
                

*Corresponding author 

E-mail address: peterjames4real@gmail.com 

Received September 7, 2020 

2722 

 

     Available online at http://scik.org 

     J. Math. Comput. Sci. 10 (2020), No. 6, 2722-2753 

https://doi.org/10.28919/jmcs/5001 

ISSN: 1927-5307 

 

 

STABILITY AND OPTIMAL CONTROL ANALYSIS OF AN SCIR EPIDEMIC 

MODEL 

OLUMUYIWA JAMES PETER1,*, RATCHADA VIRIYAPONG2, FESTUS ABIODUN OGUNTOLU3, PENSIRI 

YOSYINGYONG2, HELEN OLARONKE EDOGBANYA4, MICHAEL OYELAMI AJISOPE5 

1Department of Mathematics, University of Ilorin, Ilorin, Kwara State, Nigeria 

2Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, Thailand 

3Department of Mathematics, Federal University of Technology Minna, Minna, Niger State, Nigeria 

4Department of Mathematical Sciences, Federal University Lokoja, Lokoja, Kogi State, Nigeria 

5Department of Mathematics, Federal University Oye-Ekiti, Ekiti State, Nigeria 

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract: In this paper, we proposed a deterministic model of SCIR governed by a system of nonlinear differential 

equations. Two equilibria (disease-free and endemic) are obtained and the basic reproduction number 
0R   is 

calculated. If 
0R is less than one, then the disease-free equilibrium state is globally stable i.e. the disease will be 

eradicated eventually. However, when 
0R is greater than unity, the disease persists and the endemic equilibrium point 

is globally stable. Furthermore, the optimal control problem is applied into the model. The focus of this study is to 

determine what control method can be implemented to significantly slow the incidence of the epidemic disease, 

therefore we take into account various possible combinations of such three controls which are prevention via proper 

hygiene, screening of the infected carriers which enable them to know their health conditions and to go for early 

treatment and treatment of the infected individuals. The possible strategies of using combinations of the three controls 

on the spread of the disease, one at a time or two at a time is also discussed. Our numerical analysis of the optimal 

approach suggests that the best method is to incorporate all three controls in order to control the disease epidemic.  
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1. INTRODUCTION 

Infectious diseases have been the greatest threat to the existence and well-being of human since 

the time immemorial. While some individuals who are less fortunate to survive the menace of 

infectious diseases are left with one deformity or the other, tens of thousands of lives across the 

globe have been lost to the emergence and re-emergence of infectious diseases like cholera [1], 

typhoid fever [2], HIV/AIDS [3], Ebola [4], Lassa fever [5], measles [6], Tuberculosis [7] and a 

host of others [8-10]. The dynamics of infectious diseases becomes more complicated and 

devastating with the existence of asymptomatic nature of some of the diseases (such as typhoid 

fever, hepatitis B, tuberculosis, Epstein-Barr virus, measles, HIV/AIDS and Clostridium difficile-

associated disease) [8]. The complexity of the infectious diseases with asymptomatic feature 

emanates from the fact that the infected individuals can spread the illness without exhibiting any 

symptoms [10], some may call carrier. This set of people spread diseases more quickly and with 

ease. 

The havoc of the infectious diseases has made their prevention and management the top priority 

of the government the world over. Government and policy makers are aided by the results from 

the researches in formulating and implementing appropriate policies to prevent or curb the 

outbreak of infectious diseases. Mathematical models have been playing significant roles in 

quantifying probable infectious disease interventions and mitigation approaches [11-16]. There 

exists a good number of models for contagious diseases; as regards compartmental models, 

beginning from the simplest SIR model invested by Kermack and Mckendrick in 1927 [17-18], to 

more complicated models (such as SEIR, P1P2SEIR, SHIHRHSvIv , SVLIT) [6,19-21]. 

Mathematical modelling of infectious diseases applying optimal control theory has been 

widely studied in the literature. Particularly, the popular Pontryagin’s maximum principle 

pioneered by Pontryagin and co-researchers [22] and later improved by Fleming and Rishel [23] 

has been applied in many studies to examine optimal control in a good number of models of 

epidemic diseases including pandemic influenza, HIV diseases and vector borne infections [24-

33]. Okosun et al. [27] examine the impact of optimal control to analyze the role of screening and 

treatment of asymptomatic individuals on HIV/AIDS dynamics. Roy et al. [29] investigate the 

impact of education programs in curtailing the HIV/AIDS transmission applying an optimal 
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control theory. 

Tchuenche et al. [30] design a model to explore the role of media on the dynamics of influenza 

and the cost implication of implementing education, vaccination and the media in fighting the 

spread of influenza using the theory of optimal control. Also, Mistra et al. [31] design an SIS 

epidemic model and investigate the role of media on the dynamics of diseases that transmit from 

human-to-human interactions adopting an optimal control theory. A detailed literature of the theory 

of optimal control in epidemic models and numerical approximation methods exists in [34-35]. 

Several studies in the literature confirm that infectious disease models which are developed with 

the theory of optimal control are suitable and extremely useful for predicting intervention strategies 

to control disease transmission [36-47]. Our goal is to propose a general mathematical model for 

infectious diseases that includes carrier individuals which is suitable for the ones mentioned in the 

literature with application of optimal control and to investigate the effects of prevention via proper 

hygiene, screening of the infected carriers, and treatment of the infected individuals on the disease 

transmission dynamics which has not been considered in the previous study. 

The study considers control interventions for dynamics of an epidemic disease and to establish 

interventions that are vital in bringing the spread and transmission of an infectious disease under 

control. The paper is organized as follows, the model formulation with description is presented in 

section 2. Model analysis including the boundary of the solution, basic reproduction number, 

equilibrium points and their global stability and sensitivity analysis is demonstrated in section 3. 

Section 4 shows how the model is extended to optimal control model where its numerical 

simulations are presented in section 5. Finally, a brief discussion and conclusion is in section 6.  

2. MATERIALS AND METHOD 

 2.1 Formulation of the model 

We formulate an SCIR deterministic model to study the transmission dynamics of infectious 

disease. The population under consideration consist of four compartments, susceptible class S(t), 

carrier infected class C(t), infected class I(t) and recovered class R(t), respectively. Susceptible 

population increases as a result of daily recruitment by birth or immigration at the rate   and it 

is reduced as a result of natural mortality rate   . Susceptible individual can be  infected  

through direct contact with the asymptomatic carrier without symptoms with a probability  and 
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with symptomatic infected individuals with a probability −1 . It is assumed that the disease 

transmission rate   for the carrier individual is greater than the disease transmission rate of 

infected individuals   this is because those in carrier class are equally infectious but they are not 

aware they are infected with the disease. The rate at which those in the carrier show symptoms is 

denoted by  . Infected individuals recovered through the rate  and lose immunity after some 

times and upon recovery become susceptible again. The flow chart and the description of the 

parameters are illustrated in Figure 1. 

 

FIGURE 1. The flow chart of SCIR model.   

The following set of nonlinear ordinary differential equations can be obtained from the definition 

and the compartmental diagram in Figure 1 above: 
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3. ANALYSIS OF THE MODEL 

3.1.  Boundedness of the solution 

First, we let the total population be ( ) ( ) ( ) ( ) ( )M t S t C t I t R t= + + + . Then, 

(2)   MIRICSM  −−=+++= ''''' .          

Therefore, 

(3)        
dM

M
dt

  − .            

Integrating both side of (3), we have 

      
0 0

t t
dM

dt
M 


−   ,     

(4)             
1

ln( )M t 


− −   .        

From (4), we have  
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by taking →t , then we obtain that M



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This implies that the model in (1) can be studied in the feasible region 
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3.2.  Positivity of the solution 

Theorem 1: Given 0,0,0,0 0000  RICS  then the solution ( ) 4,,, +RRICS  are non-

negative invariant for 0t  

Proof. 

Recall from (1), 
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By separating the variable and integrating inequality above, we have 

0 0

1
( )

t t

dS dt
S

  − +  . 

Thus, 

(6)      0)( )(

0  +− teStS  .            

By following the same process, we obtain 

0)( )(

0  +− teCtC   

(7)      0)( )(

0  ++− teItI             

      0)( )(

0  +− teRtR   

Hence, the solution of (1) is non-negative.         

3.3. Disease-free equilibrium (DFE)  

This occurs in the absence of infection. Thus, in the absence of infection, we set C and I to zero 

and the resulting solution gives the disease-free equilibrium states given as  

(8)      







= 0,0,0,),,,(




RICSDFE  .       

3.4.  Endemic equilibrium 

This occurs when the infection persists in the population represented by ),,,( **** RICSEE .  To 

obtain it, we set the LHS of (1) to zero. Thus,  
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where 
1k  = + , 

2 31 ,k p k   = − = + + and  +=4k . 
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3.5.   The basic reproduction number 

The basic reproductive ratio is a threshold quantity that shows the total number of possible diseases 

due to a single infected individual, generated throughout its contagious period into a fully 

susceptible population. F and V are the matrices for the new infections generated and the terms of 

transition, respectively. Following the same approach as [27], we determine the basic reproduction 

number as follows. 

The new infection compartments are C(t) and I(t), 
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 F and V are the Jacobian matrix which shall be computed at the DFE such that, 
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The spectral radius of the matrix 1−FV   which is the  basic reproduction number 0R   is 

obtained as 

(9)    
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3.6.  Global stability of the disease-free equilibrium 
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Theorem 2: The disease-free equilibrium (DFE) 
DFE  of model (1) is globally asymptotically 

stable, when 
0 1.R   

Proof:  To investigate the global asymptotic stability of the DFE, we apply the process of 

Lyapunov functions. First, we define a Lyapunov function L  as follows: 

(10)           
( )( )

( ) .L t C I
  

         
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= + +    + + + + + +  

    

 Then, differentiating  L along with the solutions of ( )1 gives 

( )( )
( ) ( )( )

( ) ( ) ( )( )
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
     

  
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 
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+ − + − + + + 

+ + 

 + + + + − +
= +  + + + 

− − − +
+ + + +

 + + + − + +
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We obtain that 
( )

0
dL t

dt
=  when 0C I= =  and 

( )
0

dL t

dt
 , when 

0 1R  . By Lyapunov-LaSalle 

theorem [48], we can conclude that the disease-free equilibrium (DEF) 
DEF   is globally 

asymptotically stable, when 
0 1.R  This completes the proof. 

3.6. Global stability of the endemic equilibrium  

The global stability of the endemic equilibrium is investigated by using the geometric approach of 

Li and Muldowney [49]. First, we need to start by proving the following lemma.  

Lemma 3. The system (1) is uniformly persistent if and only if 
0 1R    

Proof. We obtain earlier that whenever 
0 1R  , the disease-free equilibrium is unstable. With the 

result by [50]. (Theorem 4.3), this result obtained is equivalence to the uniform persistence of 
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system (1). Therefore, the system (1) is uniformly persistent if and only if 
0 1R  i.e. there exists 

a constant 0z  such that,  

liminf ( ) , liminf ( ) , liminf ( ) , liminf ( )
t t t t

S t z C t z I t z R t z
→ → → →

     

provided that ( (0), (0), (0), (0))S C I R  .  

Further, the uniform persistence of the state variable together with boundedness of    is 

equivalent to the existence of a compact absorbing set in  .  

Theorem 3:  The endemic equilibrium point ),,,( **** RICSEE   is globally asymptotically 

stable in   when
0 1R  and 0b   (b is defined in the proof). 

Proof. We first write the Jacobian matrix of subsystem of (1), we have  

(11)       
( )

( )( )

( , , )

1 (1 ) (1 )

C I S S

p C I p S p S
J S C I

p C I p S p S

    

     

       

− − − − − 
 
 
 + − −

= 
 
 − + − + − − − −
 
 
 

. 

Then, its second additive compound matrix is given by 

(12)  
( ) ( )

( )( ) ( )

[2]

2

1 1 2

1 2 (1 )

C I p S p S S

p S C I p S S
J

p C I p C I p S p S

      

        

         

− − + − − 
 
 
 − + − − + − − − − −

= 
 
 − − + + − − + − − −
 
 
 

 

Next, set the function 1, ,
C C

P diag
I I

 
=  

 
. Then,  

1 0, ,f

C I C I
P P diag

C I C I

−     
= − − 

 
, 

where the matrix fP is obtained by replacing each entry ijp of P by its derivative in the direction 

of solution of subsystem of (1). Further, we consider the matrix 1 [2] 1

fB P P PJ P− −= + . The block 
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form is written as  
11 121 [2] 1

21 22

f

B B
B P P PJ P

B B

− −  
= + =  

 
, where 

11
2B C I p S    =− − + − −  

12

p SI SI

C C
B

  
 
 

= ,
( )( )

( )( )( )
21

1

1

C
p S

I

C
p C I

I

B
 

 

 
− + 

 
 − − + 
 

=  

( )

( )
22

1 2

.

2 (1 )

C I
C I p S S

C I
B

C I
p C I p S p S

C I

      

       

  
− − + − − − − + − − 

=  
  + − − + − − − + − 

 

 

Let 
1 2 3( , , )x x x  be a vector in 

3  , we then select a norm in 
3   that is defined as 

 1 2 3 1 2 3, , max ,x x x x x x= +  and denote v as the Lozinskii measure with respect to this norm. 

With the method of [51], we have an estimation of ( )v B as follows: 

 1 2( ) sup , hv B h , 

where 1 1 11 12( )h v B B= + and 2 21 1 22( )h B v B= + .  The 
1v represent the Lozinskii measure with 

respect to 
1l  vector norm and 12B and 21B  are matrix norms with respect to 

1l vector norm.  

Therefore, for our study we have  

( )11
2v B C I p S    =− − + − −  , ( )( ) ( )( )21

1 1p S C CB p C I
I I

   − += + − +  

( ) ( ) ( )22
.max 1 2 , 2 (1 )C I C Iv B C I p S p C I p S p S S

I IC C
              

  
 
  

   = − − + − − − − + − + + − − + − − − + + −  

Therefore, we have  

1
2 SIh C I p S

C
    =− − + − − +  

( ) ( )( )

( ) ( )

2

.max 1 2 , 2 (1 )

1 1

C I C IC I p S p C I p S p S S
I IC C

Ch p S p C I
I

              

    
  

  
 
  

   
+ − − + − − − − + − + + − − + − − − + + −

= − + + − +
 

Since from our system we have  ( ) ( )C p C I S C   = + − + , then 
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( ) ( )C Sp C I
C C

    = + − + , 

thus    ( ) ( )C Sp C I
C C

   − + = − + .  

Therefore, 
1

h  becomes   

( ) ( )1
1SI SIC S Ch p C I C I p S C I p

C C C C C
          = − + − − + − + = − − − + − .                                  

Similarly, we have ( )( ) ( )1I S Cp C I
I I I

    = − + − + + + , then  

              ( ) ( )( )1I S Cp C I
I I I

    − + + = − − + − . 

Therefore, 
2

h  becomes   

( ) ( )( )

( ) ( )( ) ( )

( )( )

2
1 1

max{ 1 1 ,

(1 ) 1 }.

Ch p S p C I
I
I S C C IC I p S p C I p C I
I I I IC

I S C C Ip S p S S p C I
I I I IC

   

       

        

 
  

= − + + − +

  + − − + − − + − − + − + − + +

  − − + − − − + + − − + − + −

 

Hence, we obtain that   

( )  1 2
max ,h hv B               

That is  

( ) ( )( ) ( ) ( ) .max 1 , 1 sup ,v B
SIC Cp C I p C I C I p C I p S S

IC C
             

 
 
 
  


+ − − − − − + − + − − + + − +  

And, 

( ) Cv B b
C
 − , where 

( ) ( )( ) ( ) min 1 , 1 inf ,b
SI CC I p p C I C I p C I S p S

IC
            

 
 
 
  

= + + − − − − + − + − + − − .  

Next, we consider any solution ( ), ( ), ( )S t C t I t emanating from the compact set in  . Let t

be large enough such that the system is uniformly persistent for all t t . Then along each solution 

( ( ), ( ), ( ))S t C t I t  such that, ( (0), (0), (0))S C I   , for t t  , ( ) ( )1 ln ln 0
2
bC t C

t
 
 
 

−   . Consequently, 

(13)      ( ) ( )

2
0 0

1
( )

.
2

1

1 ln ln 0

t t C
q v B ds b ds

Ct

b

t

C t C b
t
 
 
 

 
=  −  

 

= − −

 −
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Hence, 
2

0.
2
bq −  By Theorem 3.5 of Li and Muldowney, [51], we can conclude that the endemic 

equilibrium * * *( , , )S C I is globally asymptotically stable when 
0 1R   and 0b  .  

Next, we consider the fourth equation of system (1) which is  

( )
dR

I R
dt

  = − + , 

where its limit system is ( )*dR
I R

dt
  = − + . 

With the condition of equilibrium point, we have ( )* *I R  = + , then we can rewrite the fourth 

equation of system (1) as 

( ) ( ) ( )( )* * .
dR

R R R R
dt

     = + − + = + −  

Solving above equation by integration, we have  

( )( )

( ) ( )

( )

( )

( ) ( )( )

*

0 0

*

0

*

*

1

* *

1

ln

ln
0

0 .

t t

t

t

dR ds
R R

R R t t

R R t t

R R

R t R R R e  

 

 

 

−
+

=
+ −

− + − =

− −
=

+−

= − −

 

   

When taking  t → , we have. ( ) *R t R→    

Therefore, the endemic equilibrium point * * * *, )( , , RS C I is globally asymptotically stable  whenever 

0 1R   and 0b  .             

3.7. Sensitivity analysis  

In this section, the sensitivity analysis of the basic reproduction number is determined. The results 

of this analysis shows how each parameter within the model affects the disease transmission. The 

normalized forward sensitivity index method is used to obtain such sensitivity indices [52-53]. The 

normalized forward sensitivity index of 
0R with respect to a parameter P is denoted by: 

(14)       0 0

0

R

P

R P
S

P R


= 


.           
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The sensitivity indices in Table 1 are derived by using parameters values from Table 2. We obtain 

that the sensitivity indices of , ,   and p are positive, this means that in order to reduce the 

basic reproduction number, these parameters values should be reduced. On the contrary, we should 

try to increase the parameters , ,   and  .  

Table 1. Numerical values of sensitivity indices of 
0R  

Parameter Sensitivity index 

  1.0000 

  
0.8873 

  0.1127 

p  0.0902 

  - 0.0827 

  -0.1972 

  -0.5127 

  -1.2074 

 

With our results above, we therefore propose three strategies to help to limit the disease 

transmission i.e. to encourage to have hygiene care to reduce the transmission rate, to have 

screening of the infected carriers which enable them to know their health conditions which will 

decrease the number of infected individuals and to encourage to have treatment to increase the 

value of  .  

Table 2. Parameters values  

Parameter Value Source Parameter Value Source 

  100 Assumed   0.2 Assumed 

  0.018 [15]   0.002 Assumed 

  0.00094 [15]   0.052 Estimated 

p  

  

0.3 

0.02 

Assumed 

Assumed 

              
  0.002   Assumed       
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4. OPTIMAL CONTROL SYSTEM 

We extend the model in (1) into optimal control by incorporating three control variables namely; 

prevention via proper hygiene 1g , screening of the infected carriers which enable them to know 

their health conditions and to go for early treatment  2g  and treatment of the infected individuals

3g   . By incorporating the above descriptions into the basic model in (1) we arrived at the 

following equations 

(15)      

RIg
dt

dR

IIgCgICSgp
dt

dI

CgCgICpS
dt

dC

RgICSS
dt

dS

)()(

)()()1()()1)(1(

)()1)((

)1)((

3

321

21

1









+−+=

+−+−−++−−=

+−−−+=

+−+−−=

 , 

where 0,0,0,0  RICS . 

We intend to minimize the infected carriers C and the infected individuals I and the associated cost 

of using the control  21 , gg  and 
3g . By following the approach of [22] and [23], the objective 

function is defined as  

(16)    dt
g

C
g

C
g

CIXCXgggJ

ft

 












++++=

0

2

3

3

2

2
2

2

1
121321

222
),,(  ,     

where 1X   and 2X  are positive weight constant of infected carriers and infected individuals 

respectively as defined in (16) and 1C , 2C and 3C are the associated cost involved with the use 

of sanitation, treatment via drugs and screening of the infected carriers respectively. The main aim 

is to obtain the three optimal control sets *

3

*

2

*

1 ,, ggg  such that, 

(17)    ( )  GggggggJgggJ = 321321

*

3

*

2

*

1 ,,),,(min,, ,        

where 

( ) 1 2 3, , , ( ) 0, ,0 1, 1,2,3i f iG g g g g g t is Lebesque Measurable function on t g i = =   =  . 
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We show here the optimal control problem exists. Using the approach of Pontryagin’s Maximum 

Principle [22] and the differential equations in (15), we define the Hamiltonian H as  

'

4

'

3

'

2

'

1

' RICSJH  ++++=  

(18)  

( )

( )

( )

( )RIg

IIgCgICSgp

CgCgICpS

RgICSS

g
C

g
C

g
CIXCXRICSH

)()(

)()()1()()1)(1(

)()1)((

)1)((

222
),,,(

34

3213

212

11

2

3

3

2

2
2

2

1
121









+−++

+−+−−++−−+

+−−−++

+−+−−+














++++=

  

where )4(i are the adjoint variable functions. 

Theorem 4: 

There exist an optimal control set 21 , gg   and 
3g   corresponding to the solution 

( ))(),(),(),( tRtItCtS  that minimize ),,( 321 gggJ  over G  and the adjoint variables 41........  

such that 

( ) ( ) ( )))(1)(1()()1()1)(( 131211

'

1 ICpgICpggIC  +−−−+−−−+−−−=  

( ) ( ) ( ) 121321211

'

2 )1()1)(1()()1()1( XgSpggSpggS −−+−−−+−−−−−−−=   

( ) ( ) ( ) 2343131211

'

3 )()()()1)(1()1()1( XggSpgSpggS −+−+−+−−−−−−−−−=   

)(41

'

4  ++−=  

subject to the transversality conditions, 

0)(...,),........( 41 =ff tt  . 

Furthermore, the optimal control 321 ,, ggg  are given as 
















 +−+++
=

1

21*

1

)()1()))((
,1min,0max

C

ICppICS
g


 
















 +
=

2

32*

2

)(
,1min,0max

C

C
g


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
















 −
=

3

43*

3

)(
,1min,0max

C

I
g


. 

Proof: 

We use the classical finding of [22] to prove the theorem. First, we differentiate the Hamiltonian 

in (18) with respect to each state variables in order to obtain the set of the adjoint variables. Thus, 

( ) ( ) ( )))(1)(1()()1()1)(( 131211
1 ICpgICpggIC

S

H

dt

d



+−−−+−−−+−−−=



−
=  

( ) ( ) ( ) 121321211
2 )1()1)(1()()1()1( XgSpggSpggS

C

H

dt

d
−−+−−−+−−−−−−−=



−
= 



 

( ) ( ) ( )

234

3131211

3

)(

)()()1)(1()1()1(

Xg

gSpgSpggS
I

H

dt

d

−+−

+−+−−−−−−−−−=


−
=






 

)(41
4 


++−=



−
=

R

H

dt

d
. 

Also, to find the optimal control of the control variables sets 
321 ,, ggg using partial differential 

equation 

3,2,1;0 ==



i

g

H

i

. 

For *

1g ,  0
),,,,(

1

=




g

WRICSH
, 

1

21
1

)()1())((

C

ICSppICS
g

 +−+++
= . 

For *

2g , 0
),,,,(

2

=




g

WRICSH
, 

2

32

2

)(

C

C
g

 +
= . 
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For *

3g , 0
),,,,(

3

=




g

WRICSH
, 

3
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3

)(

C

I
g

 −
= . 

Therefore, 

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
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
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. 

Based on the prior boundedness and the associated state and adjoint variables, the uniqueness of 

the optimal control has been established. By standard control arguments which involves the bound 

on the control, we can say that 
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This completes the proof. 

 

5. RESULTS AND DISCUSSION 

5 .1 Numerical simulation of the optimal control   

We applied the iterative technique to achieve the optimal solution, taking advantage of the initial 

conditions of the state system, we used a forward fourth-order Runge-Kutta approach to solve the 

state equations.  Further, due to the final conditions for the adjoint scheme, we used the current 
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iterations solutions of the state equation to solve the adjoint equations by a backward fourth-order 

Runge-Kutta method. Each control continues to be updated by integrating its previous and 

characterization values. The updated controls are used to repeat the solutions. This process goes 

on until two successive iterations are sufficiently close. The simulation was carried out using the 

values given in Table 2. We considered the following Initial values for our simulation. 𝑆 (0) = 500, 

𝐶(0) = 150, 𝐼(0) = 200, 𝑅(0) = 300.  We also used the following values for the coefficients for the 

state variables and controls X1 =0.2, X2, =0.2, C1, =0.02, C2, 0.02, and 
3 0.15C = . 

5.2  Optimal prevention via proper hygiene 

For this approach, we used only prevention by proper hygiene 1g   to optimize the objective 

function J, while setting the control on screening 2g  and treatment
3g  to zero. The findings in 

Figures 2(a) and 2(b) indicate a substantial difference with an optimal strategy in the infected 

carriers and infected individuals, respectively compared to uncontrolled infected carriers and 

infected individuals. Figure 2(a) indicates that the control techniques resulted in a dramatic 

reduction in the population of infected carriers, as opposed to a rise in the uncontrolled scenario. 

The uncontrolled case also contributed to an increased number of infected individuals in Figure 

2(b), however, the control approach contributed to a decrease in the population of individuals 

infected. Figure 2(c) is the control profile on prevention via proper hygiene 1g . Here we see that 

the ideal prevention by proper hygiene control 1g  is at the upper limit up to ft =3 months before 

falling to the lower limit. 

5.3 Optimal screening 

With this strategy, we used only screening 2g  to optimize the objective function J, while setting 

the control on prevention by proper hygiene 1g  and treatment 3g  to zero. The results in Figures 

3(a) and 3(b) show a considerable difference with an optimal strategy in the infected carriers and 

infected individuals, respectively compared to uncontrolled infected carriers and infected 

individuals. Figure 3(a) shows that this strategy has more effect than Figure 3(b) on the infected 

carrier. This is because screening the infected carriers allows individuals to know their conditions 
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of health and to go for early treatment. The control profile on screening 2g   is shown in Figure 

3(c), which shows that the control 2g  reached the  top bound up to ft = 3 months before falling 

to the lower limit. 

5.4 Optimal treatment 

For this technique, to optimize the objective function J, only treatment 
3g  is used as a control, 

while control on prevention by proper hygiene 1g  and screening 2g  are set to zero. The findings 

in Figures 4(a) and 4(b) indicate a substantial difference between infected carriers and infected 

population with control strategy compared to infected carriers and infected individuals without 

control. Figure 4(a) indicates that the population of infected carrier decreases as against an increase 

in the uncontrolled situation. The uncontrolled case also led to an increased number of infected 

persons in Figure 4(b), while the control approach led to a rapid reduction in the number of infected 

persons as a result of treatment although after one and a half month, the number of infected 

individuals increases again with lower level compared to non-control case. Figure 4(c) is the 

control profile on treatment 3g  which shows that the optimal treatment control is at the top bound 

up to ft = 1.5 months, then reduces slowly to the lower bound 

5.5 Optimal prevention via proper hygiene and screening 

With this strategy, prevention via proper hygiene 1g  and screening 2g  are used as controls to 

optimize the objective function J, while the control on treatment 
3g  is set to zero. The findings 

in Figure 5(a) and 5(b) show a significant difference in the infected carriers and infected 

individuals, respectively with optimal control compared to infected carriers and infected 

individuals without control. Figure 5(a) shows that the combination of  the control, prevention 

through proper hygiene 1g  and screening 2g  resulted in a dramatic reduction in the population 

of infected carriers as compared to an increase in the uncontrolled case. Further, with controls the 

number of infected individuals reaches zero after approximately 0.7 months. This combination 

leads to a decrease in the population of the infected carrier more than the population of the infected 
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individuals in Figure 5(b). Figure 5(c) is the control profile on prevention via proper hygiene 1g

and screening  2g   receptively. The control 1g   shows that the optimal prevention via proper 

hygiene is at the upper limit up to ft =3 months before falling to the lower limit whereas the 

control 2g is at the top bound up to ft = 1.4 months, then reduces slowly to the lower bound. 

5.6. Optimal prevention via proper hygiene and treatment 

With this strategy, prevention is used as control via proper hygiene 1g   and treatment 
3g   to 

optimize the objective function J, while control 2g  is set to zero. The findings in Figure 6(a) and 

6(b) indicate a substantial difference with an optimal strategy in the infected carriers and infected 

population compared to uncontrolled infected carriers and infected population. Figure 6(a) 

indicates that the combination of prevention by good hygiene and treatment as control measures 

resulted in a decrease in the population of both infected carriers and infected individuals. The 

uncontrolled case also contributed to a rise in the number of infected persons in Figure 6(b), while 

the control approach contributed to a reduction in the population of infected individuals. Figure 

6(c) is the control profile on prevention via proper hygiene 1g and treatment  
3g . The control 

1g  shows that the optimal prevention through proper hygiene is at the upper limit up to 2.9 months 

before falling to the lower limit while the control on 
3g  is at the upper limit up to 1.1 month, 

then reduces slowly to the lower bound.  

5.7 Optimal screening and treatment 

Screening 2g  and treatment 3g  are used as control to optimize the objective function J, while 

setting the control prevention by proper hygiene 1g  to zero. The findings in Figure 7(a) and 7(b) 

show a significant difference between infected carriers and infected persons with an optimal 

strategy compared to infected carriers and uncontrolled persons. Figure 7(a) indicates that the 

combination of screening and treatment as control measures is very successful for the infected 

carriers, resulting in a significant reduction in the number of infected carriers and reaches zero 

after 0.7 month as compared to a rise in the uncontrolled case. This combination also has more 
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effect than those of people infected. The uncontrolled case also contributed to a rise in the number 

of infected population in Figure 7(b), while the control approach contributed to a reduction in the 

number of infected population. Figure 7(c) is the control profile on screening 2g and treatment 

3g . The control 2g  is at the upper limit up to ft =2.9 months before falling to the lower limit. 

Meanwhile, the control 
3g  is at the top bound up to ft = 1.1 months then reduces slowly to the 

lower bound. 

5.8 Optimal prevention via proper hygiene, screening and treatment 

For this approach, all controls, prevention by proper hygiene 1g , screening 2g  and treatment 

3g  were applied to maximize objective function J. The results in Figure 8(a) and 8(b) show a 

significant difference with an optimal strategy in the infected carriers and infected individuals, 

respectively compared to uncontrolled infected carriers and infected individuals. Figure 8(c) is the 

control profile on prevention by proper hygiene 1g , screening 2g and treatment 
3g .The control 

1g  shows that the optimal prevention by proper hygiene is at the upper limit up to ft =3 months 

before falling to the lower limit, while the control 2g  is at the upper limit up to ft =2.9 months 

before falling to the lower limit. On the other hand, the control 3g  is at upper bound ft =1.1 

months before falling to the lower limit. We conclude that, the combination of all three controls 

results in a stronger reduction in population of infected carriers and infected individuals. However, 

the population of infected individuals reaches zero after approximately half month, which gives 

the best results compared to the previous 6 strategies mentioned above. Therefore, in a given period, 

implementing this strategy is successful in eradicating the disease epidemic eventually.  
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 (a)  (b) 

 

(c) 

FIGURE 2. Simulations showing the effects of prevention via proper hygiene on infected carrier 

and infected individuals. 
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 (c) 

FIGURE 3. Simulations showing the effects of screening on infected carrier and infected 

individuals.  
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FIGURE 4. Simulations showing the effects of treatment on infected carrier and infected 

individuals. 
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  (c) 

FIGURE 5. Simulations showing the effects of prevention via proper hygiene and screening on 

infected carrier and infected individuals. 
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(c) 

FIGURE 6. Simulations showing the effects of prevention via proper hygiene and treatment of 

infected carrier and infected individuals. 
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 (c) 

FIGURE 7. Simulations showing the effects of screening and treatment on infected carrier and 

infected individuals. 
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 (c) 

FIGURE 8. Simulations showing the effects of prevention via proper hygiene, screening and 

treatment on infected carrier and infected individuals. 

 

6. CONCLUSION 

In this study, a compartmental model of SCIR governed by a system of nonlinear differential equations is 

proposed. We have demonstrated the boundary of solutions and shown that all solutions are non-negative. Two 

equilibrium points (disease-free and endemic) are obtained and their stability depends on the basic reproduction 

number. When the basic reproduction number is less than unity, the disease is eventually eradicated and the 

disease-free equilibrium is globally stable. On the contrary, the disease persists and the endemic equilibrium 

point is globally stable when it satisfies some condition i.e. 0b  . Our sensitivity analysis suggests that we 
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should try to reduce the transmission rate and increase the transferring from carrier individuals to infected 

individuals to prevent greater contact. Hence, we further extend the model in (1) to optimal control problems by 

adding three control variables which are prevention via proper hygiene, screening of the infected carriers which 

enable them to know their health conditions and to go for early treatment and treatment of the infected individuals. 

We performed numerical simulations in 7 different strategies of different controls. Our results show that using 

combinations of all three controls gives the best result in reducing the spread of disease overall. 

Therefore, we should encourage these three controls in order to control the spread of infectious 

disease. 
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