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Abstract. In this paper, the problem of finding fixed points of semigroups of nonexpansive mappings is investigat-

ed based on an iterative algorithms. Strong convergence theorems of fixed points are obtained.
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1. Introduction-Preliminaries

Recently, iterative algorithms have been investigated for many problems, such as economy,

mechanics, transportation and optimization; see [1-11] and the references therein. In this paper,

we always assume that H is a real Hilbert space. Let T be a nonlinear mapping with the domain

D(T ). A point x ∈ D(T ) is a fixed point of T provided T x = x. Denote by F(T ) the set of fixed

points of T ; that is, F(T ) = {x ∈ D(T ) : T x = x}. Recall that T is said to be nonexpansive if

‖T x−Ty‖ ≤ ‖x− y‖, ∀x,y ∈ D(A).

Recall that a family S= {T (s)|s≥ 0} of mappings from H into itself is called a one-parameter

nonexpansive semigroup if it satisfies the following conditions:
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(i) T (0)x = x, ∀x ∈ H;

(ii) T (s+ t)x = T (s)T (t)x, ∀s, t ≥ 0 and ∀x ∈ H;

(iii) ‖T (s)x−T (s)y‖ ≤ ‖x− y‖, ∀s≥ 0 and ∀x,y ∈ H;

(iv) for all x ∈C, s 7→ T (s)x is continuous.

We denote by F(S) the set of common fixed points of S, that is, F(S) =
⋂

0≤s<∞ F(T (s)).

Let C be a nonempty closed and convex subset of H. One classical way to study nonexpansive

mappings is to use contractions to approximate a nonexpansive mapping. More precisely, take

t ∈ (0,1) and define a contraction Tt : C→C by

Ttx = tu+(1− t)T x, x ∈C, (1.1)

where u ∈C is a fixed point. Banach’s contraction mapping principle guarantees that Tt has a

unique fixed point xt in C. If T enjoys a nonempty fixed point set, Browder [12] proved the

following well-known strong convergence theorem.

let T be a nonexpansive mapping on C. Fix u ∈C and define zt ∈C as zt = tu+(1− t)T zt for

t ∈ (0,1). Then as t→ 0, {zt} converges strongly to a element of F(T ) nearest to u.

Halpern [13] considered the following explicit iteration:

x0 ∈C, xn+1 = αnu+(1−αn)T xn, n≥ 0, (1.2)

and proved the following theorem.

Let T be a nonexpansive mapping on C. Define a real sequence {αn} in [0,1] by αn = n−θ ,

0 < θ < 1. Define a sequence {xn} by (1.2). Then {xn} converges strongly to the element of

F(T ) nearest to u.

In 1977, Lions [14] improved the result of Halpern, still in Hilbert spaces, by proving the

strong convergence of {xn} to a fixed point of T where the real sequence {αn} satisfies the

following conditions:

(C1) limn→∞ αn = 0;

(C2) ∑
∞
n=1 αn = ∞;

(C3) limn→∞
αn+1−αn

α2
n+1

= 0.



SEMIGROUPS OF NONEXPANSIVE MAPPINGS 3

It was observed that both Halpern’s and Lions’s conditions on the real sequence {αn} exclud-

ed the canonical choice αn =
1

n+1 . This was overcome in 1992 by Wittmann [15], who proved,

still in Hilbert spaces, the strong convergence of {xn} to a fixed point of T if {αn} satisfies the

following conditions:

(C1) limn→∞ αn = 0;

(C2) ∑
∞
n=1 αn = ∞;

(C4) ∑
∞
n=1 |αn+1−αn|< ∞.

Recall that a mapping f : H→H is an α-contraction if there exists a constant α ∈ (0,1) such

that

‖ f (x)− f (y)‖ ≤ α‖x− y‖, ∀x,y ∈ H.

Recall that An operator A is strongly positive on H if there exists a constant γ̄ > 0 such that

〈Ax,x〉 ≥ γ̄‖x‖2,∀x ∈ H.

Lemma 1.1 [16] Let D be a nonempty bounded closed convex subset of a Hilbert space H and

let S = {T (t) : 0≤ t < ∞} be a nonexpansive semigroup on D. Then, for any 0≤ h < ∞,

lim
t→∞

sup
x∈D
‖1

t

∫ t

0
T (s)xds−T (h)

1
t

∫ t

0
T (s)xds‖= 0.

Lemma 1.2 [17] Let H be a Hilbert space, C a closed convex subset of H, and T : C→ C a

nonexpansive mapping with F(T ) 6= /0. Then I−T is demiclosed, i.e. if {xn} is a sequence in C

weakly converging to x and if {(I−T )xn} strongly converges to y, then (I−T )x = y.

Lemma 1.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let PC

be the metric projection from H onto C(i.e., for x ∈ H, PCx is the only point in C such that

‖x−PCx‖ = inf{‖x− z‖ : z ∈ C}). Given x ∈ H and z ∈ C. Then z = PCx if and only if there

holds the relations: 〈x− z,y− z〉 ≤ 0,∀y ∈C.

Lemma 1.4. Let H be a Hilbert space, f a α-contraction, and A a strongly positive linear

bounded self-adjoint operator with the coefficient γ̄ > 0. Then, for 0 < γ < γ̄/α ,

〈x− y,(A− γ f )x− (A− γ f )y〉 ≥ (γ̄− γα)‖x− y‖2, x,y ∈ H.
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That is, A− γ f is strongly monotone with coefficient γ̄ −αγ . 〈x− y,(I− f )x− (I− f )y〉 ≥

0, x,y ∈ H.

Lemma 1.6 Assume A is a strongly positive linear bounded self-adjoint operator on a Hilbert

space H with coefficient γ̄ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I−ρA‖ ≤ 1−ργ̄ .

Lemma 1.7 Let {αn} be a sequence of nonnegative real numbers satisfying the following con-

dition:

αn+1 ≤ (1− γn)αn + γnσn, ∀n≥ 0,

where {γn} is a sequence in (0,1) and {σn} is a sequence of real numbers such that

(i) limn→∞ γn = 0 and ∑
∞
n=0 γn = ∞,

(ii) either limsupn→∞ σn ≤ 0 or ∑
∞
n=0 |γnσn|< ∞.

Then {αn}∞
n=0 converges to zero.

2. Main results

Theorem 2.1. Let H be a real Hilbert space H, C a closed and convex subset of H. Let S =

{T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup such that F(S) 6= /0. Let {sn} be a positive

real divergent sequence and let {αn} and {βn} be sequences in (0,1) satisfying the following

conditions limn→∞ αn = limn→∞ βn = 0 and ∑
∞
n=0 αn = ∞. Let f be an α-contraction and let A

be a strongly positive linear bounded self-adjoint operator with the coefficient γ̄ > 0. Assume

that 0 < γ < γ̄/α . Then sequence {xn} defined by

x0 ∈C, xn+1 = Pro jC
(

αnγ f (xn)+βnxn +((1−βn)I−αnA)
1
sn

∫ sn

0
T (s)xnds

)
, n≥ 0.

strongly converges to x∗ ∈ F(S).

Proof. We first prove that the sequence {xn} is bounded. limn→∞ αn = limn→∞ βn = 0, we may

assume, with no loss of generality, that αn
1−βn

< ‖A‖−1 for all n≥ 0. From Lemma 1.6, we know
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that ‖(1−βn)I−αnA‖ ≤ (1−βn−αnγ̄). Picking p ∈ F(S), we have

‖xn+1− p‖

≤ ‖αn(γ f (xn)−Ap)+βn(xn− p)+((1−βn)I−αnA)(
1
sn

∫ sn

0
T (s)xnds− p)‖

≤ αn‖γ f (xn)−Ap‖+βn‖xn− p‖+(1−βn−αnγ̄)‖ 1
sn

∫ sn

0
T (s)xnds− p‖

≤ αnγ‖ f (xn)− f (p)‖+αn‖γ f (p)−Ap‖+βn‖xn− p‖+(1−βn−αnγ̄)‖xn− p‖

≤ [1−αn(γ̄− γα)]‖xn− p‖+αn‖γ f (p)−Ap‖.

By simple inductions, we see that

‖xn− p‖ ≤max{‖x0− p‖, ‖Ap− γ f (p)‖
γ̄− γα

},

which yields that the sequence {xn} is bounded. Now, we are in a position to prove that

limsup
n→∞

〈(γ f −A)x∗,yn− x∗〉 ≤ 0,

where yn = 1
sn

∫ sn
0 T (s)xnds. Putting z0 = PF(S)x0, we see that the closed ball M of center z0

and radius max{‖z0− p‖, ‖Az0−γ f (z0)|
γ̄−γα

} is T (s)-invariant for each s ∈ [0,∞) and contain {xn}.

Therefore, we assume, without loss of generality, S = {T (s) : 0 ≤ s < ∞} is a nonexpansive

semigroup on M. It follows from Lemma 1.1 that lim
n→∞
‖yn−T (h)yn‖ = 0 for all 0 ≤ h < ∞.

Taking a suitable subsequence {yni} of {yn}, we see that

limsup
n→∞

〈(γ f −A)x∗,yn− x∗〉= lim
i→∞
〈(γ f −A)x∗,yni− x∗〉.

Since the sequence {yn} is also bounded, we may assume that yni ⇀ x̄. From the demiclosedness

principle, we have x̄ ∈ F(S). Therefore, we have

limsup
n→∞

〈(γ f −A)x∗,yn− x∗〉= 〈(γ f −A)x∗, x̄− x∗〉 ≤ 0.

On the other hand, we have ‖xn+1− yn‖ ≤ αn‖γ f (xn)−Axn‖+βn‖xn− yn‖. From the assump-

tion limn→∞ αn = limn→∞ βn = 0 that limn→∞ ‖xn+1−yn‖= 0, which gives that limsupn→∞〈(γ f−
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A)x∗,xn+1− x∗〉 ≤ 0.

‖xn+1− x∗‖2

≤ αn

(
γ〈 f (xn)− f (x∗),xn+1− x∗〉+ 〈γ f (x∗)−Ax∗,xn+1− x∗〉

)
+βn‖xn− x∗‖‖xn+1− x∗‖+‖(1−βn)I−αnA‖‖yn− x∗‖‖xn+1− x∗‖

≤ αnαγ‖xn− x∗‖‖xn+1− x∗‖+αn〈γ f (x∗)−Ax∗,xn+1− x∗〉

+βn‖xn− x∗‖‖xn+1− x∗‖+(1−βn−αnγ̄)‖‖xn− x∗‖‖xn+1− x∗‖

= [1−αn(γ̄− γα)]‖xn− x∗‖‖xn+1− x∗‖+αn〈γ f (x∗)−Ax∗,xn+1− x∗〉

≤ 1−αn(γ̄− γα)

2
(‖xn− x∗‖2 +‖xn+1− x∗‖2)+αn〈γ f (x∗)−Ax∗,xn+1− x∗〉.

≤ 1−αn(γ̄− γα)

2
‖xn− x∗‖2 +

1
2
‖xn+1− x∗‖2 +αn〈γ f (x∗)−Ax∗,xn+1− x∗〉.

It follows that

‖xn+1− x∗‖2 ≤ [1−αn(γ̄− γα)]‖xn− x∗‖2 +2αn〈γ f (x∗)−Ax∗,xn+1− x∗〉.

In view of Lemma 1.7, we obtain the desired conclusion easily. This completes the proof.
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