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Abstract: In this paper presents a comparison of Leapfrog and single-term Haar wavelet series (STHW) method 

to solve the second order linear system with singular-A. The results obtained using Leapfrog method and the 

STHW methods are compared with the exact solutions of the second order linear system with singular-A. It is 

observed that the result obtained using Leapfrog method is closer to the true solutions of the problems. Error 

graphs for the numerical results and exact solutions are presented in a graphical form to highlight the efficiency 

of this STHW. 
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1. Introduction 

Many of the real world problems that arise in the studies of mechanical vibrations, electrical 

circuits, planetary motions, etc., can be formulated as second order differential equations of 
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the form 

   yyxfxy  ,,  

with initial condition    00 yxy  and   00 yxy    . Singular systems are being applied to 

solve a variety of problems involved in various disciplines of science and engineering.  

They are applied to analyze neurological events and catastrophic behavior and they also 

provide a convenient form for the dynamical equations of large scale interconnected systems.  

Further, singular systems are found in many areas such as constrained mechanical systems, 

fluid dynamics, chemical reaction kinetics, simulation of electrical networks, electrical circuit 

theory, power systems, aerospace engineering, robotics, aircraft dynamics, neural networks, 

neural delay systems, network analysis, time series analysis, system modeling, social systems, 

economic systems, biological systems etc. [1, 2, 3, 7-14]. 

Wazwaz (1994) published a paper on modified Runge-Kutta formula based on a variety of 

means of third order. Murugesan et al. (1999,2000,2001) have analyzed different second-order 

systems and multivariable linear systems via RK method based on centroidal mean, and also, 

they extended RK formulae based on variety of means to solve system of IVPs. A second order 

linear system with singular-A of the form 

       tCutBxtxAtxK    

with initial condition    00 xx   and    00 xx    where K  is an nn  matrix, A  is an 

nn  singular matrix and B and C are pn  constant matrices respectively.  tx  is an 

n-state vector and  tu is the p-input control vector. This system with singular-A has many 

aspects and applications.  

STHW can have a significant impact on what is considered a practical approach and on the 

types of problems that can be solved. S. Sekar and team of his researchers [7 - 13] introduced 

the STHW to study the time-varying nonlinear singular systems, analysis of the differential 

equations of the sphere, to study on CNN based hole-filter template design, analysis of the 

singular and stiff delay systems and nonlinear singular systems from fluid dynamics, 

numerical investigation of nonlinear volterra-hammerstein integral equations, to study on 

periodic and oscillatory problems,  and numerical solution of nonlinear problems in the 
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calculus of variations. In this paper, we consider the system with singular-A to solve by using 

the Leapfrog method. The results are compared with STHW method and with exact solution 

of the problem. 

 

2. Leapfrog method 

In mathematics Leapfrog integration is a simple method for numerically integrating 

differential equations of the form  xFx  , or equivalently of the form   vxxFv   , , 

particularly in the case of a dynamical system of classical mechanics. Such problems often 

take the form  xVx  , with energy function    xVvvxE 
2

2

1
, , where V is the 

potential energy of the system. The method is known by different names in different 

disciplines. In particular, it is similar to the Velocity Verlet method, which is a variant of 

Verlet integration. Leapfrog integration is equivalent to updating positions  tx and velocities 

   txtv   at interleaved time points, staggered in such a way that they 'Leapfrog' over each 

other. For example, the position is updated at integer time steps and the velocity is updated at 

integer-plus-a-half time steps. 

Leapfrog integration is a second order method, in contrast to Euler integration, which is only 

first order, yet requires the same number of function evaluations per step. Unlike Euler 

integration, it is stable for oscillatory motion, as long as the time-step t is constant, and 

wt 2 . In Leapfrog integration, the equations for updating position and velocity are 

 

,

,

2121

211

tavv

xFa

tvxx

iii

ii

iii











 

where ix is position at step 21, ivi , is the velocity, or first derivative of x, at step 

 ii xFai  ,21 is the acceleration, or second derivative of x, at step i and t is the size of 

each time step. These equations can be expressed in a form which gives velocity at integer 

steps as well. However, even in this synchronized form, the time-step t must be constant to 

maintain stability.  

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Euler_integration
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  .
2

1

,
2

1

11

2

1

taavv

tatvxx

iiii

iiii









 

One use of this equation is in gravity simulations, since in that case the acceleration depends 

only on the positions of the gravitating masses, although higher order integrators (such as 

Runge–Kutta methods) are more frequently used. There are two primary strengths to 

Leapfrog integration when applied to mechanics problems. The first is the time-reversibility 

of the Leapfrog method. One can integrate forward n steps, and then reverse the direction of 

integration and integrate backwards n steps to arrive at the same starting position. The second 

strength of Leapfrog integration is its symplectic nature, which implies that it conserves the 

(slightly modified) energy of dynamical systems. This is especially useful when computing 

orbital dynamics, as other integration schemes, such as the Runge-Kutta method, do not 

conserve energy and allow the system to drift substantially over time. 

 

3. Error terms 

The local error in position of the this integrator is  4tO  as described above, and the local 

error in velocity is  2tO  . The global error in position, in contrast, is  2tO  and the global 

error in velocity is  2tO  . These can be derived by noting the following: 

    4

0 tOttxerror   

and 

         4

0

2

000 22 tOttxttxttxttx   

Therefore: 

         44

00 322 tOtOttxerrorttxerror   

Similarly: 

    
    
    4

0

4

0

4

0

155

104

63

tOttxerror

tOttxerror

tOttxerror







 

Which can be generalized to (it can be shown by induction, but it is given here without 

http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
http://en.wikipedia.org/wiki/Time-reversibility
http://en.wikipedia.org/wiki/Symplectic_integrator


808                  S. KARUNANITHI, S. CHAKRAVARTHY AND S. SEKAR 

proof): 

  
   4

0
2

1
tO

nn
tntxerror 


  

If we consider the global error in position between  tx and  Ttx  , where tnT  , it is 

clear that: 

    4

2

2

0
22

tO
t

T

t

T
Ttxerror 













  

And therefore, the global (cumulative) error over a constant interval of time is given by: 

    2

0 tOTtxerror   

Because the velocity is determined in a non-cumulative way from the positions in this 

integrator, the global error in velocity is also  2tO  . In molecular dynamics simulations, the 

global error is typically far more important than the local error, and this integrator is therefore 

known as a second-order integrator. 

 

4. Second order linear system with singular – A 

When the second order linear system with singular-A and B=C=0 is considered, it becomes 

                             txAtx            (1) 

with initial conditions   00 xx   and    00 xx                                      

By taking 











60

20
A   along with the initial conditions    










1

1
0x  and 

  









1

1
0x equation (1) becomes 

   

   txtx

txtx

22

21

6

2








 

Therefore the exact solution is  

 
18

17

3

4

18

1 6

1 







  tetx t ,  

  tetx 6

2
6

1

6

7  ,  
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 
3

4

3

1 6

1   tetx  and   tetx 6

2

    

The approximate and exact solutions are calculated for the above problem mention in this 

section using Leapfrog method and STHW method for 1x and 2x for different time intervals 

and the error between them are shown in the Tables 1 and 2 along with exact solutions. Error 

graphs are presented in Figures 1and 2 to highlight the effectiveness of the Leapfrog method.  

 

Table 1. Solutions for the problem in section 3 at various values of 1x .                           

S
. 
N

o
 

T
im

e 
t 

 Approximate solution of 1x   

Exact 

Solutions  

STHW 

Solutions 

STHW 

Error 

Leapfrog  

Solutions 

Leapfrog 

Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

1.000000 

1.290174 

1.613877 

1.945062 

2.277916 

2.611142 

2.944451 

3.277779 

3.611111 

1.000000 

1.290174 

1.613877 

1.945062 

2.277916 

2.611142 

2.944451 

3.277779 

3.611111 

0 

1E-06 

1E-06 

2E-06 

2E-06 

2E-06 

3E-06 

3E-06 

3E-06 

1.000000 

1.290174 

1.613877 

1.945062 

2.277916 

2.611142 

2.944451 

3.277779 

3.611111 

0 

1E-08 

1E-08 

2E-08 

2E-08 

2E-08 

3E-08 

3E-08 

3E-08 
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Figure 1. Error graph for problem in section 3 at 1x  

 

Table 2. Solutions for the problem in section 3 at various values of 2x . 

S
. 
N

o
 

T
im

e 
t 

 Approximate solution of 2x  

Exact 

Solutions  

STHW 

Solutions 

STHW 

Error 

Leapfrog  

Solutions 

Leapfrog  

Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

1.000000 

1.129478 

1.158368 

1.164815 

1.166254 

1.166574 

1.166646 

1.166662 

1.166666 

1.000000 

1.129478 

1.158368 

1.164815 

1.166254 

1.166574 

1.166646 

1.166662 

1.166666 

0 

1E-06 

1E-06 

0 

3E-06 

3E-06 

4E-06 

4E-06 

4E-06 

1.000000 

1.129478 

1.158368 

1.164815 

1.166254 

1.166574 

1.166646 

1.166662 

1.166666 

0 

1E-08 

1E-08 

0 

2E-08 

2E-08 

3E-08 

3E-08 

3E-08 
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Figure 2. Error graph for problem in section 3 at 2x  

 

5. Second order multivariable linear system with singular-A involving three 

variables 

When a second order linear multivariable system with singular-A of the form (1) is 

considered. 















 



000

000

100

A ,

























300

020

003

B , 

























100

110

011

C , and  Tu 001  

with    Tx 0000  and    Tx 3200  . Hence, the equation (1) becomes 

13 131  xxx                  

22 2xx   

33 3xx       

The exact solution is  

                      

tx

tx

t
ttx

3s i n3

2s i n2

3

1

3

3c o s
3s i n

2

3

3

2

1




















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Table 3. Solutions for the problem in section 4 at various values of 1x . 
S

. 
N

o
 

T
im

e 
t 

 Approximate solution of 1x  

Exact 

Solutions  

STHW 

Solutions 

STHW 

Error 

Leapfrog  

Solutions 

Leapfrog  

Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

0.000000 

-0.060082 

-0.212472 

-0.381824 

-0.467938 

-0.376974 

-0.053164 

0.497501 

1.198450 

0.000000 

-0.060082 

-0.212472 

-0.381824 

-0.467938 

-0.376974 

-0.053164 

0.497501 

1.198450 

0 

5E-06 

8E-06 

2E-06 

1E-06 

9E-06 

2E-06 

6E-06 

9E-06 

0.000000 

-0.060082 

-0.212472 

-0.381824 

-0.467938 

-0.376974 

-0.053164 

0.497501 

1.198450 

0 

0 

1E-07 

1E-07 

2E-08 

2E-08 

2E-09 

3E-09 

3E-08 

 

 

 

 

Figure 3. Error graph for problem in section 4 at 1x  
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Table 4. Solutions for the problem in section 4 at various values of 2x . 

S
. 
N

o
 

T
im

e 
t 

 Approximate solution of 2x  

Exact 

Solutions  

STHW 

Solutions 

STHW 

Error 

Leapfrog  

Solutions 

Leapfrog  

Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

0.000000 

0.489648 

0.918725 

1.234153 

1.396911 

1.386868 

1.205264 

0.874565 

0.435679 

0.000000 

0.489648 

0.918725 

1.234153 

1.396911 

1.386868 

1.205264 

0.874565 

0.435679 

53E-06 

53E-06 

78E-06 

92E-06 

91E-06 

19E-06 

62E-06 

26E-06 

99E-06 

0.000000 

0.489648 

0.918725 

1.234153 

1.396911 

1.386868 

1.205264 

0.874565 

0.435679 

1E-06 

1E-07 

1E-07 

1E-07 

2E-08 

2E-08 

2E-09 

3E-09 

3E-08 

 

 

 

Figure 4. Error graph for problem in section 4 at 2x  
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Table 5. Solutions for the problem in section 4 at various values of 3x . 

S
. 
N

o
 

T
im

e 
t 

 Approximate solution of 3x  

Exact 

Solutions  

STHW 

Solutions 

STHW 

Error 

Leapfrog  

Solutions 

Leapfrog  

Error 

1 

2 

3 

4 

5 

6 

7 

8 

9 

0 

0.25 

0.5 

0.75 

1 

1.25 

1.5 

1.75 

2 

0.000000 

0.726781 

1.319407 

1.668485 

1.709580 

1.435106 

0.895728 

0.191008 

-0.548969 

0.000000 

0.726781 

1.319407 

1.668485 

1.709580 

1.435106 

0.895728 

0.191008 

-0.548969 

53E-06 

53E-06 

78E-06 

92E-06 

91E-06 

19E-06 

62E-06 

26E-06 

99E-06 

0.000000 

0.726781 

1.319407 

1.668485 

1.709580 

1.435106 

0.895728 

0.191008 

-0.548969 

1E-09 

1E-09 

1E-09 

1E-09 

2E-09 

2E-09 

2E-09 

3E-09 

3E-09 

 

 

Figure 5. Error graph for problem in section 4 at 3x  

 

Using Leapfrog method and STHW method to solve the above problem mention in this 

section, the approximate solutions and the exact solutions have been determined and are 



COMPARISON OF LEAPFROG AND SINGLE TERM HAAR WAVELET SERIES METHOD   815 

presented in Tables 3 - 5. The error graph for the three variables 21, xx and 3x  are presented 

in the Figures 3 -5 respectively. 

 

6. Conclusions  

The Leapfrog is a powerful, accurate, and flexible tool for solving many types of singular 

systems (problems) in scientific computation. The obtained approximate solutions of the 

second order linear system with singular-A is compared with exact solutions and it reveals 

that the Leapfrog method works well for finding the approximate solutions. From the Tables 

1 – 5, one can observe that for most of the time intervals, the absolute error is less (almost no 

error) in Leapfrog method when compared to the STHW method, which yields a little error, 

along with the exact solutions. From the Figures 1 – 5, it can be predicted that the error is 

very less in Leapfrog method when compared to the STHW method. Hence, Leapfrog 

method is more suitable for studying second order linear system with singular-A. 
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