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1. INTRODUCTION 

The I -function introduced by Saxena [4] will be represented and defined in slightly different 

manner as follows: 
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Where 1, 0i z= −  and exp[ sin | | arg ]sz z i z− = − + where | |z represents the natural logarithm 

of | |z and arg z is not the principal value. Here 
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For 1R = , the I -function reduces to the H -function. 

The  - function introduced by Suland et.al. [6] defined and represented in the following form: 
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We shall use the following notation: 
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The Mellin transform of ( )f x denoted by  ( );M f x s or ( )F s is given by 

  1

0

( ); ( )sM f x s x f x dx



−=                                                                        (1.5) 

The Hankel transform of ( )f x denoted by  ( );H f x p or ( )vF p is given by 

 
0

( ); ( ) ( )v vH f x p x J px f x dx



=                                                                (1.6) 

A real scalar random variable x  is said to have a real type-1 generalized beta distribution,if the 

density is of the following form ([1], p.121, eq. (4.8)): 
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where the parameters  and   are real. The following discussion holds even when  and   are 

complex quantities. In this case, the conditions become Re( ) 0,Re( ) 0    where Re(.)means 

the real part of (.). 

A real scalar random variable x  is said to have a real type-2 generalized beta distribution,if the 

density is of the following form ([1], p.121, eq. (4.8)): 
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Where the parameters  and   are real. The following discussion holds even when  and   are 

complex quantities. In this case, the conditions become Re( ) 0,Re( ) 0    where Re (.) 

means the real part of (.). 

 

2. GENERAL STRUCTURES 

A real scalar random variable x  is said to have a real generalized type-2 generalized beta 

distribution,if the density is of the following form: 
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For 0 , 0, 0, 0, 0, 0, 0,1 0x A a b c Ax         +  . 

Where the parameters  and   are real. The following discussion holds even when  and   are 

complex quantities. In this case, the conditions become Re( ) 0,Re( ) 0    where Re (.) 

means the real part of (.). 

The thh -moment of x , when x  has the density in (2.1), is given by 
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For Re( ) 0, 0tm h + +   . 

When  and h are real, the moments can exist for some values of h also such that 0h +  . 

The Mellin transform of ( )f x is obtained from (2.2) as: 
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For Re( 1) 0, 2 2 0, 0tm s s v r + + −  = + +   . 

The unknown density ( )f x is obtained in terms of  -function by taking the inverse Mellin 

transform of (2.3). That is  
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The Hankel transform of ( )f x is obtained from (2.2) as: 
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For Re( 1) 0, 2 2 0, 0tm s s v r + + −  = + +   . 

The unknown density ( )f x is obtained in terms of  -function by taking the inverse Hankel 

transform of (2.5). That is  
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Consider a set of real scalar random variables 1,..., kx x , mutually independently distributed, 

where jx has the density in (2.1) with the parameters , , ; 1,...,j j jA j k  = and consider the 

product 

1 2... ku x x x=                                                                                                        (2.7) 
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In the standard terminology in statistical literature, the thh moment of u , when u has the density 

in (2.1), is given by 
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For Re( ) 0, 0; 1,...,j jtm h j k + +   =  
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For Re( 1) 0, 0, 2 2 0j jtm s s v r + + −   = + +   

The unknown density ( )f x is obtained in terms of  -function by taking the inverse Mellin 

transform of (2.10). That is  

1
1

,0

0, : : 1 11 1 ,

( ) ; 1,...,
j

j

i j

j j

k k
k

k R tmj j
j

j

A
g u A u j k

tm




 

 




−−−

 + −= =  
 
 

 
 =    =
  +
     

 

                (2.11) 

Then the Hankel transform of ( )g u of u is obtained from the property of the statistical 
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For Re( 1) 0, 0, 2 2 0j jtm s s v r + + −   = + +   
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The unknown density ( )f x is obtained in terms of  -function by taking the inverse Hankel 

transform of (2.13). That is  
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If we consider more general structures in the same category. For example, consider the structure 
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For Re( 1) 0, 2 2, 0j jtm s s v r + + −  = + +  . 

The unknown density 1( )g u is obtained in terms of  -function by taking the inverse Mellin 

transform of (2.17). That is  
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For Re( 1) 0, 2 2, 0j jtm s s v r + + −  = + +  . 

The Hankel transform of 1( )g u of 1u is obtained from the property of the statistical independent 
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For Re( 1) 0, 2 2 0, 0j jtm s s v r + + −  = + +   . 

The unknown density 1( )g u is obtained in terms of  -function by taking the inverse Hankel 

transform of (2.20). That is  
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For Re( 1) 0, 2 2 0, 0j jtm s s v r + + −  = + +   . 

A More General Structure 

We can consider more general structures. Let 

1 2

1

, ,...,

,...,

r

r k

x x x
w

x x+

=                                                                                                 (2.22) 

Where 1,..., kx x , mutually independently distributed real random variables having the density in 

(2.1) with 
jx having parameters , , ; 1,...,j j jA j k  = .  

Then the Mellin transform of ( )g w is given by 

  1 1 ( 1) ( 1)

1 1( ) ... ...s s s s

r r kM g w M x M x M x M x− − − − − −

+
       =                           (2.23) 

  1
1 1

1

1
( )

j j

j

k r
j

s
j j

j

j

tm s

M g w
tm

A A
 









−
= =

  + + −
   

  
=   

 +  
    
   

       

                
1

( 1)

j

j

k
j

s
j r

tm s

A





−

= +

  + − −
   

  
 

 
 
 

                                                              (2.24) 

For Re( ( 1)) 0, 2 2 0j tm s s v r +  −  = + +   



733 

YASHWANT SINGH 

The unknown density ( )g w is obtained in terms of  -function by taking the inverse Mellin 

transform of (2.24). That is  
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For Re( ( 1)) 0, 2 2 0j tm s s v r +  −  = + +   

The unknown density ( )g w is obtained in terms of  -function by taking the inverse Hankel 

transform of (2.27). That is  

1
1

,0

0, : : 1 11 1 ,

( ) ( ) ; 1,...,
j

j

i j

j j

k r
r

v r R tmj j
j

j

A
g w J p A w j r

tm




 

 




−−−

 + −= =  
 
 

  
  =    =   +         

 

       

                

1 11
1 ,

0,

,0: :
1

; 1,...,

j

j jj

i

tm
k

k r

k r R
j r

A w j r k



 



 + +
 − 
 −  

− −−−
= +

  
    = +  
    

                          (2.28) 
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We can consider more general structures in the same category. For example, consider the 

structure 

1

1

1
1

1

,...,

,...,

r

kr

r

r k

x x
w

x x

 

 +

+

=                                                                                                       (2.29) 

where 1,..., kx x , mutually independently distributed real random variables having the density in 

(2.1) with 
jx having parameters , ; 1,...,j j j k  = .  

Then the Mellin transform of 1( )g w is given by 

  1 1 ( 1)( 1) ( 1) ( 1)

1 1 1( ) ... ... kr r ss s s

r r kM g w M x M x M x M x
   + − −− − − −

+
      =                (2.30) 

 1
1 1

( 1)

1
( )

j j

j j

j j

k r
j

sj j

j

j

tm s

M g w
tm

A A

 

 

 







−= =

  + + −
   

  =   
 +  

    
  

       

                
1

( 1)

j

j

j j

k
j

s
j r

tm s

A





 


−

= +

  + − −
   

  
 

 
 
 

                                                        (2.31) 

For Re( ( 1)) 0, 2 2 0, 0j jtm s s v r +  −  = + +   . 

The unknown density 1( )g w is obtained in terms of  -function by taking the inverse Mellin 

transform of (2.31). That is  

,0

1 0, : : 1
1 1 ,

( ) ; 1,...,

j

j
j

j

i j j j

j j

k r
r

r R tmj j
j

j

A
g w A w j r

tm







   

 




−−−

 + −= =  
 
 

  
  =    =   +         

 

       

           
1 ,

0,

,0: : 1
1

; 1,...,

j j jj

j jj

i

tm
k

k r

k r R
j r

A w j r k

  

 



 + +−
 − 
 −  

− −−−
= +

  
    = +  
    

                      (2.32) 

For Re( ( 1)) 0, 2 2 0, 0j jtm s s v r +  −  = + +   . 

Then the Hankel transform of 1( )g w  is given as: 

1 1

1 1 1[ ( )] ( ) ... ( )r r

v r v rH g w H x J px H x J px
      =          
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                        ( ) ( )1 1

1 1 ... k kr r

r v r k v kH x J px H x J px
  + + − −− −

+ +
  

   
                       (2.33) 

 1
1 1

( 1)

1
( ) ( )

j j

j j

j j

k r
j

v sj j

j

j

tm s

H g w J p
tm

A A

 

 

 







−= =

  + + −
   

  =   
 +  

    
  

    

                
1

( 1)

j

j

j j

k
j

s
j r

tm s

A





 


−

= +

  + − −
   

  
 

 
 
 

                                               (2.34) 

For Re( ( 1)) 0, 0, 2 2 0j jtm s s v r +  −   = + +   

The unknown density 1( )g w is obtained in terms of  -function by taking the inverse Hankel 

transform of (2.34). That is  

,0

1 0, : : 1
1 1 ,

( ) ( ) ; 1,...,

j

j
j

j

i j j j

j j

k r
r

v r R tmj j
j

j

A
g w J p A w j r

tm







   

 




−−−

 + −= =  
 
 

  
  =    =   +         

 

       

                
1 ,

0,

,0: : 1
1

; 1,...,

j j jj

j jj

i

tm
k

k r

k r R
j r

A w j r k

  

 



 + +−
 − 
 −  

− −−−
= +

  
    = +  
    

           (2.35) 

For Re( ( 1)) 0, 0, 2 2 0j jtm s s v r +  −   = + +  . 

 

3. SPECIAL CASES 

If we take 1i = in (2.4), the unknown density ( )f x  is obtained in terms of I -function. That is 

1
1

1,0

0,1: 1 1
,

( ) R tm

A
f x I A x

tm






 




−−−

 + −
 
 

 
 =

 +  
  

 

                                              (3.1) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.6), the unknown density ( )f x  is obtained in terms of I -function. That is 
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1
1

1,0

0,1: 1 1
,

( ) ( )v R tm

A
f x J p I A x

tm






 




−−−

 + −
 
 

 
 =

 +  
  

 

                                     (3.2) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.11), the unknown density ( )g u  is obtained in terms of I -function. That is 

1
1

,0

0, : 1 11 1 ,

( ) ; 1,...,
j

j

j

j j

k k
k

k R tmj j
j

j

A
g u I A u j k

tm






 




−−−

 + −= =  
 
 

 
 =   =
  +
     

 

                 (3.3) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.14), the unknown density ( )g u  is obtained in terms of I -function. That is 

1
1

,0

0, : 1 11 1 ,

( ) ( ) ; 1,...,
j

j

j

j j

k k
k

v k R tmj j
j

j

A
g u J p I A u j k
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



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



−−−

 + −= =  
 
 

 
 =   =
  +
     

 

    (3.4) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.18), the unknown density 1( )g u  is obtained in terms of I -function. That is 
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1 0, : 1
1 1 ,

( ) ; 1,...,

j
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j

j

j j j

j j
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k

k R tmj j
j

j

A
g u I A u j k

tm







  

 




−−−

 + −= =  
 
 

 
 =   =
  +
     

 

            (3.5) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.21), the unknown density 1( )g u  is obtained in terms of I -function. That is 
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1 0, : 1
1 1 ,

( ) ( )

j

j
j

j

j j j

j j

k k
k

v k R tmj j
j

j

A
g u J p I A u
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




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 




−−−

 + −= =  
 
 

 
 =  
  +
     

 

                    (3.6) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.25), the unknown density ( )g w  is obtained in terms of I -function. That is 
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= +
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    

                  (3.7) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.28), the unknown density ( )g w  is obtained in terms of I -function . That is 
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   = +  
    

             (3.8) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.32), the unknown density 1( )g w  is obtained in terms of I -function. That is 

,0

1 0, : 1
1 1 ,

( ) ; 1,...,

j

j
j

j

j j j

j j

k r
r

r R tmj j
j

j

A
g w I A w j r

tm







  

 




−−−

 + −= =  
 
 

  
  =   =   +         

 

 

                
1 ,

0,

,0: 1
1

; 1,...,

j j jj

j jj

tm
k

k r

k r R
j r

I A w j r k

  

 

 + +−
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− −−−
= +

  
   = +  
    

                (3.9) 

For 1R = , the I -function reduces to the H -function. 

If we take 1i = in (2.35), the unknown density 1( )g w  is obtained in terms of I -function. That is 
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0,

,0: 1
1 1 ,
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j

j j j
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k
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k r R
j r

I A w j r k




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 

−

− −−−

−  += +  − 
 
 

  
   = +  
    

              (3.10) 

For 1R = , the I -function reduces to the H -function. 
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