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Abstract: In this paper we considered generalized Kepler problem with drag in two dimensions in the analysis of 

Lie Symmetry of dynamical systems using reduction method. And we obtain its symmetries via reduction method, 

many of which are nonlocal type. We obtain the Laplace-Runge-Lenz vectors as well as the corresponding 

Ermanno-Bernoulli constants of this dynamical system. We also obtain the exact symmetry transformations of the 

dynamical system. 
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1. Introduction 

Since the inception of the concept of point symmetry for solving for the solutions of differential 

equations by Siphus Lie, the literature had received volumes in term of Lie point symmetry and 

group algebra of one differential equation or another. This formidable tool called Lie groups 

transient most fields of applied Mathematics and theoretical Physics to mention but a few. Kepler 

problem posed a challenge while determining the complete symmetry groups which specify its 

equation of motion completely. The manifestation of only five Lie point symmetry groups of the 
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Kepler equation of motion was not sufficient to specify the equation of motion of the Kepler 

problem completely (Nucci [1], Katzin and Levine, [2], [3]; Leach [4]); until Krause [5] 

introduced his concept of complete symmetry groups which combined both Lie point and 

nonlocal symmetries in the treatment of the Kepler problem. Essentially, the complete symmetry 

groups of differential equations is the group of symmetry transformations required to specify 

completely the differential equation (Andriopoulos, Leach and Flessas [6]; Andriopoulos and 

Flessas [7]. Krause [5] established that the Kepler problem could be completely specified by 

combining the five Lie point symmetries and some nonlocal symmetries of the Kepler problem 

(obtained by some ad hoc technique) although this is not the case for every differential equation. 

Krause [5] also opined that these nonlocal symmetries could not be obtained using the Lie 

algorithm; but this was not true by the work of Nucci [8]. It is hereby noted that the dimensions 

of the symmetry groups which specify a differential equation completely is not unique (Arunaye 

[9]; Andriopoulos, Leach and Flessas [6]). 

Fundamentally, since the work of Krause [5], the concern for nonlocal symmetry became 

prominent in the literature. A significant physical application is the work of J. Krause on the 

Kepler problem (White [10]) it was observed there that there exist dynamical systems other than 

the Kepler problem for which its Lie symmetry is a symmetry group (White [11], [12]). More 

also the Nucci-reduce algorithm for computing symmetry groups of nontrivial dynamical 

problem with pencil and papers could be very complicated and complex. Suffices to say that one 

must develop ingenuity in the choice of change of variables and computational skills to reduce 

the nonlinear system to system of two linear equations with one second order and (n-1) first 

order (for an n-dimensional argument) equations in the reduced system which admits Lie 

algorithm to obtain the Lie symmetries. The importance of nonlocal symmetries in the 

integration of differential equations was treated by Abraham-Shrauner, Govinder and Leach [13] 

while considering a class of integrable second order equation with no Lie point symmetry (Leach 

and Andriopoulos [14]). The usefulness of nonlocal symmetries broadens the class of dynamical 

systems which can be reduced to algebraic form (Géronimi, Felix and Leach [15]) as well as 
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establishing the integrability of differential equations on the existence of infinite nonlocal 

symmetries of differential equation (Leach and Andriopoulos [14]; Arunaye [9]). We note that 

the dimensions of the symmetry groups which specify a dynamical system completely are not 

unique (Andriopoulos, Leach and Flessas [6]; Arunaye [9]). Also the Kepler and related 

dynamical systems could be reduced to system of oscillator 0 uu and conservation 

law 0L  ; and it is well known that 0 uu  has eight dimensional transformation groups. 

And such groups exist for any dynamical system admitting a Laplace-Runge-lenz (LRL) vector 

and translation symmetry for first integral arising out of the equation of motion for the angular 

momentum. These groups were reported to completely specify the dynamical system completely 

in the content of complete symmetry groups of Krause [5]. However it was later found that there 

are groups of smaller dimensions which have this property. The oscillator 0 uu was found 

to possess three complete symmetry algebras that is, algebras which generate complete 

symmetry groups (Andriopoulos and Leach [7] and Leach, Andriopoulos and Nucci [16]). In 

section 2, we introduce the generalized Kepler problem with drag force in its two components 

motion and reduced them to system of oscillator and conservation law. Section 3 presents the Lie 

symmetry group of the reduced systems as well as the corresponding symmetries of the original 

dynamical system most of which are nonlocal types. 

 

2. Preliminaries 

2.1 Reduction of the generalized Kepler problem with drag on the cone of motion 

The equation governing the motion of the generalized Kepler problem with drag force is given 

by 
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where )(rgg  , rx , and  is arbitrary constant; while over-dot represent derivation with 

respect to time t  (Arunaye, [9]). This dynamical system has its radial and transverse 

components of motion in the plane of motion respectively given by 
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Equation (2) implies 
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where 2rL   is the magnitude of the angular momentum of the motion. On integrating (4) we 

obtain 2

1

)( 3grAL   where A , is the constant of integration. On applying the isomorphic 

transformations formulae of Arunaye [9] for reducing dynamical systems to systems of 

oscillator(s) and conservation law(s), equations (2) and (3) respectively reduced to 
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3. Main results 

3.1  Symmetry groups of the dynamical system 

The Lie symmetry groups of the reduced system is well known in the literature (Leach [17], [18]; 

Nucci [8], [19]; Prince and Eliezer [20], [21]; Bluman and Kumei [22]; Arunaye [23]), they are 

nine – eight from the reduced radial component of motion plus one translation symmetry from 

the reduced transverse component. The Lie symmetries of the reduced systems are 
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Nucci and Leach [1] presented the backward translation from the reduction variables to the 

original variables of the reduced symmetry generators in which most symmetry are non-local 

symmetries. Thus the corresponding symmetry groups in the original variables are  
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The above presentations of symmetry groups are done in such a way to simplify their 

complexity.  

 

3.2 Laplace-Runge-Lenz vector 

Dynamical system (1) possesses the Laplace-Runge-Lenz (LRL) vector (Arunaye [9]) 
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Ermanno-Bernoulli constants of the dynamical system (1) are obtain as  
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v   depicts its natural reduction variable for reducing the dynamical systems 

(1) to system of oscillator(s) and conservations law(s) [see Arunaye [9] and References in it]. 

However one may take the constant multiple of  1v  as  12

1 rAu  in the computation of 

exact symmetry transformations; for details see Arunaye [9] pg 61. We have shown there that 

exact symmetry transformations obtained using the constant multiples of natural reduction 
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variables of dynamical systems are indifference. 

 

3.3 Exact symmetries  

We use the symmetries of the reduced Kepler with drag system to compute the exact symmetry 

transformations as follows. From the variable 2
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implies grLA 322   . The vector field 
11 uu   generates the flow ),,(),,( 2121  uufuuf   from 

which one gets the exact symmetry transformations  
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where C  is a constant. 

While the vector field 
22 uu   generates the flow ),,(),,( 2121  uufuuf   that produce exact 

symmetry transformations 
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where C  is a constant. 

 

3.4 Concluding remarks 

It is established here that dynamical systems which possessed LRL vectors are linearizable 

through the reduction process. The manifestations of their LRL vectors and corresponding 

Ermanno-Bernoulli constants determine the nature of their symmetries. We note that reduction 

process enables easy means of obtaining the exact symmetry transformations of dynamical 

systems. The Lie symmetries of the generalized Kepler problem with drag force are not different 

from the classical Kepler problem in 2-D plane of motion. 
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