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Abstract. We would like to state well-known Ostrowski inequality via z—convex by using the Fuzzy Reimann
integrals. In addition, we establish some Fuzzy Ostrowski type inequalities for the class of functions whose
derivatives in absolute values at certain powers are z—convex by Holder’s and power mean inequalities. This class
of h—convex function, which is the generalization of many important classes including class of Godunova-Levin
s—convex, s—convex in the 2" kind and hence contains convex functions. It also contains class of P—convex and
class of Godunova-Levin. In this way we also capture the results with respect to convexity of functions.
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1. INTRODUCTION

In recent years, the generalization of classical convex function have emerged resulting in
applications in the field of Mathematics. From literature, we recall some definitions for different

types of convex functions.
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Definition 1.1. [3] The ) : B C (0,0) — R is said to be convex, if
N (x+(1=1)y) <mx)+(1-)n(y),
Vx,y € B,t € [0,1].
Definition 1.2. [3] The n : B C (0,00) — R is MT —convex, if 17(x) > 0 and

Vit 11—t
M (1) < Joden (@) + 5 ),

Vi € [0,1],x,y € B.

Definition 1.3. [17] The n : B C (0,0) — R is a P—convex, if 17(x) > 0 and Vx,y € B and

t € [0,1] we have

n(x+(1—=1)y) <nx)+n().

Definition 1.4. [20] The 1 : B C (0,00) — R is a GL convex, if (x) > 0 and Vx,y € B and

t € (0,1) we have
(et (1-0) < 100 + 1)
Definition 1.5. [4] Let s € (0, 1], the 7 : B C (0,0) — R is s—convex in the 2" kind, if
n(x+(1—1)y) <'n(x)+(1—1)’n(y),
vt € [0,1],x,y € B.

Definition 1.6. [9] The 1 : B C (0,0) — R is of GL s—convex, with s € [0, 1), if

1
N e+ (1=1)y) < on(x) +
Vi € (0,1),x,y € B.

Now we present the class of A—convex, this class contains many classes of convex from

literature of convex analysis.
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Definition 1.7. [30] Let 4 : A C (0,00) — R with 2 # 0. The 1 : B C (0,00) — [0,00) is an

h—convex if Vx,y € B, we have

(L.1) N (x4 (1=1)y) <h(e)n(x) + A1 =)0 (y),

vt € [0,1].

Remark 1.8. In Definition 1.7, one can see the following.

(1) If h(r) = ,s,S € [0,1] in (1.1), then the class of GL s—convex.

(2) If h(¢) = L in (1.1), then we get the concept of GL convex.

(3) If h(t) = t* with s € [0,1] in (1.1), then we get the concept of s—convex in 2"¢ kind.
(4) If h(t) = 1 in (1.1), then we get the concept of P—convex.

(5) If h(t) =t in (1.1), then we get the concept of ordinary convex.

(6) If h(t) = \/—) in (1.1), then the concept of MT —convex.

Next we present the clasical ostrowski inequality.

Theorem 1.9. [29] Let ¢ : [a,b] — R be differentiable function on (a,b), |¢'(t)] < M, Vt €

(a,b). Then

1 1 x— b ’
(1.2) '(p(x)—b_a/a ¢(t)dt| <M(b—a) Z+< P ) ;
Vx € (a,b).

Definition 1.10. [6] A fuzzy number is ¢ : R — [0, 1] can be defined as
(1) [¢]° = Closure({r € R: ¢(r) > 0}) is compact.
(2) ¢ is Normal.(i.e, 3 rg € R such that ¢(rg) =1).

(3) ¢ is fuzzy convex, i.e, (nr;+ (1 —n)r2) > min{¢(r;),
(4) ¥ro € R and € > 0, 3 Neighborhood V (rp), such that ¢ (r)

(r2)}, Vri,rs €R, m €[0,1].
< ¢(rg) +¢&,VreR.

Definition 1.11. [7] For any { € [0,1], and ¢ be any fuzzy number, then —level set [¢]° =
{reR:9(r) > ¢} Moreover [¢]° = [0*),0(4)] ,v¢ € [0,1)

Proposition 1.12. [26] Let ¢, ¢ € Fr(Set of all Fuzzy numbers) and 1 € R, then the following

properties holds:
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(1) [0]° C @] whenever 0< { < & < 1.
(2) [9+9]° = [9]° +[o]°.
(3) m@9l° =nl9)*.

(4) 0DP=0D¢.
BS)NOe=900n.
(6) 109 =¢.

V¢ €0, 1], where 1 € Fg, defined by Vr € R,T(r) =1.

Definition 1.13. [6] Let D : Fg x Fr — Ry U {0}, defined as

(C)‘}

D(¢,9) = sup max{‘¢£‘:),¢f)

¢efo.1]

V@, € Fr. Then D is metric on Fy.

Proposition 1.14. [6] Let @1, 02, 03,04 € Fr and 1 € Fg, we have

(1) (Fr,D) is complete.
(2) D(91© 93,02 ¢3) = D(¢1,¢2).

(3) D(N©¢1,M© ¢2) = [N|D(¢1,¢2).

(4) D(¢1 D ¢2,03 S ¢4) = D(91,93) + D(¢2, 94).
(5) D(¢1 & ¢2,0) = D(¢1,0) +D(¢2,0).

(6) D(1 & 92,93) = D(¢1,63) +D(¢2,0),

where 0 € Fr, defined by Vr € R,a(r) =0.

Definition 1.15. [7] Let ¢, ¢ € Fg, if 3 8 € Fg, such that ¢ = @ & 0, then 6 is H—difference
of ¢ and ¢, denoted by 6 = ¢ © ¢.

Definition 1.16. [7] A function ¢ : [ro,ro + €] — Fg is H—differentiable at r, if 3 ¢'(r) € Fg,

i.e both limits

exists and are equal to ¢’(r).
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Definition 1.17. [19] Let ¢ : [a,b] — FR, if V > 0,31 > 0, for any partition P = {[u,v]: 8} of

[a,b] with norm A(P) < 1, we have

D (i(v_u>¢<5>,¢) <t

P

then we say that ¢ is Fuzzy—Riemann integrable to ¢ € F, we write it as

b
0= (FR) [ 9(x)dx.
a
2. Fuzzy OSTROWSKI TYPE INEQUALITIES VIA /—CONVEX FUNCTIONS

In order to prove our main results, we need the following lemma that has been obtained in

[5].

Lemma 2.1. Let ¢ : [a,b] — Fg be an absolutely continuous mapping on (a,b) with a < b. If

¢’ € Crla,b]|NLg[a,b], then for x € (a,b) the following identity holds:

b_a@(FR)/ab(p(t)dt@%@(FR)/O]I@(P/(IX—I—(I—t)a)dt
(2.1) = (p(x)@%@(FR)/Ol@(p’(tH(l —1)b)dt.

We make use of the beta function of Euler type, which is for x,y > 0 defined as

1
B(x,y) = /0 P =l = D)

where T'(x) = 5" e "uw"du.

Theorem 2.2. Suppose all the assumptions of Lemma 2.1 hold. Additionally, A € (0,1],¢ :

0,1) — (0,00) be a measurable function with h(t l, D ’,6 be a h—convex function on
r ¢

la,b] and D(¢'(x),0) < M. Then Vx € (a,b) the following inequality holds:

D ((p(x), bia & (FR) /ab (p(t)dt)

2.2) SM(/OI(t h(t) +1 h(l—t))dt) 1(x),

where I(x) = %.
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Proof. From the Lemma 2.1,

D <<p(x), —— O (FR) /ab (p(t)dt)

<D (%‘ a9 (FR) /Olt © @/ (tx+ (1 —1)a)dt,

b_—a @(FR)/O]IG)(P/(DH—(l —t)b)dt) ,

- <); a)? O ¢t (1-1)a )dt,a)
( l; );2 o t@(p (tx+(1—t)b)dt,5),

l@(p tx+(1—1)a )dt,5)

t®(p tx+(1 —t)b)dt,6) :

< ();__622 /OltD ((p’(tx+ (1 —t)a),5> dt
(2.3) + ([;__’22 /01 tD ((p’(tx—l— (1 —t)b),5> dt,

Since D(¢’,0) be h—convex function and D(¢'(x),0) < M, we have

D ((p’(tx+ (1 —t)a),6) < h(t)D (<p’(x),6) Y h(1—1)D (<p'(a),

(2.4) < Mh(t)+h(1~1)]

D ((p’(tx—l— (1 —z)b>,6) < WD (<p’(x),6) +h(1—1)D ((p’(b),

(2.5)

IN

M [h(t)+h(1—1)].
Now using (2.4) and (2.5) in (2.3) we get (2.2).

Corollary 2.3. In Theorem 2.2, one can see the following.

0

°)

)
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(1) If one takes h(t) =t~* in (2.2), then one has the Fuzzy Ostrowski inequality for

Godunova-Levin s—convex functions:

Lown) [ otwar) <m (1) 1)

— S

D ((p(X),b

(2) If one takes h(t) = t* where s € (0,1] in (2.2), then one has the Fuzzy Ostrowski in-

equality for s—convex functions in 2"¢ kind:

D ((p(x), bia © (FR) /abq)(t)dt) <M (1 is) I(x).

(3) If one takes h(t) = 1 in (2.2), then one has the Fuzzy Ostrowski inequality for P—convex

function:
1 b
D (q)(x),b_ (FR) / (p(t)dt) < MI(x).
(4) If one takes h(t) =t in (2.2), then one has the Fuzzy Ostrowski inequality for convex
function:
1 b M
D( o). — o (FR) [ p(t)dr ) < T1(x).

(5) If one takes h(t) = ﬁ inin (2.2), then one has the Fuzzy Ostrowski inequality for

MT —convex function:

D(@(X),bi

o (FR) / b(p(t)dt) < A%I(x).

1
t)

[D(¢',0)]7 for ¢ > 1 be h—convex function on [a,b] and D(¢'(x),0) < M. Then Vx € (a,b)

the following inequality holds:

(2.6) <

D <<p(X),b :

—da

©(FR) / ’ (p(t)dt)

1

(/01 (t h(t)+1 h(1 —t))dt) 1),
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Proof. From the inequality (2.3) and power mean inequality [31]

D ((p(x), bia © (FR) /abq)(t)dt)
< () ([ (e 1-0.0)] )
2.7) 4f2122<Abm)ké<[jﬂp(¢@m+u—mmiﬂrdﬂ;.

Since [D(¢',0)]4 be h—convex function and D(¢’(x),0) < M, we have

(¢ +(1 —t)a),aﬂq <h(r) [D (¢'(x),6>]q

2.8) +hU=—0[D<¢%aLO

]
(91 —t)b),ﬁ)r <h(r) [D (¢/(x),0 ]q
2.9) a1 —1) [D ((p’(b),5 ]q < M9[h(1) +h(1 —1)

Now using (2.8) and (2.9) in (2.7) we get (2.6).

Corollary 2.5. In Theorem 2.4, one can see the following.

(1) If one takes g = 1, one has the Theorem 2.2.
(2) If one takes h(t) =t~ in (2.6), then one has Fuzzy Ostrowski inequality for Godunova-

Levin s—convex functions:

big@(FR)/ab(P(t)dt) < fé (1;)‘1’1@).

(3) If one takes h(t) = t* where s € [0,1] in (2.6), then one has Fuzzy Ostrowski inequality

D ((p(x),

for s—convex functions in 2™ kind:

bia@(FR)/abw)dt) < 2?{«3 <1is>é’(")'

(4) If one takes h(t) = 1,in (2.6), then one has the Fuzzy Ostrowski inequality for P—convex

D <<p(x),

function:
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(5) If one takes h(t) =t, in (2.6), then one has the Fuzzy Ostrowski inequality for convex

function:

FR/(p dt)ﬁ%l()

(6) If one takes h(t) = 5 E ) in (2.6), then one has the Fuzzy Ostrowski inequality for

MT —convex function:

1
Mma

D (o005

(FR) / b(p(t)dt) < 0.

2ty
Theorem 2.6. Suppose all the assumptions of Lemma 2.1 hold. Additionally h(t) %,

[D(¢',0)]4 be a h—convex function on |a,b],q > 1 and D(¢'(x),0) < M. Then Vx € (a,b),
the following inequality holds:

D ((p(x), — O (FR) / b(p(t)dt)
(2.10) < (pifll)[l) (/01 (h(;)+h(1—t))d;)‘l’](x),

where p~! +q 1 = 1.

Proof. From the inequality (2.3) and Holder’s inequality [32]

D ((p(x), 161 & (FR) / b(p(t)dt)
< %‘_?2 </01t”dt>ll] (/O] [D <(p'(tx—l—(1 —z)a),6)}qdz);
@.11) +(l;__)22 </Olﬂ’dr)']7 (/01 [D <(p'(tx—|—(1 —t)b),ﬁ)]th>;.

Since [D(¢',0)]4 be h—convex function and D(¢’ (x),0) < M, we have

[D (<p (tx+(1—1)a) ,0)] [D ((p/(x),aﬂq+
h(1—1) [D (q)'(a),ﬁ)]ng h(6) +h(1 1),

(2.12)
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(¢ +(1 —t)b),aﬂq <h(r) [D (¢'(x),6)]q
+h(1-1)[D (q)’(b),’é)]q < MO[h(t) + h(1 —1)],

(2.13)

Now using (2.12) and (2.13) in (2.11) we get (2.10).

Corollary 2.7. In Theorem 2.6, one can see the following.

(1) If one takes h(t) =t—* where s € [0,1) in (2.10), then one has the Fuzzy Ostrowski

inequality for Godunova-Levin s—convex functions:

D<(p(x),bia®(FR)/ab(p(t)dt) < M); <lis)‘l’1(x).

(p+1

(2) If one takes h(t) = t°, where s € (0,1] in (2.10), then one has the Fuzzy Ostrowski

inequality for s—convex functions in 2" kind:

@(FR)/ab(p(t)dt)g M ( 2 );I(x).

(p—l—l)% 1+s

(3) If one takes h(t) = 1, in (2.10), then one has the Fuzzy Ostrowski inequality for

1
D
((p(X), b _
P—convex function:
1
2¢M
1
(p+1)»

D(q)(x),bl o (FR) / b(p(t)dt) < I(x).

(4) If one takes h(t) =t, in (2.10), then one has the Fuzzy Ostrowski inequality for convex

function:

Doty o) [ o) <1t

1
(p+1)7
(5) If one takes h(t) = 5 tz = in (2.10), then one has the Fuzzy Ostrowski inequality for

MT —convex function:
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2.1. Fuzzy Ostrowski type midpoint inequalties via 7—convex functions.

Remark 2.8. In Theorem 2.4, one can see the following.

(1) If one takes x = ‘lzib in (2.6), then one has the Fuzzy Ostrowski Midpoint inequality for

h—convex function:

D((p (“;b) ,biaQ(FR)/ab(p(t)dt)

([ o)+ -0yar) " 0-a)

(2) If one takes x = “f2 and h(t) = t~* where s € [0,1) in (2.6), then one has Fuzzy Os-

trowski Midpoint inequality for Godunova-Levin s—convex functions:

D<(p (%gb) ’ﬁQ(FR)/ab(P(I)dO < zi‘/[; (1:9)3’(;,_41).

(3) If one takes x = # and h(t) =1t° where s € [0, 1] in (2.6), then one has Fuzzy Ostrowski

Midpoint inequality for s—convex functions in 2" kind:

D((p (#) ,ﬁ@(m)/abw)d;) < 23{; (lis);(b—a).

(4) If one takes x = # and A(t) = 1 in (2.6), then one has the Fuzzy Ostrowski Midpoint

inequality for P—convex function:

D<(p (“;b) ,ﬁ@(m)/abw)m) < zf; (b—a).

(5) If one takes x = # and h(t) =1 in (2.6), then one has the Fuzzy Ostrowski Midpoint

inequality for convex function:

D((p (a;b> ,ﬁ@(FR)/f(p(t)dt) < %/I(b—a).

(6) If one takes h(t) = m

MT —convex function:

D <<p (a;b) ,ﬁ@(m) /ab(p(t)dt) < ijl(x).

Remark 2.9. In Theorem 2.6, one can see the following.

in (2.6), then one has the Fuzzy Ostrowski inequality for
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(1) If one takes x = # in (2.10), one has the Fuzzy Ostrowski Midpoint inequality for

h—convex function:

(2) If one takes x = %5 and h(t) = t* where s € [0,1) in (2.10), then one has the Fuzzy

Ostrowski Midpoint inequality for Godunova-Levin s—convex functions:

o(o((3%) stgoem o) < 20 (1) 0.

(3) If one takes x = # and h(t) =t°, where s € (0,1] in (2.10), then one has the Fuzzy

Ostrowski Midpoint inequality for s—convex functions in 2" kind:

1

D(¢(a;b>,ﬁ@(FR)/ab(p(t)dt> L2 M (I}FS);(b—a).

(p+1)»

(4) If one takes x = # and h(t) = 1 in (2.10), then one has the Fuzzy Ostrowski Midpoint

inequality for P—convex function:
AN b 21 M
p(o("57) yrp o [ o) < 20
2/ b-a “ (p+1)r

(5) If one takes x = 12 and () = ¢ in (2.10), then one has the Fuzzy Ostrowski Midpoint

inequality for convex function:

D((p (“;b> ,blTaQ(FR)/ab(p(t)dt> < ﬁ(b—a}.

(6) If one takes h(t) = 5 ZE = in (2.10), then one has the Fuzzy Ostrowski inequality for

MT —convex function:

D((p (“T“’) ,ﬁ@(m)/ab(p(odt) < %(b—@.
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3. CONCLUSION

Ostrowski inequality is one of the most celebrated inequalities, we can find its various gen-
eralizations and variants in literature. In this paper, we presented the generalized notion of
h—convex function which is the generalization of many important classes including class of
Godunova-Levin s—convex [9], s—convex in the 2"? kind [4] (and hence contains class of con-
vex functions [3]). It also contains class of P—convex functions [17] and class of Godunova-
Levin functions [20]. We would like to state well-known Fuzzy Ostrowski inequality via
h—convex function. In addition, we establish some Fuzzy Ostrowski type inequalities for the
class of functions whose derivatives in absolute values at certain powers are 7—convex functions

by using different techniques including Holder’s inequality [32] and power mean inequality

[31].
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