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Abstract: Numerical solutions in physical engineering problems need appropriate numerical approximation 

methods. Meshless methods have attracted increasing attention in recent years for seeking of approximate solutions 

of initial boundary value problem governed by partial differential equations. In this paper, we will present a study of 

a 2D problem of an elastic homogenous rectangular plate by using the local radial point interpolation method 

(LRPIM). We investigate the convergence and accuracy of method LRPIM and numerical values are presented to 

specifying the convergence domain by precising maximum and minimum values as a function of distribution nodes 

number and by using the radial basis function: Gaussian (EXP). It also presents a comparison with numerical results 

for different materials and the radial basis functions (RBF). Finally, a comparative study of numerical results with 

analytical solutions is presented. 
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1 Introduction 

The finite element method (FEM) was considered a powerful numerical technique for analysing 

many domain problems with arbitrary shape. However, this method presents some deficiencies 

for some category of problems related to plates like the preparation of data and computation 

times for problems with discontinuities, moving boundaries, or severe deformations [1-3]. For 

such problems, it has become necessary to find the methods, which may be easy to preparing 
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data. 

So a class of meshfree methods has developed and become a very attractive alternative for 

computer modelling and simulation of problems in engineering and science. These methods such 

as meshless [4-8] do not require a mesh to discretize the problem domain (in a specific area) and 

the approximation functions are constructed using only with a set of scattered nodes, and no 

element or connectivity between nodes is needed. 

Recently Meshless method has attracted more attention from researchers and it is regarded as a 

potential numerical method in computational mechanics. Several meshless methods, such as 

smooth particle hydrodynamics (SPH) method [4-6], element free Galerkin (EFG) method [7], 

meshless local Petrov-Galerkin (MLPG) method [8-9], the point interpolation methods 

(PIM)[10-11] and local radial point interpolation method (LRPIM) proposed by Liu et al. [11]. 

 In LRPIM, the point interpolation developed by the radial function basis is used to construct 

shape functions with delta function property. The widely used radial basis functions (RBFs) are 

multi-quadric (MQ), Gaussian (EXP) [12] and thin plate spline (TPS) function [13]. In this paper, 

the local weak forms are developed using weighted residual method locally from the partial 

differential equation of elastostatic linear 2D solids. We discus the effects of some parameters 

for radial basis function, and also the effects of size parameter of support and quadrature 

domains on the performance of the local radial point interpolation method LRPIM. Numerical 

results are presented to describe the convergence and accuracy, validity and efficiency of the 

present methods. 

The aims of this paper are to study the effect on convergence and accuracy of LRPIM methods 

of different size parameters by varying s (the size of the support domain) and 

2Q  (quadrature domain) was fixed. In LRPIM methods, the support domain is equal to 

influence domain. For fixed values of s  and 2Q  , the effect of nodes distributions field 

numbers tn , on energy errors are also studied and the results are presented for different materials 

and accuracy by using the radial basis function: Gaussian RBF-EXP. First, the LRPIM method 

will be developed for solving the problem of a thin elastic homogenous plate. The local weak 

form and numerical implementation are presented in section 3, numerical example for 2D 

problem are given in section 4. Then, the paper ends with results, discussions and finally the 

conclusions. 
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2. Radial point interpolation shape functions 

)x(u h is composed of two part: )x(Pj Polynomial basis functions and      )x(R i the radial basis 

functions RBFs [10-11]: 

                
 


n
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m

1j

jjii

h  b(x)Pa(x)R(x)u                     (1) 

n is the number of field  nodes in the local support domain and  m  is the number  of 

polynomial terms. 

Radial basis is a function of distance r: 2

i

2

i )y(y)x(xr                  (2)                                 

The above equation (1) can be expressed in the matrix form [10] 

bPaRU1                    (3) 

 Where 1U The vector of function values:  T

n321 u,...,u,u,u1U           

 R The moment matrix of RBFs, P the moment matrix of Polynomial basis function and a, b the 

values of unknowns coefficients (Radial and Polynomial)  

We note that, to obtain the unique solutions of Eq. (2), the constraint conditions should be 

applied as follows [14]: 
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By combining Eqs. (3) and (4) yields a set of equations in the matrix form: 
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The unknowns vector can be obtained by inversion of the matrix 









0T
P

PR
G  

Substitution of the vector obtained by inversion of matrix G into Eq. (1) leads to:                             





n

1i

ii

h u(x)u 1

T
U(x)Φ                (6)                                                                                    

3. Local weak form method LRPIM 

Let us consider a two-dimensional problem of solid mechanics in domain   bounded 

by whose strong-form of governing equation and the essential boundary conditions are given 

by:     



925                     AHMED MOUSSAOUI AND TOURIA BOUZIANE 

                0)x(b)x( ij,ij                                 (7) 

                
0

ijij tn   on t                                   (8) 

                 
0

ii uu    on u                                   (9)                                                                                            

Where in  : ],,[ xyyyxx

T σ is the stress vector, ]b,b[ yx

T b  the body force vector. 

)n,n( 21n denotes the vector of unit outward normal at a point on the natural boundaries 

0t is the prescribed effort, ]u,u[ 21 the displacement components in the plan and ]u,u[ 0

2

0

1  on the 

essential boundaries.  

 In the local Petrov-Galerkin approaches [7], one may write a weak form over Q  a local 

quadrature domain (for node I), which may have an arbitrary shape, and contain the point Qx  in 

question, see Fig. 1. The generalized local weak form of the differential Eq. (7) is obtained by:  

                             0d))x(b)x((
Q

Iij,ij                   (10) 

 Where Q  is the local domain of quadrature for node I and I  is the weight or test function, 

)(CK

I   [8]. 

 Generally, in meshfree methods, the representation of field nodes in the domain will be 

associated to other repartitions of problem domain: I  influence domain for nodes 

interpolation, S  is the support domain for accuracy. For each node  is the weight function 

domain, and Q  is the quadrature domain for local integration. 
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Figure 1. The local sub-domains around point Qx  and boundaries  

Using the divergence theorem [8] in Eq. (10), we obtain:  

      0dbddn
Q QQ

Iij,IijIjij    
                     (11)                                  

Where QtQuQiQ    

Qi : The internal boundary of the quadrature domain 

Qt  : The part of the natural boundary that intersects with the quadrature domain 

Qu : The part of the essential boundary that intersects with the quadrature domain 

We can then change the expression of équ(11): 

 0dbddndndn
Q QQi Qu Qt

Iij,IijIjijIjijIjij         
       (12) 

Using the RPIM shape functions (see sub-section 2), we can approximate the trial function for 

the displacement at a point x ( Sx   ) as eq.(6) 

The stress vector is defined by: huLCεCσ d                              (13)  

Where C  is the symmetric elasticity tensor of the material  
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Eq.(12) can be written:           
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V  is the matrix of weight function.  

Substituting the differential operator 
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Where 
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nL , the tractions of a point x can be 

written as: σLt T

n                                                        (16)   

Substituting Eqs. (15, 16) into Eq. (14), we obtain the discrete systems of linear equations for the 

node I.                      

     
 Qt Q
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The matrix form of Eq. (17) can be written as in matrix form: 



tn

1I

III fuK         (18)                                                                                                                            

Where expression of nodal matrix IK is 

                 
QuQiQ

ddd II

T

I


 VCBLVCBLCBVK I
T
nI

T
nII           (19) 

And nodal force vector with contributions from body forces applied in the problem domains: 

 
Qt Q

ddt II
 

 bVVf 0
I                          (20) 

Where 0
n denote the set of the nodes in the support domain S  of point Qx . 

Two independent linear equations can be obtained for each node in the entire problem domain 

and by assembling all these n*2  equations to obtain the final global system equations:  

                       1*n21*n2n2*n2 fuk                            (21)                                                                                                         

To solve the precedent system, the standard Gauss quadrature formula is applied with 16 Gauss 

points [7, 15] for calculating integrals in Eqs (19, 20) on both boundary and domain. 

The size of quadrature domain is specified by setting 2Q   and a regular distribution of nodes 

on the mid-surface of plate in (x, y) plane is employed. 

4. Numerical 2D elastostatic example  

 This section is about numerical results for a cantilever rectangular plate see (Fig. 2). First, 

were investigated the effects of the size of support and quadrature domains and was examined 

numerically convergence of LRPIM for several materials; then, comparisons will be made with 

the analytic solution for several materials [16] {We choose: steel, zinc, aluminium and copper 

with: (
27 m/N10.3E  , 3.0 ;

25 m/N10.113E  , 25.0 ;
27 m/N10.1E  , 
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34.0 ;
26 m/N10.17E  , 33.0  ) respectively} Dimension of the plate are denoted: height 

m12D  , length m48L  , the thickness: unit and finally for Loading: N10P 3  

 

Figure 2. Cantilever plate subjected to distributed traction at the free end. 

 

 

 

  Figure 3. Regular field nodes distribution on the problem domain and boundaries 

 

 In our numerical calculations, were considered many regular distributions of nodes tn : 18, 

55, 91, 175 and 189. To calculate the error energy, a background cells are required; then, for 

each value of tn  the number of cell was varied. To obtain numerical values, the distribution of 

the deflection through the plates, size of support domain is varied and 2Q   size of the 

quadrature domain. 

 The sizes of support domain s (quadrature domain Q resp.) are defined by: css dd   

( cIQQ dr  resp.) where cd ( cId  resp) is the nodal spacing near node I (Fig. 3) and s ( Q  

resp) is the size of the support domain s ( local quadrature domains resp) for node I. The sizes 

of support domain s ( quadrature domains resp) will be respectively determined in x and y 

directions. For simplicity SSySx   ( QQyQx   resp) is used for s ( Q  resp). 

 5. Results and Discussions  

 The standard Gaussian quadrature formula with 16 Gauss points and RPIM approximation, 

linear polynomial basis functions are applied. The cubic or quadratic spline function is used as 
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the test functions in the LRPIM local weak-form. 

Throughout this section and for all calculations, Q was fixed and the value 2 ( 2Q  ). 

5.1 Results numerical of the radial basis functions RFB-EXP 

We studied the effect of the parameter the radial basis functions RBF-EXP on convergence of 

the LRPIM method. 
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Figure 4 Variation of the energy error as a function of S for two materials and different values of tn  

Figure 4 shows the variation of the error energy as a function of S  for two studied materials: 

steel and copper (different values of E  and  ) and for different values of the number of 

nodes 175,91,55tn  of the radial basis function RBF-EXP. 

We found that all of the curves of the two materials have identical shapes to a fixed value of S , 

the curves of steel are more stable for all values of tn , the steel has a good convergence. 

For copper, the method converges for tn = 55 and 91, but tn = 175 from S = 3.5, the method 

is divergent. 

We used only two materials for LRPIM method with the radial basis function RBF-EXP. The 

ends of the domain of convergence are similar as those found by the MLPG method [17] 

In figure 5-6 shows the variation of the error energy as a function of C  of the radial basis 

RBF-EXP and different numbers of nodes ( 189,175,91,55tn ) and 3S  . For values 

ranging between 0 and 0006 of C , aluminum, zinc and copper have of curves specific, then the 
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LRPIM method is not convergent, but only that of steel, the method has a good convergence, the 

domain of convergence of the steel is wide ( 300010 .. C  ) with respect to other materials. 

But for the other materials, the domain of convergent is 3.0006.0 C  . 

Finally, we can also say that the domain of the convergence is broader than that given in the 

references [11, 18] which gave the interval 0300030 .. C  for a single material. The method 

is convergent when the number tn  is very large on a larger domain (for steel Figure 6). 
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Figure 5 Variation of the energy error as a function of C for different materials for 55tn  
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Figure 6 Variation of the energy error as a function of C for different values of tn  (steel) 
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Figure 7 shows the deflection results are plotted as function of 1x at 0x 2  ,  

for the radial basis RBF-EXP, the number of nodes tn = 55 and the size of the support domain 

( 5S  ) with the cubic spline function and shape parameters: 03.0c  to RBF-EXP. 

We considered tn = 55 for which the method is convergent and the value of energy error is low. 

There is a coincidence between the curves representing the radial basis RBF-EXP of the LRPIM 

method and the curve of the analytical solution which corresponds to the upper end of the 

domain of convergence i.e. S  between 1.80 and 5. 

0 5 10 15 20 25 30 35 40 45 50
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-6,0x10
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-3

-2,0x10
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U
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X1(m)

 EXP-RBF;C=0.03

 Analytical solution

 

Figure7 Deflections as a function of 1x  at 0x2   for the radial basis RBF-EXP ( 55tn for 03.0C  ) 

and the analytical solution 

Figure 8 Shear stress ( 12 ) as function of 2x  at 2/Lx1   for the radial basis RBF-EXP and 

175tn . We find that there is a coincidence between the curves representing the LRPI method 

and the analytical solution. The results of the LRPIM method with the radial basis RBF- 

EXP:( 03.0C   with 66.3S  and 2Q  ) is less effective. 
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Figure8 12  as a function of 2x  at 2/Lx1   for the radial RBF-EXP, ( 175tn for 03.0C  ) and 

the analytical solution. 

5 Conclusion 

 In this paper the meshless LRPIM method is employed for solving a 2D elastostatic 

problem. The governing equations depend on the weak form and the partitions of domain. The 

LRPIM method and its dependency on sizing parameter of S  are associated to different 

parameters coming out of weak form formulation. We have investigated for 2Q   the nature 

of convergence domain as a function of S ; the effect of number nodes tn , by varying nature of 

material and the radial basis functions RBFs, we conclude that for small values of )55(n t lead to 

the upper extremity of convergence domain which is limited to 5S  . 

For greater value of tn (91, 175, 189) we found that the maximal value for convergence domain 

the maximum extremity decreases when tn  increases, We found 66.3S  . No dependency is 

noted of the maximum extremity value: S  of convergence domain, and the elastic nature of 

materials. 
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