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Abstract. We introduce u— necks of fuzzy automata, that is we find a word that brings each state of a
fuzzy automata to a single state with minimal weight p [0 < p < 1] and also we introduce local pu— necks
of fuzzy automata that is, it is a u— neck of some subautomata of a fuzzy automata. Further, we study

the structural properties of fuzzy automata using the notions of their u—necks and local p— necks.
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1. INTRODUCTION

Directable automata is also known as Synchronizable which are significant type of au-
tomata with very interesting algebraic properties and important applications in various
branches of computer science [2]. Various specializations and generalizations of directable
automata have appeared recently. T. Petkovic et al. [5] introduced and studied mono-
genically, locally and generalized directable automata. These automata are also refered
by Z. Popovic et al. [6] and [7]. Milena Bogdanovic et al. [1] studied directable automata
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using their necks. The theory of fuzzy set was introduced by L.A. Zadeh in 1965 [11].
The mathematical formulation of a fuzzy automaton was first proposed by W.G. Wee in
1967 [10]. E.S. Santos 1968 [8] proposed fuzzy automata as a model of pattern recogni-
tion. John N. Mordeson and D.S. Malik gave a detailed account of fuzzy automata and
languages in their book 2002 [4].

We introduce p— necks of a fuzzy automata, that is we find a word that brings each
state of a fuzzy automata to a single state with minimal weight p [0 < p < 1]. We
introduce local pu— necks of fuzzy automata. It is a u— neck of some subautomata of a
fuzzy automata. We shown that set of p—necks in a fuzzy automata is a subautomata
and it is a least subautomata of a fuzzy automata. We obtain a necessary and sufficient
condition for a fuzzy automata to be strongly u— directable. Also we obtain a condition
for fuzzy automata under which it is not u— directable. Also we establish some equivalent
conditions for uniformly monogenically strongly u— directable fuzzy automata.

2. BASIC CONCEPTS

2.1. Fuzzy automata [3]. A finite fuzzy automata is a system of 5 tuples, M = (Q, X, 7, n, fur)
where @Q-set of states {q1, q2,...., Gn}

Y.-alphabets (or) input symbols

m-@Q — [0, 1] initial state designator

n-QQ — [0, 1] final state designator

fu-function from @ x X x @ — [0, 1]

fu(gi, o, ¢;) = p [0 < p < 1] means when M is in state ¢; and reads the input o will
move to the state g; with weight function p. For each o € ¥ we can form a n x n matrix
F(o) whose (i,j) the element is fi(g;, o0, g;). For x € ¥* and if x = 01 09 ... oy
F(z) = F(01)o F(og)0.....0 F(o,,)

In otherwords F'(z) is the fuzzy sum of fuzzy products of weights taken over the paths in

the automata.

Note
fu(i, x, j)is the (7, 7) the element of F'(x)
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Jfu(s, x, t) =Max{Min{ fa(s, o1, q1), fr(q1, 02, @), eovey frr(Gm-1, Om, t)}} where Max
is taken over all the paths from s to t.
Note
F,

bg(w) denotes p™ row and ¢ column of a matrix F(w).

2.2. Sub automata [4]. Let M = (Q, X, fy) be a fuzzy automata. An automaton
N = (@4, X, fy) is called subautomata of M if for any v € ¥* and g € @4, then there

exists ¢’ € Q1 such that fy(g, u, ¢') > 0 where fy is the restriction of f); into N.

2.3. Strongly connected fuzzy automata. Let M = (Q, 3, fy) be a fuzzy automata.
M is said to be strongly connected if for every p, ¢ € Q) there exists u € X*such that

fu(p, u, q) > 0. Equivalently, M is strongly connected if it has no proper subautomata.

2.4. Subautomata generated by ¢. Let M = (Q, X, fy) be a fuzzy automata and
let ¢ € Q. The subautomata of M generated by ¢ is denoted by < ¢ >. It is given by
<qg>={q / fulqg, u, 1) >0, ueX*}. Tt is called least subautomata of M containing

q and it is also called monogenic subautomata of M.

2.5. Subautomata generated by H. For any non-empty H C (@, the subautomata of
M generated by H is denoted by < H > and is given by

<H>={q/ fulqg, w, ¢1) >0, g€ H, we X*}. Tt is called least subautomata of M
containing H. The least subautomata of a fuzzy automata M, if it exists is called the

kernel of M.

2.6. Necks of fuzzy automata. Let M = (Q, X, fuy) be a fuzzy automata. A state
q € Q is called a neck of M if there exists u € X* such that fy/(p, u, ¢) > 0 for every
pEQ.

In that case ¢ is also said to be a u-neck of M and the word u is called a directing word

of M. If M has a directing word, then M is called directable fuzzy automata.

2.7. u— Necks of fuzzy automata. Let M = (Q, X, fuy) be a fuzzy automata. A
state ¢ € () is called a u— neck of M if there exists u € ¥* and minimal weight p in M
[0 < o < 1] such that fy(p, u, q) = p for every p € Q.
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In that case ¢ is also said to be a u-pu—neck of M and the word u is called a p—directing

word of M. If M has a u— directing word then M is called u— directable fuzzy automata.

Note
1) The set of all u— necks of a fuzzy automata M is denoted by puN(M).

2) The set of all u—directing words of a fuzzy automata M is denoted by pDW (M).

3) If a fuzzy automata M is strongly p— directable then M = uN (M)

Example
Fuzzy automata with p-necks
b(0.6)
\2
) N
<} S)
© ©
a(0.5)
®
Fig-1
In Fig-1, fa(p, aab, 1) = 0.1V p € Qand fr(p, aaba, 3) = 0.1V p € Q. Hence the

states 1 and 3 are pu— necks of M.
Fuzzy automata with no p-necks

b(0.6)
< 2
L) ,:i
(Y). -
S Ve
a(0.2)
<
N
A>T Fig-2

In Fig-2, the states 1 and 3 are necks of M but not u— necks and directing words are

aab and aaba but not pu— directing words.
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2.8. u— Reversible fuzzy automata. Let M = (Q, X, fu) be a fuzzy automata. A
state ¢ € () is called pu— reversible. If for everyword v € ¥* there exists a word u € >* such
that fi/(q, vu, q) = p and the set of all u— reversible states of M called the p—reversible
part of M is denoted by uR(M).
If it is non empty pR(M) is a subautomata of M.
Note

(i) If all states of a fuzzy automata M are u— reversible, then the fuzzy automata
M = (Q, X, fu) is called u— reversible fuzzy automata.

(ii) If M is a p— directable fuzzy automata implies that it is a directable fuzzy automata.
Then the converse need not be true. i.e If M is directable fuzzy automata then it need

not be a u— directable fuzzy automata.

2.9. Local p— necks of fuzzy automata. Let M = (Q, 3, fi) be a fuzzy automata.
We say that a state ¢ € @ is called local p— neck of M, if it is p—neck of some pu—
directable fuzzy subautomata of M. The set of all local y— necks of M is denoted by
LuN(M).
Example

Fuzzy automata M with local p-necks

Subautomaton M'of M

b(0.6)

a(0.7)
(zoke
a(0.7)

(zoke

In Fig-3, 1 and 3 are local p1— necks as it is a u— neck of subautomata M'(Fig-4) of M

with pu— directing words aab and aaba respectively.
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Fuzzy automata M with no local p-necks

a(0.7)

Fig-5

In Fig-5, 1 and 3 are local necks but not local u— necks with directing words aab, aaba

and not p— directing words.

2.10. Monogenically ;— directable fuzzy automata. A fuzzy automata M is called
monogenically p— directable, if every monogenic subautomata of M is u— directable
fuzzy automata.

Example

Monogenically fuzzy p-directable automata M

Fig- 6

In Fig-6, M; and M, are monogenic subautomata with pu— directing words aa and bbb

respectively.

2.11. Monogenically strongly pu— directable fuzzy automata. A fuzzy automata

M is called monogenically strongly p— directable, if every monogenic subautomata of M

is strongly p— directable.
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Example

Monogenically strongly fuzzy p- directable automata M

Fig-7

In Fig-7, M, and M, are strongly monogenic subautomata with p— directing words

aab and bba respectively.

2.12. Common p— directing word. Let M = (@, X, fy) be a fuzzy automata. We
define a word u € X* to be a common p—directing word of M, if u is a u— directing

word of every monogenic subautomata of M i.e.,ifu € uDW(<p >), foreveryp € Q.

2.13. Uniformly monogenically ;— directable fuzzy automata. Let M be a fuzzy
automata. M is called uniformly monogenically p—directable fuzzy automata, if every
monogenic subautomata of M is u— directable and have atleast one common p— directing

word.

2.14. Uniformly monogenically strongly p— directable fuzzy automata. Let M
be a fuzzy automata. M is called uniformly monogenically strongly pu— directable fuzzy
automata, if every monogenic subautomata of M is strongly p— directable and have
atleast one common p— directing word.
Note

(i) If M is monogenically strongly u— directable fuzzy automata implies that M is
monogenically strongly directable fuzzy automata. The converse is need not be true.

(ii) If M is uniformly monogenically strongly pu— directable fuzzy automata implies
that M is uniformly monogenically strongly directable fuzzy automata. The converse is

need not be true.



u— NECKS OF FUZZY AUTOMATA 469

3. p— NECKS OF FUZZY AUTOMTA

The following lemma is easily proved from [1]
Lemma3.1 Let M be a fuzzy automata. If uN(M) # ¢ then uN(M) is a subautomata
of M.
Lemma3.2 Let M be a u— directable fuzzy automata. Then N (M) is the kernel of M
and pN(M) = pR(M).
Theorem3.3 A fuzzy automata M is strongly directable if and only if it is strongly pu—
directable.
Proof. Let M be a strongly directable fuzzy automata. Let ¢ € N(M) and there exists
w € ¥* such that fuy(p, u, ¢) >0V p € Q. In M, there exists two states g;, ¢; such that
fu(ai, a, qj) = p [where g is minimal weight in M| for some a € X.
Since N(M) = M choose the suitable word v, that reaches the state ¢; from the state ¢
ie., fu(p, wo, ¢;) >0V peqQ.
Now, fu(p, wva, q;) = Maz{Mingco{fu(p, w, @), fu(a, a, ¢;)}} =p V¥ peqQ.
Hence M is strongly pu— directable fuzzy automata.
Conversly, let M be a stronly pu— directable fuzzy automata. Then pN (M) # ¢ and by
lemma 3.1 uN(M) is a subautomata of M. But, since M is strongly p— directable, it
follows that M = uN (M) i.e., for any g € @ there exists u € ¥* such that fy(p, u, q) =
pVp e Q

= fu(p; u, ) >0V p € Q.
Hence M is strongly directable fuzzy automata.
Theorem3.4 Let M be a directable fuzzy automata with minimal weight € M. If there
exists p, ¢ ¢ N(M) and a € ¥ such that fy(p, a, ¢) = u. Then M is not pu— directable
fuzzy automata.
Proof. Assume that M be a u— directable fuzzy automata. Then for every p € @) and
u € X* there exist ¢ € @ such that fy(p, u, q) = pu. Let py € uN(M),
fu(p1, w, q) = fu(p1, wa, q) where u = uja, up € £, a € ¥

= Max{Min.co{fu(p1, v, 7), fu(r, a, ¢)}} = p1 > p. | Since, there is no
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p1 & pa € N(M) such that fa(p1, a, p2) = p.] Which is a contradiction. Therefore M is
not p— direcable fuzzy automata.
Theorem3.5 Let M = (Q, X, fu) be a u— directable fuzzy automata. Let p € Q. Then
the following conditions are equivalent.

(i) p is a u— neck.

(il)< p > is a strongly u— directable fuzzy automata.

(iii) for every v € X* there exists u € X* such that fy(p, vu, p) = p.
Proof. (i) = (i)
Let p is a u— neck of M. For every q € () there exist a u— directing word v € X*
such that fu(q, w, p) = p. For any ¢ €< p > and v € ¥* such that fy(q1, wv, ¢)=
Max{Min,ccp={fr(q, uw, v), fu(r, v, g2)}} = p for some ¢ €< ¢ > . Hence < p >
is strongly connected. Let p; €< p > and w is a pu— directing word of M. Then
fu(p1, u, p) = p. Hence < p > is a pu— directable.
(id) = (iid)
Let < p > be a strongly pu— directable fuzzy automata. Then p is a u — u— neck of
< p > for some u € ¥*. Since < p > is strongly u— fuzzy directable, there exists some
p1 € <p>and v € ¥* such that fy(p, v, p1) > 0.
Now, fu(p, vu, p) = Max{Min,ccp={fm(p, v, 7), fu(r, v, p)}} = p.
Since M is u— fuzzy directable, there exists u— directing word and p; € ( such that
fu(g, uy, pr1) =puVq € Q.Forany u € X* there exists v € ¥* such that fy,(p, uv, p) =
p. Let ¢ € Q, fulq, wv, p)= M‘W{M’mpl € Q{fM(CJh u, ;1), fu(p1, v, )} = .
Hence p is a p—neck.

4. LOCAL u— NECKS OF FUZZY AUTOMTA

Theorem 4.1.. Let M be a monogenically strongly directable fuzzy automata with minimal
weight p € M. If there exists p, ¢ € LN(M) and Yu € ¥* such that fy(p, w, q) # u.

Then M is not a monogenically strongly u— directable fuzzy automata.

Proof. Assume that M be a monogenically strongly u— directable fuzzy automata.

Then for every p € @ and u € X* there exist ¢ € @ such that fy(p, w, q) = p. Let
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p1 € LuN (M),
fru(p1, u, q) = fu(pr, wiug, q) where u = ujugwhere uy, uy € X
= Max{Min,co{fr(p1, w1, 7), fa(r, w2, ¢)}} = 1 > p. [ Since, there is no
p1 & po € LN(M) and for any u € 3* such that fy(p1, w, p2) # p.] Which is a

contradiction. Therefore M is not a monogenically strongly p1— direcable fuzzy automata.

Theorem 4.2.. Let M = (Q, 2, fu) be a fuzzy automata. Then the following conditions
are equivalent.

(i) Every state of M is a local p— neck, and u € ¥* is a common p— directing word of
M.

(11)M is uniformly monogenically strongly p— directable fuzzy automata.

(111)M is uniformly monogenically p— directable and p— reversible fuzzy automata.

(iv)M s direct sum of strongly p—directable fuzzy automata.

Proof.(i) = (ii)

If every state p € @ is a local u— neck of M, then by lemma 3.1 we have for every
p € (@ the monogenic subautomata < p > of M is strongly pu—directable and u € ¥*
is a common p— directing word of M, then every monogenic subautomaton of M have u
as pu— directing word. Therefore, M is uniformly monogenically strongly p— directable
fuzzy automata.

If M is uniformly monogenically strongly u— directable fuzzy automata, then it is clear
that it is uniformly monogenically u— directable fuzzy automata. On the otherhand,
every monogenic subautomata of M is strongly connected, hence it follows that M is pu—
reversible.

(1i1) = (iv)

In [9] If M is reversible then it is a direct sum of strongly connected fuzzy automata M,,
a € Y. heta € Yandp € @,. Then < p >= M,. Since M, is strongly connected
and by the monogenic u— directability of a fuzzy automata M we have that M, =< p >

is u— directable. Therefore M, is strongly p— directable for any o € Y.
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(iv) = (i)

Let M be a direct sum of strongly u— directable fuzzy automata M,, a € Y. Then for

each state p € (@ there exists @ € Y such that p € M,, thatisp € M, = uN(M,).

So p is local p— neck of M.

[1]

2]

[10]

[11]

REFERENCES

M. Bogdanovic, S. Bogdanovic, M. Ciric, T. Petkovic, Necks of Automata, Novi Sad J.Math., 34 (2)
(2004), 5-15.

K. Culik, J. Karhumaki, J. Kari, A Note on Synchronized Automata and Road Coloring Problem,
International Journal of Foundations of Computer Science 13(2002), 459-471.

A. Kandel, S. C. Lee Fuzzy Switching and Automata Theory Applications, Edward Arnold Publishers
Ltd. London.

J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages-Theory and Applications, Chapman
& Hall/ CRC Press, (2002).

T. Petkovic, M. Ciric, S. Bogdanovic, Decompositions of Automata and Transition Semigroups, Acta
Cybernetica., (Szeged) 13(1998), 385-403.

Z. Popovic, S. Bogdanovic, T. Petkovic, M. Ciric, Generalized Directable Automata, Publ. Math.
Debrecen 60 (3-4)(2002), 661- 667.

Z. Popovic, S. Bogdanovic, T. Petkovic, M. Ciric, Trapped Automata, Words, Languages and Com-
binatories.III. Proceedings of the Third International Colloquium in Kyoto, Japan,(M.Ito and T.
Imaka, eds.), World Scientific, (2003), 378- 395.

E.S. Santos, General Formulation of Sequential Machines, Information and control 12 (1968), 5-10.
G. Thierrin Decompositions of Locally Transitive Semiautomata, Utilitas Mathematica 2(1972), 25-
32.

W.G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to
pattern classification., Ph.D. Thesis Purude University (1967).

L.A. Zadeh, Fuzzy Sets , Information and control 8 (1965), 338-353.



