
                

*
Corresponding author 

Received April 2, 2013 

891 

 

Available online at http://scik.org  

J. Math. Comput. Sci. 3 (2013), No. 3, 891-904 

ISSN: 1927-5307 

 

SOME REMARKS ON OPERATIONS ON GRAPHS 

S. N. DAOUD
1,2,*

 AND O. A. EMBABY
1,3

 

1
Department of Applied Mathematics, Faculty of Applied Science, Taibah University, Al-Madinah, 

K.S.A. 

2
Department of Mathematics, Faculty of Science, El-Minufiya University, ShebeenEl-Kom, Egypt 

3
Department of Mathematics, Faculty of Science, Tanta University, Tanta Egypt 
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Eulerian, and perfect graphs while they are not closed on triangulated graphs, it also the operation, join 

product, is shown to be not closed on Eulerian graphs but is closed on Hamiltonian, perfect and 

triangulated graphs. Other operations and graphs are also investigated. 

Keywords: Cartesian product, Join product, Tensor product, Normal product, Composition product, 

Triangulated, Perfect, Hamiltonian, Eulerian graph. 

Mathematics Subject Classification: 05C05, 05C50. 

 

1- Introduction 

By a simple graph G, we mean that a graph with no loops or multiple edges. 

 Let ),( 111 EVG   and ),( 222 EVG   be simple graphs. Then  

(1) The simple graph ),( EVG  , where 21 VVV   and 21 EEE   is called 

the union of 1G  and 2G , and is denoted by 21 GG  , [2,5]. 

When 1G  and 2G  are vertex disjoint, 21 GG   is denoted by 21 GG  , and is called 

the sum of the graphs 1G  and 2G . 

(2) If 1G  and 2G  are vertex-disjoint graphs. Then the join, 21 GG  , is the super-

graph of 21 GG  , in which each vertex of 1G  is adjacent to every vertex of 2G , [2,6]. 
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(3) The Cartesian product, 21 GG  , is the simple graph with vertex set 

2121 )( VVGGV   and edge set ])()([)( 212121 EVVEGGE    such that 

two vertices ),( 21 uu  and ),( 21 vv  are adjacent in 21 GG  iff either: 

(i)  11 vu  and 2u  is adjacent to 2v  in 2G , or 

(ii) 1u  is adjacent to 1v  in 1G  and 22 vu  , [1,7]. 

(4) The composition, or lexicographic product, ][ 21 GG , is the simple graph with 

21 VV   as the vertex set in which the vertices ),( 21 uu , ),( 21 vv  are adjacent if 

either 1u  is adjacent to 1v  or 11 vu   and 2u  is adjacent to 2v . 

The graph ][ 21 GG  need not to be isomorphic to ][ 12 GG , [2,8]. 

(5) The normal product, or the strong product, 21 GG  , is the simple graph with 

2121 )( VVGGV   where ),( 21 uu  and ),( 21 vv  are adjacent in 21 GG  iff either: 

(i)   11 vu  and 2u  is adjacent to 2v , or 

(ii)  1u  is adjacent to 1v  and 22 vu  , or 

(iii) 1u  is adjacent to 1v  and 2u  is adjacent to 2v , [2,9]. 

(6) The tensor product, or Kronecher product, 21 GG  , is a simple graph with 

2121 )( VVGGV   where ),( 21 uu  and ),( 21 vv  are adjacent in 21 GG  iff 1u  is 

adjacent to 1v  in 1G  and 2u  is adjacent to 2v  in 2G . 

Note that )()( 212121 GGGGGG   , [2,10]. 

(7) The kth power kG  of a simple graph G has )()( GVGV k   where u and v 

are adjacent in kG wherever kvudG ),( , where ),( vudG  is the length of a 

shortest vu   path in G, [2]. 

(8) The closure of a graph G, denoted )(Gcl , is that graph obtained from G by 

recursively joining pairs of nonadjacent vertices whose degree sum is at least n until 

no such pair remains, [3]. 

2- Main results 

(2-1) Regular graphs 

A graph G is said to be regular if all the vertices of G have the same degree, [1]. 

Lemma (2.1.1)A finite graph G has at least two vertices of the same degree. 
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Lemma (2.1.2)If G is a graph with n vertices which is regular of degree d, then 

dn

n
Gx


)( . 

Lemma (2.1.3)If )(GclGk  , then G is a regular graph. 

Lemma (2.1.4)Complement of a regular graph is regular with degree 1 dnd . 

Lemma (2.1.5)  IfG is a regular graph, then kG  and )(Gcl  are regular graphs. 

Theorem (2.1.6)Let 1G  and 2G  be regular graphs such that 11
ddG  and 22

ddG  , 

then: 

 (i)  21 GG  is not regular graph. 

 (ii)  21 GG  is a regular graph with 2121
ddd GG  . 

 (iii) 21 GG  is a regular graph with 12121
 ddd GG . 

 (iv) 21 GG  is a regular with 2121
ddd GG  . 

 (v)  21 GG  is a regular with 212121
ddddd GG  . 

(vi) ][ 21 GG  is a regular graph with 212][ 21
ddnd GG  , and ][ 12 GG  is a 

regular graph with 121][ 12
ddnd GG  , where 21, nn  are the number of 

vertices of 21, GG  respectively. 

(2-2) Complete graphs 

 A complete graph is a graph in which every two distinct vertices are joined by 

exactly one edge, i.e., the complete graph is necessary simple graph. The complete 

graph with n vertices is denoted by nK , [1]. 

Lemma (2.2.1) If G is a complete graph, then GGclGk  )(  but the converse is not true. 

 

 

 

Lemma (2.2.2)If 1G  and 2G  are complete graphs, then 2121 ][ GGGG  . 

G )(2 GclG  

Fig. (1) 
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Lemma (2.2.3) Complement of a complete graph nk  is a null graph nN . 

Theorem (2.2.4)Let 21, GG  be complete graphs such that mn KGKG  21 ,  then: 

 (i)  21 GG  is not complete graph. 

 (ii)  21 GG  is not complete graph. 

 (iii) 21 GG  is not complete graph. 

(iv) 21 GG  is a complete graph, )( nmmn KKK  . 

(v)  ][ 2121 GGGG  is complete graph, )][( mnmnmn KKKKK  . 

(2-3) Bipartite graphs 

 A graph is bipartite if its vertex set can be partitioned into nonempty subsets X 

and Y such that each edge of G has one end in X and the other in Y. the pair ),( YX  is 

called a bipartition of the bipartite graph G. The bipartite graph G with bipartition 

),( YX  is denoted by ),( YXG . A simple bipartite graph ),( YXG  is complete if 

each vertex of X is adjacent to all the vertics of Y. If ),( YXG  is complete with 

pX || and qY || , then ),( YXG  is denoted by qpK , . It is noticed that qpK ,  has 

qp   vertices ( p vertices of degree p and q vertices of degree p ) and qp  edges, 

pqqp KK ,,   and qk ,1  is called a star graph, [14]. 

Lemma (2.3.1) For a simple bipartite graph 
4

2n
m  . 

Lemma (2.3.2) A bipartite graph ),( qpG  is complete iff 









2

p
q . 

Lemma (2.3.3) If a bipartite graph ),( YXG  is regular, then |||| YX  . 

Lemma (2.3.4) Every tree is a bipartite graph. 

Lemma (2.3.5) A connected graph G is complete bipartite iff no induced subgraph of 

G is a 3K or 4P . 

Lemma (2.3.6)If every cycle of a graph has an even number of edges, then the graph 

is bipartite. 
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Lemma (2.3.7) qpqp KNN , . 

Lemma (2.3.8) qpqp KK 2
, )(  and qp

k
qp KK ,, )(  for 2k . 

Lemma (2.3.9) 2,)( 2,  pkkcl ppp . 

Lemma (2.3.10) Cyclomatic number, )1()1()( ,  qpk qp . 

(2-4) Hamiltonian graphs 

 A connected graph G is Hamiltonian if there is a cycle which includes every 

vertex of G, such a cycle is called a Hamiltonian cycle. 

Dirace’s Theorem, [2]Let G be a simple graph with n vertices, where 3n . If 

nv
2

1
deg   for each vertex v, then G is Hamiltonian. 

Ore’s Theorem, [2] Let G be a simple graph with n vertices, where 3n . If 

nwv  degdeg  for each pair of non-adjacent vertices v and w, then G is 

Hamiltonian. 

Lemma (2.4.1) No tree can be Hamiltonian graph. 

Lemma(2.4.2) Any bipartite graph with odd number of vertices cannot be 

Hamiltonian. 

Lemma (2.4.3) qpK ,  is Hamiltonian if 2 qp  and nK  is Hamiltonian if 3n . 

Lemma (2.4.4)IfG is a ),( qp  graph with 3
2

1








 


p
q , then G is Hamiltonian. 

Lemma (2.4.5) )(Gcl  is a Hamiltonian graph iffG is Hamiltonian. 

Lemma (2.4.6)IfG is a Hamiltonian graph, then kG  is a Hamiltonian graph but the 

converse is not true. 
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Theorem (2.4.7) 

 Let 1G  and 2G  be Hamiltonian graphs, then: 

 (i)  21 GG  is a Hamiltonian graph. 

(ii) 21 GG  is a Hamiltonian graph. 

(iii) 21 GG  is a Hamiltonian graph. 

(iv) ][ 21 GG is a Hamiltonian graph. 

(v)  21 GG  is a Hamiltonian graph.. 

 (vi)  21 GG   is not  necessary a Hamiltonian graph. 

 

 

 

 

 (2-5) Eulerian graphs 

 A connected graph G is Eulerian if there is a closed trail which includes every 

edge of G, such a trail is called Eulerian trail, [2]. A graph is Eulerianiff every vertex 

of G has even degree, [1]. A graph G is Eulerianiff each edge e of G belongs to an odd 

number of cycles of G, [4] i.e., a graph is Eulerianiff it has an odd number of cycle 

decomposition, [2]. 

Lemma (2.5.1) qpK ,  is an Eulerian if qp,  are even, 2, qp . 

Lemma (2.5.2)If G is an Eulerian graph, then kG  and )(Gcl  are not necessary 

Eulerian graphs. 

 

3,2KG  

Not 

Hamiltonian 

5
2 KG  

Hamiltoni

an Fig. (2) 

1G 2G

 
21 GG  

Fig. (3) 
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Lemma (2.5.3)An Eulerian regular graph is a Hamiltonian graph. 

Lemma (2.5.4) 1,12  nK n  is an Eulerian graph. 

Theorem (2.5.5)Let 1G , 2G  be Eulerian graphs, then: 

 (i)  21 GG   is not  necessary Eulerian graph. 

(ii) 21 GG    is not necessary Eulerian graph. 

(iii) Cartesian product 21 GG   is an Eulerian graph. 

(iv) 21 GG  is an Eulerian graph.  

(v)  ][ 21 GG is an Eulerian graph. 

 (vi) 21 GG  is an Eulerian graph. 

 

 

 

 

 

 

(2-6) Triangulated graphs 

 A simple graph G is called triangulated if every cycle of length at least four 

has a chord, that is an edge joining two non-adjacent vertices of the cycle, [2]. 

Lemma (2.6.1)IfG is a triangulated graph, then kG  is a triangulated graph but the 

converse is not true. 

G 

Eulerian graph 

)(2 GclG   

Not Eulerian graph 

Fig. (4) 

1G  2G

 
21 GG   21 GG  

Fig. (5) 

Eulerain graphs Not Eulerian graphs 
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Lemma (2.6.2)If G is a triangulated graph, then )(Gcl  is a triangulated but the 

converse is not true. 

 

 

 

 

Lemma (2.6.3)A complete graph 3, nKn  is a triangulated graph but the converse 

is not true. 

Lemma (2.6.4) If 121 , GGG   is triangulated, then 2G  is triangulated. 

Theorem (2.6.5)Let 1G , 2G  be triangulated graphs, then: 

 (i)  21 GG  is not  necessary triangulated graph. 

(ii) 21 GG  is not triangulated graph. 

(iii) 21 GG  is a triangulated graph. 

 (iv) 21 GG  is not triangulated graph. 

(v) 21 GG  is a triangulated graph.  

(vi)  ][ 21 GG is a triangulated graph. 

 

 

 

 

 

 

 

 

G 

Not triangulated 

2G
 

Triangulated 

)(Gcl  

Triangulated 

Fig. (6) 

1G  2G

 
21 GG   21 GG  

Fig. (7) 

21 GG   21 GG   2121 ][ GGGG   
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(2-7) Perfect graphs 

 A clique of a graph G is a complete subgraph of G. A clique of G is a maximal 

clique of G if it is not properly contained in other clique, [2]. The maximum order of a 

complete subgraph of G is called the clique number of G and is denoted by )(G . 

Clearly )()( GxG  , the chromatic number of G which is the smallest number n 

for which G is n-colorable. A graph G is perfect if G and each induced subgraphs 

have the property that )()( GxG  , [2]. 

Lemma (2.7.1)The complement of any bipartite graph is perfect. 

Lemma (2.7.2) The complement of a null graph nN  is perfect. 

Lemma (2.7.3)If G is a perfect graph, then kG  is perfect. 

Lemma (2.7.4) If G is a perfect graph, then )(Gcl  is perfect. 

Lemma (2.7.5) A perfect graph is not necessary triangulated graph and a triangulated 

graph is not necessary a perfect graph. 

 

 

 

 

Lemma (2.7.6) An Eulerian graph is a perfect graph but the converse is not true. 

 

 

 

Lemma (2.7.7)Hamiltonian graph is perfect graph but the converse is not true. 

 

 

The graph is perfect but not 

triangulated 

Weel graph, triangulated but  

not perfect 
Fig. (8) 

The graph is perfect but not Eulerian 

Fig. (9) 

The graph is perfect but not Hamiltonian 

Fig. (10) 
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Lemma (2.7.8) A regular graph is perfect graph but the converse is not true. 

 

 

 

Theorem (2.7.9) Let 1G , 2G  be perfect graphs, then: 

 (i)  21 GG  is a perfect graph, 

)()()()()()( 21212121 GGGGGGGG   . 

(ii) 21 GG  is a perfect graph, 

))(),((max))(),((max)()( 21212121 GGGGGGGG   . 

(iii) 21 GG  is a perfect graph., 

))(),((min))(),((min)()( 21212121 GGGGGGGG   . 

 (v) 21 GG  is a perfect graph, 

)()()()()()( 21212121 GGGGGGGG    . 

(vi)  ][ 21 GG is a perfect graph, 

)()()()()][(][ 21212121 GGGGGGGG   . 

(2-8) Line graphs 

 The line graph )(GL  of a graph G is the graph obtained by taking the edges 

of G as vertices and joining two of these vertices whenever the corresponding edges 

of G have vertex in common, [1]. 

Lemma (2.8.1) 3,)(  nCCL nn . 

Lemma (2.8.2) The line graph of qpK ,  is regular of degree 2 qp . 

Lemma (2.8.3) The line graph of nK  is regular of degree 42 n . 

Lemma (2.8.4) L (Tetrahedron)Octahedron. 

 

 

Perfect graph but not regular 

Fig. (11) 
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Lemma (2.8.5) The line graph of the star graph nK ,1  is the complete graph nK . 

Lemma (2.8.6) The line graph of an Eulerian graph is not necessary an Eulerian  

graph.  

Lemma (2.8.7) The line graph of a tree is a triangulated graph. 

Lemma (2.8.8) The line graph of a triangulated graph is not necessary a triangulated 

graph. 

 

 

 

 

Lemma (2.8.9)The line graph of a Hamiltonian graph is a Hamiltonian graph. 

Lemma (2.8.10) Line graph of a perfect graph is a perfect graph but the converse is 

not true. 

For example 5W , wheel graph, is not perfect but its line graph is 

perfect. 

 

 

 

 

 

 

 

G, triangulated graph )(GL , not triangulated graph 

Fig. (13) 

5W

Fig. (14) 

)( 5WL

Tetrahedron OctahedronL (Tetrahedron) 

Fig. (12) 
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Lemma (2.8.11)If G is not null graph. Then ))(()( GLG   . 

Lemma (2.8.12) Line graph of a regular graph is a regular graph, )1(2)(  GGL dd . 

Lemma (2.8.13) 1)(  nn PPL . 

(2-9) Clique graphs 

 A clique graph )(GK  of a graph G is the intersection of the family of 

maximal cliques of G. i.e., the vertices of )(GK  are maximal cliques of G and two 

vertices of )(GK are adjacent in )(GK iff the corresponding cliques of G has 

nonempty intersection, [1]. 

Lemma (2.9.1) The clique graph )(GK  of a graph G is the same to its line graph 

)(GL  in case of G is: 

(i)  The star graph nK ,1 . 

(ii)  Complete bipartite graph qpK , . 

(iii) Cycle graph 3, nCn . 

(iv)  Path graph nP . 

(v) Tree, T. 

Lemma (2.9.2) The clique graph of qpK ,  is regular of degree 2 qp . 

Lemma (2.9.3) The Clique graph of a perfect graph is perfect but the converse is not 

true. 

 

 

 

Lemma (2.9.4) The clique graph of a wheel graph nW  is a complete graph nK . 

Lemma (2.9.5)  The clique graph of a regular graph is not necessary regular. 

5W  

not perfect 

Fig. (15) 

55 )( KWK 

Perfect 
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Lemma (2.9.6)The clique graph of an Eulerian graph is not necessary an Eulerian 

graph. 

 

 

Lemma (2.9.7)The clique graph of a Hamiltonian graph is not necessary Hamiltonian. 

 

 

Lemma (2.9.8) The clique graph of a triangulated graph is triangulated, but the 

converse is not true. 

 

 

 

(2.10) Euler characteristic 

Theorem (2.10.1)Let 21,GG  be two finite connected graphs with number of vertices 

and edges are 21, nn  and 21, mm  respectively, then  

(i)  1 2 1 2 1 2( ) ( ) ( ) ( )G G G G G G      . 

(ii)  1 2 1 2 1 2( ) ( ) ( )G G G G m m      . 

(iii) 1 2 1 2 1 2( ) ( ) ( )G G G G m m     . 

(iv) 1 2 1 2 1 2 2 1 1 2( ) ( ) ( ) 3G G G G n m n m m m       . 

(v) 1 2 1 2 1 2( ) ( ) ( ) 3G G G G m m    . 

(iv) 1 2 1 2 2 1 2 1 2( [ ]) ( ) ( ) (1 )G G G G n m n m m      .   
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 Hamiltonian  

)(GK   

not Hamiltonian 

Fig. (17) 

G 

not triangulated 

)(GK  

triangulated 

Fig. (18) 

G 

Regular and Eulerian 
)(GK  

Not regular and not Eulerian 
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