[-1,1]$.
Hence from (2.2) we get

$$
\left|\frac{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}-1}{\frac{z_{0} \mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)}{\mathrm{J}_{s, b}(f)\left(z_{0}\right)}+1}\right| \geq \alpha\left\{\frac{(b+2)+\alpha(1-b)}{(2-b) \alpha+1+b}\right\}=\beta
$$

a contradiction to the hypothesis that $\mathrm{J}_{s, b}(f)(z) \in \mathcal{S}^{*}(\beta)$. Hence, we have

$$
|\omega(z)|=\frac{1}{\alpha}\left|\frac{\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}-1}{\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)}{\mathrm{J}_{s+1, b}(f)(z)}+1}\right|<1
$$

or $\mathrm{J}_{s+1, b}(f)(z) \in \mathcal{S}_{\alpha}^{*}$, which completes the proof of the theorem.
Theorem 2.2. Let $\beta=\frac{2-\alpha+b(1-\alpha)}{1+b(1-\alpha)}$ and if $\mathrm{J}_{s, b}(f)(z) \in \mathcal{R}_{\beta}$, then $\mathrm{J}_{s+1, b}(f)(z) \in \mathcal{R}_{\alpha}$, for $0<\alpha \leq 1$.

Proof. Let $\omega(z)$ be defined by

$$
\begin{equation*}
\omega(z)=\frac{1}{\alpha}\left\{\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)-1}{\mathrm{~J}_{s+1, b}(f)(z)+1}\right\} \tag{2.3}
\end{equation*}
$$

and $\omega(z) \neq 1$ for $z \in \mathcal{U}$. Then, $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0$. It is sufficient to show that $|\omega(z)|<1$ in \mathcal{U}. From (2.3) we have

$$
\mathrm{J}_{s+1, b}^{\prime}(f)(z)=\frac{1+\alpha \omega(z)}{1-\alpha \omega(z)}
$$

Differentiating we get

$$
\begin{gathered}
\mathrm{J}_{s+1, b}^{\prime}(f)(z)=\mathrm{J}_{s+1, b}^{\prime}(f)(z)+\frac{z \mathrm{~J}_{s+1, b}^{\prime \prime}(f)(z)}{b+1} \\
\begin{aligned}
\frac{\mathrm{J}_{s, b}^{\prime}(f)(z)-1}{\mathrm{~J}_{s, b}^{\prime}(f)(z)+1} & =\frac{\mathrm{J}_{s+1, b}^{\prime}(f)(z)-1-\frac{z \mathrm{~J}_{s+1, b}^{\prime \prime}(f)(z)}{b+1}}{\mathrm{~J}_{s+1, b}^{\prime}(f)(z)+1+\frac{z \mathrm{~J}_{s+1, b}^{\prime \prime}(f)(z)}{b+1}} \\
& =\omega(z)\left\{\frac{\alpha(1+b+k)-(1+b) \alpha^{2} \omega(z)}{((1+b)(1-\alpha \omega(z)))+\alpha k \omega(z)}\right\}
\end{aligned}
\end{gathered}
$$

Lemma 1.2 gives the existence of a point $z_{0} \in \mathcal{U}$ such that $\max _{|z|<\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1$.
Hence $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geq 1$. Hence we obtain

$$
\left|\frac{\mathrm{J}_{s, b}^{\prime}(f)\left(z_{0}\right)-1}{\mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)+1}\right|=\left|\frac{\alpha(1+b+k)-(1+b) \alpha^{2} e^{i \theta}}{(1+b)+(k-(1+b)) \alpha e^{i \theta}}\right|
$$

$$
\begin{align*}
& =\frac{\alpha\left\{(1+b+k)^{2}+(1+b)^{2} \alpha^{2}-2 \alpha(1+b)(1+b+k) \cos \theta\right\}^{\frac{1}{2}}}{\left\{(1+b)^{2}+(k-(1+b))^{2} \alpha^{2}+2 \alpha(1+b)(k-1-c) \cos \theta\right\}} \tag{2.4}\\
& =\phi(\cos \theta)
\end{align*}
$$

$\phi(t)$ is a decreasing function of $t=\cos \theta$ in $[-1,1]$.
Hence from (2.4) we get

$$
\left|\frac{\mathrm{J}_{s, b}^{\prime}(f)\left(z_{0}\right)-1}{\mathrm{~J}_{s, b}^{\prime}(f)\left(z_{0}\right)+1}\right| \geq \alpha\left\{\frac{b(1-\alpha)+(2-\alpha)}{1+b(1-\alpha)}\right\}=\beta
$$

which is a contradiction to our assumption that $\mathrm{J}_{s, b}(f) \in \mathcal{R}_{\beta}$.
Hence we must have

$$
|\omega(z)|=\frac{1}{\alpha}\left|\frac{z \mathrm{~J}_{s+1, b}^{\prime}(f)(z)-1}{\mathrm{~J}_{s+1, b}(f)(z)+1}\right|<1
$$

or $\mathrm{J}_{s+1, b}(f) \in \mathcal{R}_{\alpha}$ which completes the proof of the theorem.

Remark 2.3. For $s=0$, we get the results in [6].

ACKNOWLEDGEMENT:

The work presented here was supported in part by a grant from UGC, INDIA.

References

[1] J W Alexander, Functions which map the interior of the unit circle upon simple regions, Annals of Mathematics, Vol. 17, No. 1, pp., 12-22, 1915.
[2] S D Bernardi, Convex and starlike univalent functions, Transactions of the American Mathematical society, Vol. 16, pp., 755-758, 1965.
[3] I B Jung, Y C Kim and H M Srivastava, The Hardy space of analytic functions associated with crtain one parameter families of integral operators, Journal of Mathematical Analysis and Applications, Vol. 176, No. 1, pp., 138-143, 1997.
[4] R J Libera, Some classes of regular univalent functions, Proc. of the American Mathematical society, Vol. 16, pp., 755-758, 1965.
[5] S S Miller and P T Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
[6] R Parvatham, On Bernardi's integral operators of certain classes of functions, Kyungpook Mathematical Journal, Vol. 42, No. 2, pp., 437-441, 2002.
[7] H M Srivastava and A A Attiya, An integral operator associated with the Hurwitz Lerch Zeta function and differential subordination, Integral Transforms and special functions, Vol. 18, No. 3-4, pp., 207 - 216, 2007.
[8] H M Srivastava and S Owa, Eds, Current topics in analytic function theory, World Scientific, River Edje NJ, USA, 1992.

