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1. INTRODUCTION  

In [4], Atanassov and Shanaon discussed arrays of numbers that are in some way, between two-

dimensional vectors and  (2 × 2)-dimensional matrices in their paper titled matrix-tertions and 

noitrets. As an extension, Ajibade [1] in 2003 introduced objects which are in some ways, 

between (2 × 2) -dimensional and (3 × 3) -dimensional matrices. This field of science now 

known as rhotrix theory was defined in [1] for dimension three as: 



3131 

CHARACTERIZATION OF A HEART-ORIENTED PARALETRIX 

                                          𝑅 = {⟨
𝑎

𝑏    𝑐     𝑑
𝑒   

⟩  ∶  𝑎, 𝑏, 𝑐, 𝑑, 𝑒 𝜖 ℝ},  

where  𝑐 = ℎ(𝑅) is called the heart of any rhotrix  𝑅 and  ℝ is the set of real numbers. 

It is worthy to note that these heart-oriented rhotrices are always of odd dimension. Thereafter, 

Mohammed [10] in his PhD thesis extended the idea to rhotrix set of size  𝑛. 

It is known in [1] that addition and multiplication of two heart-oriented rhotrices are as follows: 

          𝑅 + 𝑄 = ⟨
𝑎

𝑏    ℎ(𝑅)     𝑑
𝑒   

⟩ + ⟨
𝑓

𝑔    ℎ(𝑄)     𝑗
𝑘   

⟩ = ⟨
𝑎 + 𝑓

𝑏 + 𝑔    ℎ(𝑅) + ℎ(𝑄)    𝑑 + 𝑗
𝑒 + 𝑘   

⟩ 

and       𝑅 ∘ 𝑄 = ⟨

    𝑎ℎ(𝑄) + 𝑓ℎ(𝑅)

𝑏ℎ(𝑄) + 𝑔ℎ(𝑅)    ℎ(𝑅)ℎ(𝑄)      𝑑ℎ(𝑄) + 𝑗ℎ(𝑅)

    𝑒ℎ(𝑄) + 𝑘ℎ(𝑅)   

⟩ 

respectively. Furthermore, Mohammed [10] and Ezegwu et al [5] gave a generalization of this 

heart-oriented rhotrices.  

A row-column multiplication of heart-oriented rhotrices was given by Sani [15] as: 

                    𝑅 ∘ 𝑄 = ⟨

    𝑎𝑓 + 𝑑𝑔

𝑏𝑓 + 𝑒𝑔      ℎ(𝑅)ℎ(𝑄)    𝑎𝑗 + 𝑑𝑘
   𝑏𝑗 + 𝑒𝑘   

⟩. 

Sani [16] also gave a generalization of this row-column multiplication of heart-oriented rhotrices 

as: 

𝑅𝑛 ∘ 𝑄𝑛 = 〈𝑎𝑖1𝑗1 , 𝑐𝑙𝑖𝑘1〉 ∘ 〈𝑏𝑖2𝑗2 , 𝑑𝑙2𝑘2〉 = 〈 ∑ (𝑎𝑖1𝑗1𝑏𝑖2𝑗2)

𝑡

𝑖2𝑗1=1

, ∑ (𝑐𝑙𝑖𝑘1𝑑𝑙2𝑘2)

𝑡−1

𝑙2𝑘1=1

〉 , 𝑡 =
𝑛 + 1

2
 , 

where 𝑅𝑛 and 𝑄𝑛 denote  𝑛-dimensional rhotrices (with  𝑛 rows and 𝑛 columns). 

Mohammed [9] classified the heart-oriented rhotrices as abstract structures of rings, fields, 

integral domains and unique factorization domain. The rhotrix quadratic polynomial presented as 

part of a note on rhotrix exponent rule and its applications in [10] was extended in [18]. Rhotrix 

polynomial and its extension to construction of rhotrix polynomial ring was studied in [19]. Also 

in [11], some construction of rhotrix semigroup was given and then extended by  in [13] to 

rhotrix type A semigroup. The study of non-commutative full rhotrix ring and its subring was 
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carried out by Mohammed in [12]. Patil [14] gave a characterization of ideals of rhotricesover a 

ring and its application.  

Consequently, Isere [6, 7] introduced rhotrices without a heart, and these rhotrices were found to 

be even-dimensional rhotrices. 

Tudunkaya and Makanjuola [17] studied rhotrices and the construction of finite fields. 

The concept of paraletrix was introduced by Aminu and Michael [2] as an extension of rhotrix [1] 

when the number of rows is not equal to the number of columns. It is worthy to note that not all 

paraletrix has a heart as seen in [2]. 

Suppose  𝑃 and 𝑃′ are two  3 × 7 paraletrices such that the heart of the paraletrix exist; 

𝑃 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ , 𝑃′ = ⟨

𝑏1
𝑏2   𝑏3     𝑏4

                     𝑏5     𝑏6    𝑏7         
                                            𝑏8     𝑏9   𝑏10        

                                        𝑏11

⟩, 

then the multiplication and addition of two  3 × 7 heart-oriented paraletrices  𝑃 and  𝑃′  using 

Ajibade’s multiplication of rhotrix [1] are as follows: 

𝑃 ∘ 𝑃′ = ⟨

𝑐1
𝑐2   𝑐3     𝑐4

                     𝑐5     𝑐6    𝑐7         
                                            𝑐8     𝑐9   𝑐10        

                                        𝑐11

⟩ 

where each  𝑐𝑖 = 𝑎𝑖ℎ(𝑃
′) + 𝑏𝑖ℎ(𝑃)  ∋ 𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6  and  𝑐6 = ℎ(𝑃′)ℎ(𝑃)  for the 

heart of the paraletrix  𝑃 ∘ 𝑃′ and  ℎ(𝑃′) = 𝑏6, ℎ(𝑃) = 𝑎6 are hearts of paraletrices  𝑃′ and  𝑃 

respectively. 

𝑃 + 𝑃′ = ⟨

𝑑1
𝑑2   𝑑3     𝑑4

                     𝑑5     𝑑6    𝑑7         
                                            𝑑8     𝑑9   𝑑10        

                                        𝑑11

⟩ 

where  𝑑𝑖 = 𝑎𝑖 + 𝑏𝑖  ∋ 𝑖 = 1,2,3, … ,11. 
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It is important to note that the multiplication of paraletrix 𝑃 and  𝑃′  using Sani [15] is only 

possible whenever the number of columns of  𝑃 is equal to the number of rows of 𝑃′ for any 

arbitrary paraletrix. 

In [9] and [12], rhotrices are classified as rings using Ajibade [1] and Sani [15] respectively.  

The objective of this paper is to classify paraletrices as rings using Ajibade [1]. The result in this 

paper is an extension to the ones given in [9]. 

 

2. PRELIMINARIES 

In this section we recall some definitions as well as some known results which will be useful in 

this paper. For notation and terminologies not mentioned in this paper, the reader is referred to 

[1], [15], [16], [7], [12] and [2] respectively. 

Throughout this paper, we will use  𝑃 to denote any paraletrix, while  𝑚 and 𝑛 are the number of 

rows and columns of an arbitrary paraletrix, where  𝑚, 𝑛 𝜖 (2𝑘 + 1 ∶ 𝑘 𝜖 ℕ). 

Definition 2.1. Let  𝑚 and 𝑛 be the number of rows and columns of an arbitrary paraletrix, 

where  𝑚, 𝑛 𝜖 (2𝑘 + 1 ∶ 𝑘 𝜖 ℕ). An  𝑚 ×  𝑛-dimentional heart-oriented paraletrix is of the form 

 𝑃𝑚×𝑛 = 〈𝑎𝑖𝑗, 𝑐𝑙𝑘〉 , where 𝑎𝑖𝑗 , 𝑐𝑙𝑘 𝜖 ℝ   for  𝑖 = 1,2, … . ,
𝑚+1

2
, 𝑗 = 1,2, … . ,

𝑛+1

2
 and =

1,2, … . ,
𝑚−1

2
, 𝑘 = 1,2, … . ,

𝑛−1

2
 . For more information, the reader is referred to [2]. 

Definition 2.2. The cardinality or order of a paraletrix is defined to be the number of entries of 

an arbitrary paraletrix  𝑃 with  𝑚 number of rows and  𝑛 number of columns. This is denoted by 

                                              Ο(𝑃𝑚×𝑛) =
1

2
[(𝑚 × 𝑛) + 1]. 

Lemma 2.3 [2]. Let  𝑃 be an  𝑚 × 𝑛-dimensional paraletrix. If 𝑃 has a heart then the heart is 

unique. 

Theorem 2.4 [2]. A necessary and sufficient condition for the heart of an 𝑚 × 𝑛-dimensional 

paraletrix  𝑃 to exist is that the order is odd. 

Theorem 2.5 [2]. A necessary and sufficient condition for the heart of an 𝑚 × 𝑛-dimensional 

paraletrix  𝑃 to exist is that   |𝑚 − 𝑛| = 4𝑘  where  𝑘 = 0,1,2, …   
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Definition 2.6. Suppose 𝑃 and  𝐼  are two 𝑚 × 𝑛 -dimensional and 𝑟 × 𝑠 -dimensional heart-

oriented paraletrices such that 𝑃. 𝐼 = 𝑃 then 𝐼 is said to be the identity paraletrix. The identity of 

a paraletrix with 3 rows and 7 columns is given by  

                               𝐼 = ⟨

0
 0   0    0

            0    1   0   
                          0   0   0  

                        0

⟩ 

Definition 2.7. A ring is defined as a non-empty set  𝑅 with two compositions +,∘ ∶ 𝑅 × 𝑅 → 𝑅 

with the following properties; 

i)  (𝑅,+) is an abelian group (zero element 0) 

ii) (𝑅, ∘) is a semigroup 

iii) for all  𝑎, 𝑏, 𝑐 𝜖 𝑅 the distributivity laws are satisfied; 

                            (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐,    𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐. 

It is worthy to note that a ring  𝑅 such that for  𝑎, 𝑏 𝜖 𝑅,  𝑎𝑏𝑎 = 𝑎 is referred to as a regular ring. 

Definition 2.8. A subgroup  𝐼 of (𝑅, +) is said to be a left ideal 𝑅  if 𝑅𝐼 ⊂ 𝐼,  and a right ideal if  

if 𝐼𝑅 ⊂ 𝐼.  𝐼 is said to be an ideal if it is both a left and right ideal. 𝐼 is a subring if  𝐼𝐼 ⊂ 𝐼. It is 

worthy to note that every left or right ideal in 𝑅 is also a subring of  𝑅. The intersection of 

(arbitrary many) (left, right) ideals is again a (left, right) ideal. 

Definition 2.9. Let  𝐴, 𝐵  be rings. A mapping  𝜑 ∶ 𝐴 → 𝐵  is called a ring morphism or 

homomorphism if  

i)  (𝑎1 + 𝑎2)𝜑 = 𝑎1𝜑 + 𝑎2𝜑 

ii)  (𝑎1𝑎2)𝜑 = 𝑎1𝜑𝑎2𝜑 

for all 𝑎1, 𝑎2 𝜖 𝐴. 

Definition 2.10. Let  𝑅 be a ring, we say that 𝑅 is a differential ring if it is equipped with one or 

more derivations, that are homomorphisms of additive groups  𝑑 ∶ 𝑅 → 𝑅  such that each 

derivation 𝑑 satisfies the Leibniz product rule  𝑑(𝑟1𝑟2) = (𝑑𝑟1)𝑟2 + 𝑟1(𝑑𝑟2) for every  𝑟1, 𝑟2 𝜖 𝑅. 
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3. RING OF PARALETRICES 

In this section, we apply the notions of rings in the development of new abstract structure of 

paraletrices with respect to the binary operations of addition (+) and multiplication  (∘). The 

paraletrix under consideration will be a  3 × 7-dimensional heart-oriented paraletrix. 

Now let   𝑅∗ = 〈𝑃,+, ∘〉 be an abstract structure consisting  of the set  𝑃 of all real  a  3 × 7 

paraletrices together with the operations of addition (+) and multiplication  (∘). Let the identity 

of  𝑃 be as in Definition 2.5 while the zero paraletrix be such that the elements of the paraletrix 

are all zero. 

We have the following results: 

Theorem 3.1.  𝑅∗ = 〈𝑃, +, ∘〉 is a ring. 

Proof. It is obvious that  𝑅∗ is an abelian group.  

Let  𝑃 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩,  

 𝑃′ = ⟨

𝑏1
𝑏2   𝑏3     𝑏4

                     𝑏5     𝑏6    𝑏7         
                                            𝑏8     𝑏9   𝑏10        

                                        𝑏11

⟩,  

𝑃′′ = ⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩  𝜖 𝑅∗,  

to show that  𝑅∗ is a semigroup, we have that 

(𝑃 ∘ 𝑃′) ∘ 𝑃′′ 

= ⟨

𝑐1
𝑐2   𝑐3     𝑐4

                     𝑐5     𝑐6    𝑐7         
                                            𝑐8     𝑐9   𝑐10        

                                        𝑐11

⟩ ∘   ⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩ 
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= ⟨

𝑣1
𝑣2   𝑣3     𝑣4

                     𝑣5     𝑣6    𝑣7         
                                            𝑣8     𝑣9   𝑣10        

                                        𝑣11

⟩, 

where  𝑐𝑖 = 𝑎𝑖ℎ(𝑃
′) + 𝑏𝑖ℎ(𝑃)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑐6 = ℎ(𝑃′)ℎ(𝑃), ℎ(𝑃′) = 𝑏6,  

ℎ(𝑃) = 𝑎6.   𝑣𝑖 = 𝑐𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃 ∘ 𝑃

′)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6,  𝑣6 = ℎ(𝑃 ∘ 𝑃′)ℎ(𝑃′′),  

ℎ(𝑃 ∘ 𝑃′) = 𝑐6 = ℎ(𝑃
′)ℎ(𝑃), ℎ(𝑃′′) =  𝑢6.    

Similarly, 

𝑃 ∘ (𝑃′ ∘ 𝑃′′) 

= ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ ∘   ⟨

𝑤1
𝑤2   𝑤3     𝑤4

                     𝑤5     𝑤6    𝑤7         
                                            𝑤8     𝑤9   𝑤10        

                                        𝑤11

⟩ 

= ⟨

𝑧1
𝑧2   𝑧3     𝑧4

                     𝑧5     𝑧6    𝑧7         
                                            𝑧8     𝑧9   𝑧10        

                                        𝑧11

⟩ 

where  𝑤𝑖 = 𝑏𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃

′)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑤6 = ℎ(𝑃′′)ℎ(𝑃′), ℎ(𝑃′′) = 𝑢6,  

ℎ(𝑃′) = 𝑏6.   

𝑧𝑖 = 𝑎𝑖ℎ(𝑃
′ ∘ 𝑃′′) + 𝑤𝑖ℎ(𝑃) for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑧6 = ℎ(𝑃)ℎ(𝑃′ ∘ 𝑃′′),  ℎ(𝑃) = 𝑎6,   

ℎ(𝑃′ ∘ 𝑃′′) = 𝑤6 . 

Consequently, 

𝑣𝑖 = 𝑐𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃 ∘ 𝑃

′) = (𝑎𝑖ℎ(𝑃
′) + 𝑏𝑖ℎ(𝑃))ℎ(𝑃

′′) + 𝑢𝑖ℎ(𝑃 ∘ 𝑃
′) 

     = 𝑎𝑖ℎ(𝑃
′ ∘ 𝑃′′) + 𝑏𝑖ℎ(𝑃

′′ ∘ 𝑃) + 𝑢𝑖ℎ(𝑃 ∘ 𝑃
′). 

 𝑧𝑖 = 𝑎𝑖ℎ(𝑃
′ ∘ 𝑃′′) + 𝑤𝑖ℎ(𝑃) = 𝑎𝑖ℎ(𝑃

′ ∘ 𝑃′′) + (𝑏𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃

′))ℎ(𝑃) 

     = 𝑎𝑖ℎ(𝑃
′ ∘ 𝑃′′) + 𝑏𝑖ℎ(𝑃

′′ ∘ 𝑃) + 𝑢𝑖ℎ(𝑃 ∘ 𝑃
′). 

Thus  (𝑃 ∘ 𝑃′) ∘ 𝑃′′ = 𝑃 ∘ (𝑃′ ∘ 𝑃′′) and so 𝑅∗ = 〈𝑃,+, ∘〉 is a semigroup. 

Lastly, we show that the distributivity law is satisfied for  𝑃, 𝑃′, 𝑃′′ 𝜖 𝑅∗ .  
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To do this, we have that 

 

(𝑃 + 𝑃′) ∘ 𝑃′′ 

= ⟨

𝑑1
𝑑2   𝑑3     𝑑4

                     𝑑5     𝑑6    𝑑7         
                                            𝑑8     𝑑9   𝑑10        

                                        𝑑11

⟩ ∘   ⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩ 

= ⟨

𝑟1
𝑟2   𝑟3     𝑟4

                     𝑟5     𝑟6    𝑟7         
                                            𝑟8     𝑟9   𝑟10        

                                        𝑟11

⟩ 

where  𝑑𝑖 = 𝑎𝑖 + 𝑏𝑖  ∋  𝑖 = 1,2,3, … ,11, 

𝑟𝑖 = 𝑑𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃 + 𝑃

′) for 𝑖 = 1,2,3,… ,11 ∋   𝑖 ≠ 6, 𝑟6 = ℎ(𝑃 + 𝑃
′′)ℎ(𝑃′′),

ℎ(𝑃 + 𝑃′) = 𝑎6 + 𝑏6,   ℎ(𝑃
′′) = 𝑢6. 

Similarly, we have that 

(𝑃 ∘ 𝑃′′) + (𝑃′ ∘ 𝑃′′) 

= ⟨

𝑔1
𝑔2   𝑔3     𝑔4

                     𝑔5     𝑔6    𝑔7         
                                            𝑔8     𝑔9   𝑔10        

                                        𝑔11

⟩ + ⟨

𝑤1
𝑑2   𝑑3     𝑑4

                     𝑤5     𝑤6    𝑤7         
                                            𝑤8     𝑤9   𝑤10        

                                        𝑤11

⟩ 

= ⟨

ℎ1
ℎ2   ℎ3     ℎ4

                     ℎ5     ℎ6    ℎ7         
                                            ℎ8     ℎ9   ℎ10        

                                        ℎ11

⟩ 

where 𝑔𝑖 = 𝑎𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃

′)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑔6 = ℎ(𝑃)ℎ(𝑃
′′), ℎ(𝑃) = 𝑎6, 

ℎ(𝑃′′) = 𝑢6. 

𝑤𝑖 = 𝑏𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃

′)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6,  𝑤6 = ℎ(𝑃
′′)ℎ(𝑃′), ℎ(𝑃′′) = 𝑢6,  

ℎ(𝑃′) = 𝑏6. 

ℎ𝑖 = 𝑔𝑖 +𝑤𝑖   ∋   𝑖 = 1,2,3, … ,11. 
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Consequently, we have that 

                𝑟𝑖 = 𝑑𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃 + 𝑃

′′) = 𝑑𝑖𝑢6 + 𝑢𝑖(𝑎6 + 𝑏6) 

                    = (𝑎𝑖 + 𝑏𝑖)𝑢6 + 𝑢𝑖(𝑎6 + 𝑏6). 

               ℎ𝑖 = 𝑔𝑖 +𝑤𝑖 = 𝑎𝑖ℎ(𝑃
′′) + 𝑢𝑖ℎ(𝑃) + 𝑏𝑖ℎ(𝑃

′′) + 𝑢𝑖ℎ(𝑃
′) 

                    = 𝑎𝑖𝑢6 + 𝑢𝑖𝑎6 + 𝑏𝑖𝑢6 + 𝑢𝑖𝑏6 

                    = (𝑎𝑖 + 𝑏𝑖)𝑢6 + 𝑢𝑖(𝑎6 + 𝑏6) . 

Therefore,  𝑅∗ = 〈𝑃,+, ∘〉 is a ring. 

It is important to note that  𝑅∗ is a commutative ring with identity denoted by  𝐼𝑅∗ . In  𝑅∗, it is 

obvious that the multiplication of nonzero paraletrices  𝑃 and 𝑄 is equal to zero. Hence   𝑅∗ has 

zero divisors and is not an integral domain. 

Lemma  3.3. Let  𝑅∗ be a ring and let  𝐿 be an ideal of the ring 𝑅∗.   

Then  𝑇 =

{
 
 

 
 

⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩  where  ℎ(𝑇) 𝜖 𝐿

}
 
 

 
 

 is an ideal in 𝑅∗. 

Proof. That  𝐿 is an ideal of  𝑅∗ implies that  𝑇 is a subset of  𝑅∗ and  𝑇 ≠ ∅. 

Let 

𝑈 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ , 𝑉 = ⟨

𝑎′1
𝑎′2   𝑎

′
3     𝑎

′
4

                    𝑎′5    𝑎
′
6   𝑎

′
7   

                                             𝑎′8   𝑎
′
9     𝑎

′
10 

                                        𝑎′11

⟩  

𝜖 𝑇  and  𝑊 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩  𝜖 𝑅∗. Then ℎ(𝑈), ℎ(𝑉) 𝜖 𝐿 and 

ℎ(𝑊) 𝜖 𝑅∗, ℎ(𝑊). ℎ(𝑈), ℎ(𝑈). ℎ(𝑊) 𝜖 𝐿. So we have that  𝑈 ∘𝑊, 𝑊 ∘ 𝑈 𝜖 𝑇. Therefore, 𝑇 is 

an ideal in 𝑅∗. 
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Lemma 3.4.  𝑅∗ is not regular 

Proof.  Let  𝑃, 𝑃′ 𝜖 𝑅∗ be as defined in Theorem 3.1. We have that 

                                 𝑃 ∘ 𝑃′ ∘ 𝑃 = 𝑄, 

where  𝑎𝑖 𝜖 𝑃, 𝑏𝑖 𝜖 𝑃
′, 𝑓𝑖  𝜖 𝑄  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑎6 = ℎ(𝑃), 𝑏6 = ℎ(𝑃′)  and  𝑓6 =

ℎ(𝑃 ∘ 𝑃′)ℎ(𝑃). 

               𝑐𝑖 = 𝑎𝑖ℎ(𝑃
′) + 𝑏𝑖ℎ(𝑃)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑐6 = ℎ(𝑃)ℎ(𝑃

′). 

                 𝑓𝑖 = 𝑐𝑖ℎ(𝑃) + 𝑎𝑖ℎ(𝑃 ∘ 𝑃
′)   for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, ℎ(𝑃 ∘ 𝑃′) = 𝑐6 =

ℎ(𝑃)ℎ(𝑃′). 

In [8], polynomial equations are defined over variables and coefficients which are also rhotrices. 

We will show that analogous result holds for ring of paraletrices. 

Theorem 3.5.  Let  𝑅∗ = 〈𝑃,+, ∘〉 be a ring and 𝑃, 𝑃′, 𝑃′′ 𝜖 𝑅∗ be such that we have the equation 

                                     (ℎ(𝑃′))2 − 4ℎ(𝑃)ℎ(𝑃′′) ≥ 0,  

then there exist a paraletrix  𝑋 𝜖 𝑅∗ satisfying the equation  𝑃 ∘ 𝑋2 + 𝑃′ ∘ 𝑋 + 𝑃′′ = 0. 

Proof. Suppose we have that 

 𝑃 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ , 𝑃′ = ⟨

𝑏1
𝑏2   𝑏3     𝑏4

                     𝑏5     𝑏6    𝑏7         
                                            𝑏8     𝑏9   𝑏10        

                                        𝑏11

⟩ 

𝑃′′ = ⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩ . Then we need to find two values for the 

paraletrix  

𝑋 = ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩ satisfying the equation 𝑃 ∘ 𝑋2 + 𝑃′ ∘ 𝑋 + 𝑃′′ = 0.  

So we have that 
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⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ ∘ ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩

2

+ 

⟨

𝑏1
𝑏2   𝑏3     𝑏4

                     𝑏5     𝑏6    𝑏7         
                                            𝑏8     𝑏9   𝑏10        

                                        𝑏11

⟩ ∘ ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩ + 

            ⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩ = ⟨

0
 0   0    0

            0    0   0   
                          0   0   0  

                        0

⟩ . 

Now, 

  𝑋2 = ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩ ∘ ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩ 

           = ⟨

𝑥′1
𝑥′2   𝑥

′
3     𝑥

′
4

                    𝑥′5    𝑥
′
6   𝑥

′
7   

                                             𝑥′8   𝑥
′
9     𝑥

′
10 

                                        𝑥′11

⟩ . 

where  𝑥′𝑖 = 𝑥𝑖ℎ(𝑋) + 𝑥𝑖ℎ(𝑋) = 2𝑥𝑖ℎ(𝑋)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6,  𝑥′6 = ℎ(𝑋)ℎ(𝑋) =

(ℎ(𝑋))2. 

𝑃′ ∘ 𝑋 

= ⟨

𝑏1
𝑏2   𝑏3     𝑏4

                     𝑏5     𝑏6    𝑏7         
                                            𝑏8     𝑏9   𝑏10        

                                        𝑏11

⟩ ∘ ⟨

𝑥1
𝑥2   𝑥3     𝑥4

                     𝑥5     𝑥6    𝑥7         
                                            𝑥8     𝑥9   𝑥10        

                                        𝑥11

⟩ =  
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 𝑌 = ⟨

𝑚1

𝑚2   𝑚3     𝑚4

                     𝑚5     𝑚6    𝑚7         
                                            𝑚8     𝑚9   𝑚10        

                                        𝑚11

⟩ 

where  𝑚𝑖 = 𝑏𝑖ℎ(𝑋) + 𝑥𝑖ℎ(𝑃
′)  for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑚6 = ℎ(𝑃

′)ℎ(𝑋). 

𝑃 ∘ 𝑋2 

= ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ ∘ ⟨

𝑥′1
𝑥′2   𝑥

′
3     𝑥

′
4

                    𝑥′5    𝑥
′
6   𝑥

′
7   

                                             𝑥′8   𝑥
′
9     𝑥

′
10 

                                        𝑥′11

⟩ = 

 𝐻 = ⟨

𝑤1
𝑤2   𝑤3     𝑤4

                     𝑤5     𝑤6    𝑤7         
                                            𝑤8     𝑤9   𝑤10        

                                        𝑤11

⟩ 

where  𝑤𝑖 = 𝑎𝑖(ℎ(𝑋))
2 + 𝑥′𝑖ℎ(𝑃) for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑤6 = ℎ(𝑃)(ℎ(𝑋))

2
. 

So that  𝑃 ∘ 𝑋2 + 𝑃′ ∘ 𝑋 + 𝑃′′ = 𝐻 + 𝑌 + 𝑃′′ = 0 

⟹ ⟨

𝑤1
𝑤2   𝑤3     𝑤4

                     𝑤5     𝑤6    𝑤7         
                                            𝑤8     𝑤9   𝑤10        

                                        𝑤11

⟩ + ⟨

𝑚1

𝑚2   𝑚3     𝑚4

                     𝑚5     𝑚6    𝑚7         
                                            𝑚8     𝑚9   𝑚10        

                                        𝑚11

⟩ 

+⟨

𝑢1
𝑢2   𝑢3     𝑢4

                     𝑢5     𝑢6    𝑢7         
                                            𝑢8     𝑢9   𝑢10        

                                        𝑢11

⟩ = 𝑍 = ⟨

𝑧1
𝑧2   𝑧3     𝑧4

                     𝑧5     𝑧6    𝑧7         
                                            𝑧8     𝑧9   𝑧10        

                                        𝑧11

⟩ 

= ⟨

0
 0   0    0

            0    0   0   
                          0   0   0  

                        0

⟩ 

where  𝑧𝑖 = 𝑤𝑖 +𝑚𝑖 + 𝑢𝑖   for  𝑖 = 1,2,3, … ,11 ∋ 𝑖 ≠ 6, 𝑧6 = ℎ(𝑃)(ℎ(𝑋))
2
+ ℎ(𝑃′)ℎ(𝑋) +

ℎ(𝑃′′). 
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Consequently, we have that  

𝑧𝑖 = 𝑎𝑖(ℎ(𝑋))
2 + 2ℎ(𝑃)ℎ(𝑋)𝑥𝑖 + 𝑏𝑖ℎ(𝑋) + 𝑥𝑖ℎ(𝑃

′) + 𝑢𝑖 = 0. 

We know from  𝑧6 that we have a quadratic in terms of  ℎ(𝑋). The roots of the equation are: 

                ℎ(𝑋) =
−ℎ(𝑃′) ± √(ℎ(𝑃′))2 − 4ℎ(𝑃)ℎ(𝑃′′)

2ℎ(𝑃)
 , 

where  ℎ(𝑃) ≠ 0  and  (ℎ(𝑃′))2 − 4ℎ(𝑃)ℎ(𝑃′′) ≥ 0. 

From  𝑧𝑖 we have that  𝑥𝑖 = −
𝑎𝑖(ℎ(𝑋))

2+𝑏𝑖ℎ(𝑋)+𝑢𝑖

2ℎ(𝑃)ℎ(𝑋)+ℎ(𝑃′)
  . 

By substituting ℎ(𝑋)  into 𝑥𝑖  we obtain the values of paraletrix 𝑋  satisfying the quadratic 

equation  𝑃 ∘ 𝑋2 + 𝑃′ ∘ 𝑋 + 𝑃′′ = 0. Thus the theorem is proved. 

In [2], it is known that we can extract  2 × 4 and 1 × 3 dimensional matrices from a 3 × 7-

dimensional paraletrix. It is also known in [11] that a rhotrix semigroup can be embedded in a 

matrix semigroup. The type A version of the embedding was proved in [13]. [12] proved that a 

rhotrix ring can be embedded in a matrix ring. 

Theorem 3.6.  Let  𝑅∗ = 〈𝑃,+, ∘〉 be a paraletrix ring and  𝕄 = (𝑀𝑚×𝑛, +, . ) be a matrix ring, 

then the map  𝜃 ∶  𝑅∗ = 〈𝑃, +, ∘〉 →  𝕄 = (𝑀𝑚×𝑛, +, . ) is not a ring morphism. 

Proof.  For each  𝑃 𝜖 𝑅∗ define a map  𝜃 ∶  𝑅∗ = 〈𝑃, +, ∘〉 →  𝕄 = (𝑀𝑚×𝑛, +, . ) by the rule 

   𝑃𝜃 = ⟨

𝑎1
𝑎2   𝑎3     𝑎4

                     𝑎5     𝑎6    𝑎7         
                                            𝑎8     𝑎9   𝑎10        

                                        𝑎11

⟩ 𝜃 = ([
𝑎1  𝑎4  𝑎7 𝑎10
𝑎2  𝑎5  𝑎8 𝑎11

] , [𝑎3  𝑎6  𝑎9]). 

That is  𝜃 maps each 3 × 7-dimensional paraletrix  𝑃 to  2 × 4 and 1 × 3 dimensional matrices 

with the usual matrix multiplication. Obviously  𝜃  is a one-to-one map since for  𝑃, 𝑃′ 𝜖 𝑅∗,

𝑃𝜃 = 𝑃′𝜃 which implies  𝑃 = 𝑃′. Now under addition (+) we have that  (𝑃 + 𝑃′)𝜃 = 𝑃𝜃 + 𝑃′𝜃 

while under multiplication (∘) we have that  (𝑃 ∘ 𝑃′)𝜃 ≠ 𝑃𝜃 ∘ 𝑃′𝜃 . 

Thus  𝜃 is not an injective homomorphism and the result follows. 
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Example 3.7.  Let  𝑃 = ⟨

1
 3   0    2

            6    4   5   
                          2   1   1  

                        3

⟩ , 𝑃′ = ⟨

3
 2   1    6

            4    0   1   
                          2   3   6  

                        5

⟩  𝜖 𝑅∗. 

We have that  (𝑃 + 𝑃′)𝜃 =

[
 
 
 
 

⟨

1
 3   0    2

            6    4   5   
                          2   1   1  

                        3

⟩ + ⟨

3
 2   1    6

            4    0   1   
                          2   3   6  

                        5

⟩

]
 
 
 
 

𝜃 

                                         = ⟨

4
 5   1    8

            10  4   6   
                          4   4   7  

                        8

⟩ 𝜃 = ([
4  8  6 7
5  10  4 8

] , [1  4  4]). 

     𝑃𝜃 + 𝑃′𝜃 = ([
1  2  5 1
3  6  2 3

] , [0  4  1]) + ([
3  6  1 6
2  4  2 5

] , [1  0  3]) = ([
4  8  6 7
5  10  4 8

] , [1  4  4]) 

     ⟹ (𝑃 + 𝑃′)𝜃 = 𝑃𝜃 + 𝑃′𝜃. 

Similarly, 

(𝑃 ∘ 𝑃′)𝜃 =

[
 
 
 
 

⟨

1
 3   0    2

            6    4   5   
                          2   1   1  

                        3

⟩ ∘ ⟨

3
 2   1    6

            4    0   1   
                          2   3   6  

                        5

⟩

]
 
 
 
 

𝜃 

        =

[
 
 
 
 

⟨

12
   8   4    24

           16    0   4   
                                  8   12   24   

                           20

⟩

]
 
 
 
 

𝜃 = ([
12  24  4 24
8  16  8 20

] , [4  0  12]). 

𝑃𝜃 . 𝑃′𝜃 = ⟨

1
 3   0    2

            6    4   5   
                          2   1   1  

                        3

⟩ 𝜃 . ⟨

3
 2   1    6

            4    0   1   
                          2   3   6  

                        5

⟩ 𝜃 

              = ([
1  2  5 1
3  6  2 3

] , [0  4  1])  .  ([
3  6  1 6
2  4  2 5

] , [1  0  3]) 

              = ([
1  2  5 1
3  6  2 3

]  .  [
3  6  1 6
2  4  2 5

] , [0  4  1] .  [1  0  3]]) 



3144 

R. U. NDUBUISI, R. B. ABUBAKAR, O. G. UDOAKA, I. J. UGBENE 

which is undefined. Thus (𝑃 ∘ 𝑃′)𝜃 ≠  𝑃𝜃 . 𝑃′𝜃 so that  𝜃 ∶  𝑅∗ = 〈𝑃,+, ∘〉 →  𝕄 = (𝑀𝑚×𝑛, +,

. ) is not a ring morphism. 

 

4. DIFFERENTIATION OF  𝑹∗ 

In [3], differentiation and integration of rhotrices was presented. In this section, we will prove 

that analogous result holds for ring of paraletrices. 

Let the elements of the paraletrix 𝑃 be functions of a variable  𝑡, then the paraletrix is called a 

paraletrix functions of  𝑡. In this case we can rewrite  𝑅∗ as  

                                   𝑅∗ = 〈𝑃(𝑡), +,∘〉 

                               ⟹
𝑑

𝑑𝑡
𝑅∗ = 〈

𝑑

𝑑𝑡
𝑃(𝑡), +,∘〉, 

and its nth order derivative with respect to 𝑡 is defined as  

                        
𝑑𝑛

𝑑𝑡𝑛
𝑅∗ = 〈 

𝑑𝑛

𝑑𝑡𝑛
𝑃(𝑡), +, ∘〉 ,   where  𝑛 = 1,2,3, … 

For a 3 × 7-dimensional paraletrix, we have that 

                      
𝑑

𝑑𝑡
𝑃(𝑡) = ⟨

𝐷1
 𝐷2   𝐷3    𝐷4

                 𝐷5    𝐷6   𝐷7   
                                       𝐷8   𝐷9   𝐷10   

                                   𝐷11

⟩ 

where   𝐷𝑖 =
𝑑

𝑑𝑡
𝑎𝑖(𝑡),    𝑖 = 1,2,3,… ,11. 

With this we have the following results. 

Lemma 4.1.  Let  𝑅∗ be a paraletrix ring such that  𝑃(𝑡), 𝑃′(𝑡) 𝜖 𝑅∗. Then  

                                   
𝑑

𝑑𝑡
〈𝑃(𝑡) + 𝑃′(𝑡)〉 =

𝑑

𝑑𝑡
𝑃(𝑡) +

𝑑

𝑑𝑡
𝑃′(𝑡). 

Proof.  It follows from the definition of the sum of two paraletrices. 

Lemma 4.2. Let  𝑅∗ be a paraletrix ring such that  𝑃(𝑡), 𝑃′(𝑡) 𝜖 𝑅∗. Then 

                                 
𝑑

𝑑𝑡
〈𝑃(𝑡) ∘ 𝑃′(𝑡)〉 = 𝑃(𝑡) ∘

𝑑

𝑑𝑡
𝑃′(𝑡) + 𝑃′(𝑡) ∘

𝑑

𝑑𝑡
𝑃(𝑡). 

Proof.  It follows from the multiplication of two paraletrices as defined by Ajibade [1]. 
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Example 4.3.  Let  𝑃(𝑡) = ⟨

2𝑡2

 4  sin 𝑡    cos 𝑡
                    3𝑡      1       𝑒2𝑡   

                                                4𝑡  − cos 𝑡   sin 𝑡     
                                         2

⟩, 

                      𝑃(𝑡) = ⟨

𝑡3

   1      2   sin 𝑡
                     𝑒𝑡   cos 𝑡      3   

                                         2𝑡    3𝑡  4   
                                        𝑡

⟩   𝜖 𝑅∗, then we have that 

           𝑃(𝑡) ∘ 𝑃′(𝑡) = ⟨

   𝑓1
𝑓2      𝑓3   𝑓4

                 𝑓5   𝑓6    𝑓7   
                                     𝑓8    𝑓9    𝑓10   

                                   𝑓11

⟩ 

where     𝑓1 = 2𝑡2 cos 𝑡 + 𝑡3 ,    𝑓2 = 4 cos 𝑡 + 1,      𝑓3 = sin 𝑡 cos 𝑡 + 2,        𝑓4 = 𝑐𝑜𝑠
2𝑡 + sin 𝑡, 

              𝑓5 = 3𝑡 cos 𝑡 + 𝑒𝑡 ,       𝑓6 = cos 𝑡,       𝑓7 = 𝑒2𝑡 cos 𝑡 + 3 ,    𝑓8 = 4𝑡 cos 𝑡 + 2𝑡, 

              𝑓9 = −𝑐𝑜𝑠2𝑡 + 3𝑡,      𝑓10 = sin 𝑡 cos 𝑡 + 4,       𝑓11 = 2 cos 𝑡 + 𝑡 . 

           
𝑑

 𝑑𝑡
𝑃(𝑡) = ⟨

4𝑡
    0      𝑐𝑜𝑠𝑡  − sin 𝑡

                         3             0      2𝑒2𝑡   
                                                        4   sin 𝑡    cos 𝑡     

                                                0

⟩, 

           
𝑑

𝑑𝑡
𝑃′(𝑡) = ⟨

3𝑡2

     0      0       cos 𝑡
                       𝑒𝑡     − sin 𝑡     0   

                                                     2           3       0        
                                                 1

⟩. 

𝑃(𝑡) ∘
𝑑

𝑑𝑡
𝑃′(𝑡) = ⟨

   𝑔1
𝑔2      𝑔3   𝑔4

                   𝑔5   𝑔6    𝑔7   
                                     𝑔8    𝑔9    𝑔10   

                                   𝑔11

⟩ 

where     𝑔1 = −2𝑡
2 sin 𝑡 + 3𝑡2 , 𝑔2 = −4 sin 𝑡,   𝑔3 = −𝑠𝑖𝑛2𝑡,   𝑔4 = −sin 𝑡 cos 𝑡 + cos 𝑡, 

               𝑔5 = −3𝑡 sin 𝑡 + 𝑒
𝑡 ,       𝑔6 = −sin 𝑡,       𝑔7 = −𝑒

2𝑡 sin 𝑡 ,    𝑔8 = −4𝑡 sin 𝑡 + 2, 

              𝑔9 = sin 𝑡 cos 𝑡 + 3,      𝑔10 = −𝑠𝑖𝑛
2𝑡,    𝑔11 = −2sin 𝑡 + 1 . 
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𝑃′(𝑡) ∘
𝑑

𝑑𝑡
𝑃(𝑡) = ⟨

   𝑣1
𝑣2      𝑣3   𝑣4

                   𝑣5   𝑣6    𝑣7   
                                     𝑣8    𝑣9    𝑣10   

                                   𝑣11

⟩ 

where     𝑣1 = 4𝑡 cos 𝑡 , 𝑣2 = 0,    𝑣3 = 𝑐𝑜𝑠
2𝑡,   𝑣4 = −sin 𝑡 cos 𝑡, 

               𝑣5 = 3 cos 𝑡 ,       𝑣6 = 0,   𝑣7 = 2𝑒
2𝑡 cos 𝑡 ,    𝑣8 = 4 cos 𝑡, 

               𝑣9 = sin 𝑡 cos 𝑡 ,      𝑣10 = 𝑐𝑜𝑠
2𝑡,    𝑣11 = 0. 

𝑃(𝑡) ∘
𝑑

𝑑𝑡
𝑃′(𝑡) + 𝑃′(𝑡) ∘

𝑑

𝑑𝑡
𝑃(𝑡) =

𝑑

𝑑𝑡
⟨

   𝑦1
𝑦2      𝑦3   𝑦4

                   𝑦5   𝑦6    𝑦7   
                                     𝑦8    𝑦9    𝑦10   

                                   𝑦11

⟩ =
𝑑

𝑑𝑡
(𝑃 ∘ 𝑃′), 

where     𝑦1 = 2𝑡
2 cos 𝑡 + 𝑡3 , 𝑦2 = 4 cos 𝑡 + 1,    𝑦3 = sin 𝑡 cos 𝑡 + 2,   𝑦4 = 𝑐𝑜𝑠2𝑡 + sin 𝑡, 

               𝑦5 = 3𝑡 cos 𝑡 + 𝑒
𝑡 ,       𝑦6 = cos 𝑡 ,   𝑦7 = 𝑒

2𝑡 cos 𝑡 + 3 ,    𝑦8 = 4𝑡 cos 𝑡 + 2𝑡, 

               𝑦9 = −𝑐𝑜𝑠
2𝑡 + 3𝑡,      𝑦10 = sin 𝑡 cos 𝑡 + 4,    𝑦11 = 2 cos 𝑡 + 𝑡. 

Remark 4.4.  From Lemma 4.2, it is clear that the ring  𝑅∗ is a differential ring. 

 

5. REPRESENTATION 

In this section, we shall show that an arbitrary ring can be represented as a 3 × 7-dimensional 

heart-oriented paraletrix. In particular, it will be shown that an arbitrary ring of numbers is 

isomorphic to a 3 × 7-dimensional heart-oriented paraletrix. This result can be considered as an 

analogous case of Cayley’s theorem in ring theorem. 

Theorem 5.1. Let  𝑅 = (𝐻,+, . ) be an arbitrary ring of numbers under the usual operation of 

addition (+) and multiplication  (. ) with  𝐻 = {ℎ1, ℎ2, ℎ3, … } as underlying set of numbers in 

tabular form. Then 𝑅 = (𝐻,+, . ) can be represented as a heart-oriented paraletrix ring  𝑅∗ =

〈𝑃(𝐻),+, ∘〉 such that 

       𝑃(𝐻) =

{
 
 

 
 

⟨

0
 0   0    0

             0    ℎ1   0   
                          0   0   0  

                        0

⟩ , ⟨

0
 0   0    0

             0    ℎ2   0   
                          0   0   0  

                        0

⟩ , ⟨

0
 0   0    0

             0    ℎ3   0   
                          0   0   0  

                        0

⟩

}
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is the underlying paraletrix set in tabular form over the same arbitrary ring 𝑅. 

Proof. For  𝐻 𝜖 𝑅 define a map  𝜎 ∶ 𝑅 → 𝑅∗ by the rule that 

                           ℎ𝑗𝜎 = ⟨

0
 0   0    0

             0    ℎ𝑗    0   
                          0   0   0  

                        0

⟩ , 𝑗 = 1,2,3, …. 

It is obvious that the map is well defined. It is also one-to-one since for  ℎ1, ℎ2 𝜖 𝐻, ℎ1𝜎 = ℎ2𝜎  

which implies that  ℎ1 = ℎ2. That  𝜎 is a homomorphism follows from the fact that 

(ℎ1 + ℎ2)𝜎 = ⟨

0
 0   0    0

             0    ℎ′   0   
                          0   0   0  

                        0

⟩ 

= ⟨

0
 0   0    0

             0    ℎ1   0   
                          0     0   0  

                         0

⟩ + ⟨

0
 0   0    0

             0    ℎ2   0   
                           0     0   0  

                          0

⟩ 

= ℎ1𝜎 + ℎ2𝜎 . 

(ℎ1 .  ℎ2)𝜎 = ⟨

0
 0   0    0

             0    ℎ′′   0   
                          0   0   0  

                        0

⟩ 

= ⟨

0
 0   0    0

             0    ℎ1   0   
                          0     0   0  

                         0

⟩ ∘ ⟨

0
 0   0    0

             0    ℎ2   0   
                           0     0   0  

                          0

⟩ 

= ℎ1𝜎 ∘ ℎ2𝜎  

where  ℎ′ = ℎ1 + ℎ2,   ℎ
′′ = ℎ1 .  ℎ2 . 

Furthermore, we have that 
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           𝐼𝑚 𝜎 =

{
 
 

 
 

⟨

0
 0   0    0

             0    ℎ𝑗    0   
                          0     0   0  

                         0

⟩ = ℎ𝑗𝜎  𝜖  𝑃(𝐻)

}
 
 

 
 

⊆ 𝑃(𝐻) . 

That is, each element in 𝐻 has an image in  𝑃(𝐻). So the image of  𝜎 under  𝐻 is the whole of the 

heart-oriented paraletrix ring. Thus,  𝐻𝜎 = 𝑃(𝐻).  Hence, 𝜎 is an isomorphism for any arbitrary 

ring 𝑅 to the heart-oriented paraletrix ring  𝑅∗. The proof is then complete. 

Lemma 5.2. Let  𝑅 = (ℤ,+, . ) be the ring of all integer numbers under the usual operation of 

addition (+) and multiplication  (. )  . Then  𝑅 ≅ 𝑅∗ = 〈𝑃(ℤ),+, ∘〉. 

Proof.  It follows from Theorem 5.1 with  𝐻 = ℤ  and  𝑃(𝐻) = 𝑃(ℤ). 

Remark 5.3. Theorem 5.1 holds for ring of all residue integer numbers modulo prime  𝑝 and the 

ring of all rational numbers. 

 

6. SUMMARY 

This paper considered classification of a paraletrix as an abstract structure as a follow up of 

known results on rhotrices. 

This work showed that the results in rhotrix theory should necessarily hold in paraletrix theory. 

However, it is scholastic to examine further results of the heart-oriented paraletrices vis a vis the 

heart-oriented rhotices. These results will contribute greatly in paraletrix algebra. The 

introduction of a heartless paraletrix will be presented in another paper. 
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