Available online at http://scik.org

J. Math. Comput. Sci. 2 (2012), No. 3, 462-472

ISSN: 1927-5307

 μ - NECKS OF FUZZY AUTOMATA

V. KARTHIKEYAN* AND M. RAJASEKAR

Mathematics Section, Faculty of Engineering and Technology, Annamalai University, Annamalainagar,

Chidambaram, Tamil Nadu, India - 608 002

Abstract. We introduce μ - necks of fuzzy automata, that is we find a word that brings each state of a

fuzzy automata to a single state with minimal weight μ [0 < $\mu \leq$ 1] and also we introduce local $\mu-$ necks

of fuzzy automata that is, it is a μ - neck of some subautomata of a fuzzy automata. Further, we study

the structural properties of fuzzy automata using the notions of their μ -necks and local μ - necks.

Keywords: μ - Necks & Local μ - necks of fuzzy automata, μ -directable fuzzy automata, μ - Reversible

fuzzy automata, Monogenically & Uniformly monogenically μ - directable fuzzy automata.

2000 AMS Subject Classification: 18B20, 68Q70, 68Q45, 03E72

1. Introduction

Directable automata is also known as Synchronizable which are significant type of au-

tomata with very interesting algebraic properties and important applications in various

branches of computer science [2]. Various specializations and generalizations of directable

automata have appeared recently. T. Petkovic et al. [5] introduced and studied mono-

genically, locally and generalized directable automata. These automata are also referred

by Z. Popovic et al. [6] and [7]. Milena Bogdanovic et al. [1] studied directable automata

*Corresponding author

E-mail addresses: vkarthikau@gmail.com (V. Karthikeyan), mrajdiv@yahoo.com (M. Rajasekar)

Received Dec 12, 2011

462

using their necks. The theory of fuzzy set was introduced by L.A. Zadeh in 1965 [11]. The mathematical formulation of a fuzzy automaton was first proposed by W.G. Wee in 1967 [10]. E.S. Santos 1968 [8] proposed fuzzy automata as a model of pattern recognition. John N. Mordeson and D.S. Malik gave a detailed account of fuzzy automata and languages in their book 2002 [4].

We introduce μ — necks of a fuzzy automata, that is we find a word that brings each state of a fuzzy automata to a single state with minimal weight μ [0 < μ ≤ 1]. We introduce local μ — necks of fuzzy automata. It is a μ — neck of some subautomata of a fuzzy automata. We shown that set of μ —necks in a fuzzy automata is a subautomata and it is a least subautomata of a fuzzy automata. We obtain a necessary and sufficient condition for a fuzzy automata to be strongly μ — directable. Also we obtain a condition for fuzzy automata under which it is not μ — directable. Also we establish some equivalent conditions for uniformly monogenically strongly μ — directable fuzzy automata.

2. Basic concepts

2.1. Fuzzy automata [3]. A finite fuzzy automata is a system of 5 tuples, $M = (Q, \Sigma, \pi, \eta, f_M)$ where Q-set of states $\{q_1, q_2, ..., q_n\}$

 Σ -alphabets (or) input symbols

 $\pi\text{-}Q \rightarrow [0,1]$ initial state designator

 η - $Q \rightarrow [0,1]$ final state designator

 f_M -function from $Q \times \Sigma \times Q \rightarrow [0,1]$

 $f_M(q_i, \sigma, q_j) = \mu \ [0 < \mu \le 1]$ means when M is in state q_i and reads the input σ will move to the state q_j with weight function μ . For each $\sigma \in \Sigma$ we can form a $n \times n$ matrix $F(\sigma)$ whose (i, j) the element is $f_M(q_i, \sigma, q_j)$. For $x \in \Sigma^*$ and if $x = \sigma_1 \sigma_2 \ldots \sigma_m$ $F(x) = F(\sigma_1) \circ F(\sigma_2) \circ \ldots \circ F(\sigma_m)$

In otherwords F(x) is the fuzzy sum of fuzzy products of weights taken over the paths in the automata.

Note

 $f_M(i, x, j)$ is the (i, j) the element of F(x)

 $f_M(s, x, t) = \text{Max}\{\text{Min}\{f_M(s, \sigma_1, q_1), f_M(q_1, \sigma_2, q_2), \dots, f_M(q_{m-1}, \sigma_m, t)\}\}\$ where Max is taken over all the paths from s to t.

Note

 $F_{pq}(w)$ denotes p^{th} row and q^{th} column of a matrix F(w).

- 2.2. Sub automata [4]. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. An automaton $N = (Q_1, \Sigma, f_N)$ is called subautomata of M if for any $u \in \Sigma^*$ and $q \in Q_1$, then there exists $q' \in Q_1$ such that $f_N(q, u, q') > 0$ where f_N is the restriction of f_M into N.
- 2.3. Strongly connected fuzzy automata. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. M is said to be strongly connected if for every $p, q \in Q$ there exists $u \in \Sigma^*$ such that $f_M(p, u, q) > 0$. Equivalently, M is strongly connected if it has no proper subautomata.
- 2.4. Subautomata generated by q. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata and let $q \in Q$. The subautomata of M generated by q is denoted by q > 0. It is given by q > 0 and it is also called monogenic subautomata of M.
- 2.5. Subautomata generated by H. For any non-empty $H \subseteq Q$, the subautomata of M generated by H is denoted by A and is given by A by A and is given by A by A by A and A is called least subautomata of A containing A. The least subautomata of a fuzzy automata A, if it exists is called the kernel of A.
- 2.6. Necks of fuzzy automata. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. A state $q \in Q$ is called a neck of M if there exists $u \in \Sigma^*$ such that $f_M(p, u, q) > 0$ for every $p \in Q$.

In that case q is also said to be a u-neck of M and the word u is called a directing word of M. If M has a directing word, then M is called directable fuzzy automata.

2.7. μ - Necks of fuzzy automata. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. A state $q \in Q$ is called a μ - neck of M if there exists $u \in \Sigma^*$ and minimal weight μ in M $[0 < \mu \le 1]$ such that $f_M(p, u, q) = \mu$ for every $p \in Q$.

In that case q is also said to be a u- μ -neck of M and the word u is called a μ -directing word of M. If M has a μ - directing word then M is called μ - directable fuzzy automata.

Note

- 1) The set of all μ necks of a fuzzy automata M is denoted by $\mu N(M)$.
- 2) The set of all μ -directing words of a fuzzy automata M is denoted by $\mu DW(M)$.
- 3) If a fuzzy automata M is strongly μ directable then $M = \mu N(M)$

Example

Fuzzy automata with μ-necks

In Fig-1, $f_M(p, aab, 1) = 0.1 \ \forall \ p \in Q$ and $f_M(p, aaba, 3) = 0.1 \ \forall \ p \in Q$. Hence the states 1 and 3 are μ - necks of M.

Fuzzy automata with no μ-necks

In Fig-2, the states 1 and 3 are necks of M but not μ - necks and directing words are aab and aaba but not μ - directing words.

2.8. μ — Reversible fuzzy automata. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. A state $q \in Q$ is called μ — reversible. If for everyword $v \in \Sigma^*$ there exists a word $u \in \Sigma^*$ such that $f_M(q, vu, q) = \mu$ and the set of all μ — reversible states of M called the μ —reversible part of M is denoted by $\mu R(M)$.

If it is non empty $\mu R(M)$ is a subautomata of M.

Note

- (i) If all states of a fuzzy automata M are μ reversible, then the fuzzy automata $M = (Q, \Sigma, f_M)$ is called μ reversible fuzzy automata.
- (ii) If M is a μ directable fuzzy automata implies that it is a directable fuzzy automata. Then the converse need not be true. i.e If M is directable fuzzy automata then it need not be a μ - directable fuzzy automata.
- 2.9. Local μ necks of fuzzy automata. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. We say that a state $q \in Q$ is called local μ neck of M, if it is μ -neck of some μ directable fuzzy subautomata of M. The set of all local μ necks of M is denoted by $L\mu N(M)$.

Example

Fuzzy automata M with local μ-necks

In Fig-3, 1 and 3 are local μ - necks as it is a μ - neck of subautomata M'(Fig-4) of M with μ - directing words aab and aaba respectively.

Fuzzy automata $\,M\,$ with no local $\mu\text{-necks}$

In Fig-5, 1 and 3 are local necks but not local $\mu-$ necks with directing words aab, aaba and not $\mu-$ directing words.

2.10. Monogenically μ - directable fuzzy automata. A fuzzy automata M is called monogenically μ - directable, if every monogenic subautomata of M is μ - directable fuzzy automata.

Example

Monogenically fuzzy µ-directable automata M

In Fig-6, M_1 and M_2 are monogenic subautomata with $\mu-$ directing words aa and bbb respectively.

2.11. Monogenically strongly μ - directable fuzzy automata. A fuzzy automata M is called monogenically strongly μ - directable, if every monogenic subautomata of M is strongly μ - directable.

Example

Monogenically strongly fuzzy μ- directable automata M

In Fig-7, M_1 and M_2 are strongly monogenic subautomata with μ - directing words aab and bba respectively.

- 2.12. Common μ directing word. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. We define a word $u \in \Sigma^*$ to be a common μ -directing word of M, if u is a μ directing word of every monogenic subautomata of M i.e., if $u \in \mu DW()$, for every $p \in Q$.
- 2.13. Uniformly monogenically μ directable fuzzy automata. Let M be a fuzzy automata. M is called uniformly monogenically μ -directable fuzzy automata, if every monogenic subautomata of M is μ directable and have at least one common μ directing word.
- 2.14. Uniformly monogenically strongly μ directable fuzzy automata. Let M be a fuzzy automata. M is called uniformly monogenically strongly μ directable fuzzy automata, if every monogenic subautomata of M is strongly μ directable and have at least one common μ directing word.

Note

- (i) If M is monogenically strongly μ directable fuzzy automata implies that M is monogenically strongly directable fuzzy automata. The converse is need not be true.
- (ii) If M is uniformly monogenically strongly $\mu-$ directable fuzzy automata implies that M is uniformly monogenically strongly directable fuzzy automata. The converse is need not be true.

3. μ - Necks of fuzzy automta

The following lemma is easily proved from [1]

Lemma3.1 Let M be a fuzzy automata. If $\mu N(M) \neq \phi$ then $\mu N(M)$ is a subautomata of M.

Lemma3.2 Let M be a μ - directable fuzzy automata. Then $\mu N(M)$ is the kernel of M and $\mu N(M) = \mu R(M)$.

Theorem3.3 A fuzzy automata M is strongly directable if and only if it is strongly μ -directable.

Proof. Let M be a strongly directable fuzzy automata. Let $q \in N(M)$ and there exists $u \in \Sigma^*$ such that $f_M(p, u, q) > 0 \ \forall \ p \in Q$. In M, there exists two states q_i, q_j such that $f_M(q_i, a, q_j) = \mu$ [where μ is minimal weight in M] for some $a \in \Sigma$.

Since N(M) = M choose the suitable word v, that reaches the state q_i from the state q i.e., $f_M(p, uv, q_i) > 0 \ \forall \ p \in Q$.

Now, $f_M(p, uva, q_j) = Max\{Min_{q_i \in Q}\{f_M(p, uv, q_i), f_M(q_i, a, q_j)\}\} = \mu \ \forall \ p \in Q.$

Hence M is strongly $\mu-$ directable fuzzy automata.

Conversly, let M be a stronly μ - directable fuzzy automata. Then $\mu N(M) \neq \phi$ and by lemma 3.1 $\mu N(M)$ is a subautomata of M. But, since M is strongly μ - directable, it follows that $M = \mu N(M)$ i.e., for any $q \in Q$ there exists $u \in \Sigma^*$ such that $f_M(p, u, q) = \mu \forall p \in Q$

$$\Longrightarrow f_M(p, u, q) > 0 \ \forall \ p \in Q.$$

Hence M is strongly directable fuzzy automata.

Theorem3.4 Let M be a directable fuzzy automata with minimal weight $\mu \in M$. If there exists $p, q \notin N(M)$ and $a \in \Sigma$ such that $f_M(p, a, q) = \mu$. Then M is not μ - directable fuzzy automata.

Proof. Assume that M be a μ - directable fuzzy automata. Then for every $p \in Q$ and $u \in \Sigma^*$ there exist $q \in Q$ such that $f_M(p, u, q) = \mu$. Let $p_1 \in \mu N(M)$,

$$f_M(p_1, u, q) = f_M(p_1, u_1 a, q)$$
 where $u = u_1 a, u_1 \in \Sigma^*, a \in \Sigma$

 $\implies Max\{Min_{r\in Q}\{f_M(p_1,\ u_1,\ r),f_M(r,\ a,\ q)\}\} = \mu_1 > \mu.$ [Since, there is no

 $p_1 \& p_2 \in N(M)$ such that $f_M(p_1, a, p_2) = \mu$.] Which is a contradiction. Therefore M is not μ - direcable fuzzy automata.

Theorem3.5 Let $M = (Q, \Sigma, f_M)$ be a μ - directable fuzzy automata. Let $p \in Q$. Then the following conditions are equivalent.

- (i) p is a μ neck.
- (ii) is a strongly μ directable fuzzy automata.
- (iii) for every $v \in \Sigma^*$, there exists $u \in \Sigma^*$ such that $f_M(p, vu, p) = \mu$.

Proof. $(i) \Rightarrow (ii)$

Let p is a μ - neck of M. For every $q \in Q$ there exist a μ - directing word $u \in \Sigma^*$ such that $f_M(q, u, p) = \mu$. For any $q_1 \in P$ and $v \in \Sigma^*$ such that $f_M(q_1, uv, q_2) = Max\{Min_{r \in P} \{f_M(q_1, u, r), f_M(r, v, q_2)\}\} = \mu$ for some $q_2 \in P$. Hence P = P is strongly connected. Let $p_1 \in P$ and P = P and P = P is a P = P directing word of P = P. Hence P = P is a P = P directable.

$$(ii) \Rightarrow (iii)$$

Let be a strongly $\mu-$ directable fuzzy automata. Then p is a $u-\mu-$ neck of for some $u \in \Sigma^*$. Since is strongly $\mu-$ fuzzy directable, there exists some $p_1 \in$ and $v \in \Sigma^*$ such that $f_M(p, v, p_1) > 0$.

Now,
$$f_M(p, vu, p) = Max\{Min_{r \in \langle p \rangle}\{f_M(p, v, r), f_M(r, u, p)\}\} = \mu.$$

(iii) \Rightarrow (i)

Since M is μ - fuzzy directable, there exists u- directing word and $p_1 \in Q$ such that $f_M(q, u, p_1) = \mu \,\forall \, q \in Q$. For any $u \in \Sigma^*$ there exists $v \in \Sigma^*$ such that $f_M(p, uv, p) = \mu$. Let $q_1 \in Q$, $f_M(q_1, uv, p) = Max\{Min_{p_1} \in Q\{f_M(q_1, u, p_1), f_M(p_1, v, p)\}\} = \mu$. Hence p is a μ -neck.

4. Local μ - necks of fuzzy automta

Theorem 4.1.. Let M be a monogenically strongly directable fuzzy automata with minimal weight $\mu \in M$. If there exists $p, q \in LN(M)$ and $\forall u \in \Sigma^*$ such that $f_M(p, u, q) \neq \mu$. Then M is not a monogenically strongly μ - directable fuzzy automata.

Proof. Assume that M be a monogenically strongly μ - directable fuzzy automata. Then for every $p \in Q$ and $u \in \Sigma^*$ there exist $q \in Q$ such that $f_M(p, u, q) = \mu$. Let $p_1 \in L\mu N(M),$

 $f_M(p_1, u, q) = f_M(p_1, u_1u_2, q)$ where $u = u_1u_2$ where $u_1, u_2 \in \Sigma^*$

 $\Longrightarrow Max\{Min_{r\in Q}\{f_M(p_1,\ u_1,\ r),f_M(r,\ u_2,\ q)\}\} = \mu_1 > \mu.$ [Since, there is no $p_1\ \&\ p_2\in LN(M)$ and for any $u\in \Sigma^*$ such that $f_M(p_1,\ u,\ p_2)\neq \mu.$] Which is a contradiction. Therefore M is not a monogenically strongly $\mu-$ direcable fuzzy automata.

Theorem 4.2.. Let $M = (Q, \Sigma, f_M)$ be a fuzzy automata. Then the following conditions are equivalent.

- (i) Every state of M is a local μ neck, and $u \in \Sigma^*$ is a common μ directing word of M.
 - (ii) M is uniformly monogenically strongly μ directable fuzzy automata.
 - (iii) M is uniformly monogenically μ directable and μ reversible fuzzy automata.
 - (iv)M is direct sum of strongly μ -directable fuzzy automata.

Proof. $(i) \Rightarrow (ii)$

If every state $p \in Q$ is a local μ - neck of M, then by lemma 3.1 we have for every $p \in Q$ the monogenic subautomata of M is strongly μ -directable and $u \in \Sigma^*$ is a common μ - directing word of M, then every monogenic subautomaton of M have u as μ - directing word. Therefore, M is uniformly monogenically strongly μ - directable fuzzy automata.

$$(ii) \Rightarrow (iii)$$

If M is uniformly monogenically strongly $\mu-$ directable fuzzy automata, then it is clear that it is uniformly monogenically $\mu-$ directable fuzzy automata. On the other and, every monogenic subautomata of M is strongly connected, hence it follows that M is $\mu-$ reversible.

$$(iii) \Rightarrow (iv)$$

In [9] If M is reversible then it is a direct sum of strongly connected fuzzy automata M_{α} , $\alpha \in Y$. Let $\alpha \in Y$ and $p \in Q_{\alpha}$. Then $= M_{\alpha}$. Since M_{α} is strongly connected and by the monogenic μ - directability of a fuzzy automata M we have that $M_{\alpha} =$ is μ - directable. Therefore M_{α} is strongly μ - directable for any $\alpha \in Y$.

 $(iv) \Rightarrow (i)$

Let M be a direct sum of strongly μ - directable fuzzy automata M_{α} , $\alpha \in Y$. Then for each state $p \in Q$ there exists $\alpha \in Y$ such that $p \in M_{\alpha}$, that is $p \in M_{\alpha} = \mu N(M_{\alpha})$. So p is local μ - neck of M.

References

- M. Bogdanovic, S. Bogdanovic, M. Ciric, T. Petkovic, Necks of Automata, Novi Sad J.Math., 34 (2) (2004), 5-15.
- [2] K. Culik, J. Karhumaki, J. Kari, A Note on Synchronized Automata and Road Coloring Problem, International Journal of Foundations of Computer Science 13(2002), 459-471.
- [3] A. Kandel, S. C. Lee Fuzzy Switching and Automata Theory Applications, Edward Arnold Publishers Ltd. London.
- [4] J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages-Theory and Applications, Chapman & Hall/ CRC Press, (2002).
- [5] T. Petkovic, M. Ciric, S. Bogdanovic, Decompositions of Automata and Transition Semigroups, Acta Cybernetica., (Szeged) 13(1998), 385-403.
- [6] Z. Popovic, S. Bogdanovic, T. Petkovic, M. Ciric, Generalized Directable Automata, Publ. Math. Debrecen 60 (3-4)(2002), 661- 667.
- [7] Z. Popovic, S. Bogdanovic, T. Petkovic, M. Ciric, *Trapped Automata*, Words, Languages and Combinatories.III. Proceedings of the Third International Colloquium in Kyoto, Japan, (M.Ito and T. Imaka, eds.), World Scientific, (2003), 378-395.
- [8] E.S. Santos, General Formulation of Sequential Machines, Information and control 12 (1968), 5-10.
- [9] G. Thierrin Decompositions of Locally Transitive Semiautomata, Utilitas Mathematica 2(1972), 25-32.
- [10] W.G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification., Ph.D. Thesis Purude University (1967).
- [11] L.A. Zadeh, Fuzzy Sets, Information and control 8 (1965), 338-353.