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Abstract. The objective of this paper is to introduce and investigate new subclass of analytic functions involving
g—derivative Ruscheweyh operator. For functions belonging to this class, we obtain coefficient estimates on Taylor

- Maclaurin series and the results on the famous Fekete Szego inequality.
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1. INTRODUCTION

The g-difference calculus or quantum calculus was initiated at the beginning of 19th century,
that was initially developed by Jackson [8, 9]. The g—calculus is one of the tool which is used
to introduce and investigate many number of subclasses of analytic functions. Basic definitions
and properties of g-difference calculus can be found in the book mentioned in [10]. The origin
of fractional g-difference calculus has been found in the works by Al.Salam [3] and Agarwal
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[2]. Due to the application of g—calculus in various branches of science, recently, the area of
g-calculus has attracted the serious attention of researchers. Later, geometrical interpretation
of g—analysis has been recognised through studies on quantum groups. Mohammed and Darus
[14] studied approximation and geometric properties of these g-operators for some subclasses

of analytic functions in compact disk.

Let <7 denote the class of all functions f(z) of the form:
(1.1) fR)=z+) ad (z€U)
n=2

which are analytic in the open unitdisc U={z€ C: |z| < 1}.
Let . be the subclass of <7 consisting of all univalent functions in U.

If f(z) and g(z) are analytic in U, then we say that the function f(z) is subordinate to g(z), if

there exists a Schwarz function w(z), analytic in U with
w(0) =0 and |w(z)| <1 (z€U),

such that

We denote this subordination by

f=<gor f(z)<g(z) (z€U).

In particular, if the function g(z) is univalent in U, the above subordination is equivalence to

f(0) =¢(0) and f(U) C g(U).

A g-analog of the class of starlike functions was first introduced in 1990 [7] by means of
the g-difference operator D, f(z) acting on functions f € .o/ given by (1.1) and 0 < g < I, the

g-derivative of a function f(z) is defined by (see [8, 9])

f(z) — f(qz)

(z#0).
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Dyf(0) = f/(0) and D f(z) = Dy(Dyf(z)). From (1.2), we deduce that,

o5}

(1.3) Dyf(x) =1+ Y [y
k=2
where
|
1.4 kl, = .
As g — 17, [k]; — k. For a function /(z) = z¥, we observe that,
o 1=d" 4y k-1
Dy(h(z)) = Dyg(2") = qu = [klgz ™,
lim (D,(h(2)) = Tim (K, 2") = k" = (2),

g—1- g—1-

where /' is the ordinary derivative.

As aright inverse, Jackson [9] introduced the g-integral
¢ ST
/O f0)dgt =2(1—q) Y, 4" f(z4"),
k=0

provided that the series converges. For a function A(z) = z¥, we have

z T 7K+l
/Oh(t)dqt—/o thdgt = k1, (k#—1)

. ket o .
im [ h(t)dyt = li - :/htdt,
Jm |, h0)dgt = Tim k+1], k+1_ Jo )

where [;5h(t)dt is the ordinary integral. Note that the g-difference operator plays an im-

portant role in the theory of hypergeometric series and quantum physics (see for instance
[4, 5, 6, 12, 16]). Kanas and Rdducanu in [11] used the Ruscheweyh g-differential operator
to introduce and study some properties of (¢, k) uniformly starlike functions of order a.. One
can clearly see that D, f(z) — f’(z) as ¢ — 1. This difference operator helps us to generalize

the class of starlike functions S* analytically.

Ma and Minda [13] unified various subclasses of starlike and convex functions for which ei-
zf'(2) zf"(2)
f(z) f'(z)

For this purpose, they considered an analytic function ¢(z) with positive real part in the unit

ther of quantity (or) 1+ is subordinate to a more general superordinate function.

disc U, with ¢(0) = 1, ¢ (0) > 0 and ¢ maps U onto a region starlike, with respect to the real
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axis.

The classes of Ma-Minda starlike functions consists of functions f(z) € .27 satisfying the sub-
f'(z)
f(2)

the subordination 1 +

ordination

< @(z). Similarly, the class of Ma-Minda convex functions f € o7 satisfying

zf"(2)
f'(2)

< 0(z2).

2. PRELIMINARIES

In this session, we present some of the known concepts and new definitions defined in the

open unit disc U.

Definition 2.1. For 0 < a < 1; a function f € o7 is in .#y(¢) if

u—aff@+u(r+dﬁ@><¢@-

f) [ (@)
Quite recently, Abdullah and Darus in [1] introduced the new differential operator .@;"l’f S KA

by

2.1) ‘@;n/.rEklf Z—i_ZQkAS/J lZl7
where
(8,0, 2,1t > 0).k > A,8 > p,m € No.

v—1+i,!
Tt

Remark 2.2. For different values of v,k,A,9,B and u, we get various differential operators

Q5 0= k=2 =) [([g = 1) +1]"

explained as Remark in [1].

By inspiring the works of Abdullah and Darus [1], we now define the new subclass .#;"" (¢)

of o7 associated with the differential operator(2.1).
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Definition 2.3. Let f € o7 and 0 < o < 1, then f is said to be in the class .#;"" (¢) if it satisfies

the following subordination condition:

20,24 1(2) 94 (20,75 (2))
@ 1o () e (M) <o

In order to prove the main result, we need the following lemma.

Lemma 2.4. [15] If p(z) = 1 +c1z2+c2z> + ... is an analytic function with positive real part in

U, then
lca —vel| < 2max{1,|2v —1|}.

1422 14z
d -

the result is sharp for the function p(z) =

we also need the following results for our investigation.

Lemma 2.5. [13] If p(z) = 14 c1z2+ 22> + ....is an analytic function with positive real part in

U, then

—4v+2 if v<0

(2.3) lco—vet| <42 if 0<v<l

4v -2 if v>1

3. MAIN RESULTS

The main purpose of this paper is to obtain the Fekete-Szego inequality for certain class of

analytic functions defined by the differential operator involving g—Ruscheweyh operator.
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Theorem 3.1. Let 0 < o < 1. Also let ¢(z) = 1+ B2+ Byz> +B3z> + ..., where the coefficients
By, are real with By > 0. If f(z) given by (1.1) belongs to 47" (), then

—va Bl X
Ve S S o ) (Bl 5,
e {1. By, Bi(l-a+ () )
@3.1) B (21— 1) (1— o+ [2),0)

et Bl (Bl )9, (Bl

2
(1= et ([2)g2e) (21— 1) (@ 5 ,u(210))
Proof. Observe that the condition in (2.2) can be written as follows:

20,94 " f(2) 9% (Zaq-@gwf(z)) _
7770) )*“( W) )_4,(@@).

Here, the function @(z) is analytic in U with the condition @(0) =0 and |w(z)| < 1 in U.

(3.2) (1-a) (

Let h(z) be an analytic function defined in U with R{A(z)} > 0 and k(0) = 1 be given by
h(z) =1+ Z cpZ" for z € U, then

n_

1+ o(z)
1—o(z)

Since w(z) is a Schwarz function, we have

_ 2
G4 o(0@) =9 (28+ i) — 14 Bzt (%Bl (cz - %1) +332c%) ET

Upon computation we get,

(3.3) h(z) = =l+4ciz+e?+er +....

(3.5)

(1-a) (zaq@;nﬂvf(z)) a (aq (20,25 f(z ))) _

24" f(2) 9494 f(2)
1+ [([2]q 1) 5 (20 (1—at [2]qa)} Wz

+{ [(m -1) sz,g,u<[3]q> (1-a+[3),a)] as

From (3.4) and (3.5), we obtain
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_ Bicy

GO ot 2aa) (Rl 1) 50 (20)
and

az = Bi
. PT2(1—a+[Bla) (Blg— 1) 9y 5., (Blo)
| {c_l[l B, Bi(l-a+(2)e) ]2}

22 B (Rl -at+2e)?]
Therefore,
B,

5-8) as — pa = 2(1—a+ 3,0) (Blg - 1) 2 5,3 )(CZ_GC%)'
Where

1 By Bi(l-a+([2]y)’a)

6_2{1 By ([2l,—)(1—a+[2],0)?
3.9

(1_ ([3]61_1) (1_a+[3] a) kg 5#([3] ) V)}
(21— 1) (1= a+([2]5)? O‘)(QZL(S#([Z](]))Z '

We get our desired result by applying Lemma 2.4. This completes the proof of Theorem 3.1. [J

Remark 3.2. If we set o = 0 and o = 1, then we have the results of Theorem 5 and Theorem 6

obtained by Abdullah and Darus [1] respectively.
If we set m = 0 and v = 0 in Theorem 3.1, we thus obtain the following:

Corollary 3.3. Let ¢(z) = 1 +Biz+ By + B3>+ ..., with By > 0, and if f(z) given by (1.1)
belongs to My(9), then

B ed B2, B (1—a+([2]y)*)
(Blg—1) (1 -+ [3]y0) (B (2lg—1) (- a+ 20)?

(1 <[(2[13] 1><)1(1—;TZ[[23]L> Zc)") ‘}

lasz — va%| <

The result is sharp.
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Theorem 3.4. Let 0 < o < 1. Also let ¢(z) = 1+B1z-+Boz* + B3z +. .., where the coefficients
By, are real with By > 0 and By > 0. If f(z) given by (1.1) belongs to ;" (), then

F if v <X,
B, .
(3.10) a3 — va3| < By~ D 5 n(Bl) (= @+ Bl if x1<v<p,
2 if  v=x.
Where,
F = B
"= at 3@ (Bl - D9y 5. (Bl)
N B} (2l —1)(1 =+ ([2]g)*a)
(2l —1)? | (1 —a+[38lga)(1 —a+[2]40)*([8]s — DY 5., (13]g)
\%
(-at [2]q06)2<9?,f,5,#([2]q)>2] ’
o B? 1%
PRl 12 | (1= o+ 2002 (Qy 5 ,4(12]))?
B (2lg =D (1 = a+([2]y)*a)
(1— o+ 3lga) (1 — o+ [2]g0)* (3] — Ny 5., (13lg)
— BZ
(1= o+ [3]go) ([3]g — DY 5., (13]g)
and
. (12lg = D 5., (1) (121, — (1 =+ ([2]g) ) 2(By+By) + (1 — ar+ ([2]4)? ) B2 ]
(Blg =D)L 5., (Bly) L Bi(1—oa+([3])a)
. ([2]q— 1)(921{;5#([2]41))2 (2= (1~ o+ ([2)0)* (B —B1) + (1 - a+ (21, 0B} |
(Blg =D 5.,(Blg) L Bi(1—oa+([3])a)

Proof. The Proof is followed by Lemma 2.5.

Using (3.8) and (3.9), we have the following cases:
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Case (1): If v < xq,
B
2(1— o+ [3ga) (3] — 1)y 5, (13]q)
_ B {Bz L (-at () a)B:
~ (I—a+Blge)(Blg— DY 5, (Blg) 1B1 -+ (1—a+([2]a)*)([2l;— 1)

lasz — Va2| 2 —40]

<1_ (1—a+ Bl (3]~ D) 5, (310) v)]
(= a+ (@), D@ 5, @2 )|
Therefore,
az —vaz| < B B%
Yl S B (Bl 09 5 a (Bl | (217
(1—a+(12),)2@) (2~ 1)
G-1D 0t 22— ot Blaa) (Bl DY 5, (Bl,)
B \%
(= o+ 2o (@, 22|

Case (i1): If y1v < 12,

B
(= a+ Bl (Blg— DR 52 (Bla)

(3.12) laz — va3| <

Case (iii): If v > o,

G LT o e ey B,
- B, {Bz (1—a+([2y)*)B:
(1—a+[3l,0)(Blg— Dy 5, (Bly) LB (1= a+ (Rlya)(2]— 1)
(1 (1— o+ [3],0) (3 — D3 5., (B3y) )
(1= a+ (2?0 (2l — Q5,22 ] |
Therefore,
2 B> B}
e S B, (Bly— D 5, (Bly) (17
. [ (1= o+ (2] ) (2, — 1)
(1— a+ 2l,0)2(1 — a+ Blya) (3l — DT 5., (Blo)

\%
(- o+ 2002y 5 ,(210)?

This completes the proof of the Theorem 3.4.
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Remark 3.5. If we set ¢ = 0 and o = 1, then we have the results of Theorem 10 and Theorem

11 obtained by Abdullah and Darus [1] respectively.

If we set m = 0 and v = 0 in Theorem 3.4, we thus obtain Fekete Szegd inequality for the

subclass .Z,(¢):

Corollary 3.6. Let ¢(z) = 1 +Biz+ Byz> + B3z’ + ..., with B; > 0, and if f(z) given by (1.1)
belongs to M, (9), then

G] lf v< lPl?

B>
3.14 az — vas| < if ¥ <v<W¥,,
G149 VAl S\ (B, D -t Bly)

Gy if v <WY¥,.
Where,

B, n B} ([2g— D1 - a+([2]g)°c

_ )
Gl_(l—a+[3]qa)([3]q_1) (2lg—1)? [(1 —a+[3];a) (1 — o+ [2],0)%([3], — 1)

\%
_<1—a+[2]qa)2}’

i [ v (2l — D1 — o+ ([2]y)*@)
P -D2 [(0—a+ )2 (1—a+[Blee)(1—a+ 20023, 1)
B,
C(I—a+[Bla) (Bl 1)
And

g, ~ =) [(2), =01 —a+(2))@)* (B2 +B) + (1 —a+ (2, )BT ]
@Bl | B2 (1—a+([3],)a) _

g, = Pla=1) [([2l = D(1 — o+ (2l)@)* (B~ B) + (1 - a+ (2l @)Bi]
([Blg—1) [ B%(l_OH'(B]q)O‘) '

The result is sharp.
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