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Abstract. In this paper, we study (m,n)-ideals of an L A -semigroup in detail. We characterize (0,2)-ideals of an

L A -semigroup S and prove that A is a (0,2)-ideal of S if and only if A is a left ideal of some left ideal of S. We

also show that an L A -semigroup S is 0-(0,2)-bisimple if and only if S is right 0-simple. Furthermore we study

0-minimal (m,n)-ideals in an L A -semigroup S and prove that if R (L) is a 0-minimal right (left) ideal of S, then

either RmLn = {0} or RmLn is a 0-minimal (m,n)-ideal of S for m,n ≥ 3. Finally we discuss (m,n)-ideals in an

(m,n)-regular L A -semigroup S and show that S is (0,1)-regular if and only if L = SL where L is a (0,1)-ideal of

S.
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1. Introduction

A left almost semigroup (L A -semigroup) is a groupoid S satisfying the left invertive law

(ab)c = (cb)a for all a,b,c ∈ S. This left invertive law has been obtained by introducing braces

on the left of ternary commutative law abc = cba. The concept of an L A -semigroup was
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first given by Kazim and Naseeruddin in 1972 [2]. An L A -semigroup satisfies the medial

law (ab)(cd) = (ac)(bd) for all a,b,c,d ∈ S. Since L A -semigroups satisfy medial law, they

belong to the class of entropic groupoids which are also called abelian quasigroups [11]. If

an L A -semigroup S contains a left identity (unitary L A -semigroup), then it satisfies the

paramedial law (ab)(cd) = (dc)(ba) and the identity a(bc) = b(ac) for all a,b,c,d ∈ S [6].

An L A -semigroup is a useful algebraic structure, midway between a groupoid and a com-

mutative semigroup. An L A -semigroup is non-associative and non-commutative in general,

however, there is a close relationship with semigroup as well as with commutative structures. It

has been investigated in [6] that if an L A -semigroup contains a right identity, then it becomes

a commutative semigroup. The connection of a commutative inverse semigroup with an L A -

semigroup has been given by Yousafzai et al. in [12] as, a commutative inverse semigroup (S, .)

becomes an L A -semigroup (S, ∗) under a∗b = ba−1r−1, ∀ a,b,r ∈ S. An L A -semigroup S

with left identity becomes a semigroup under the binary operation ”◦e” defined as, x◦e y= (xe)y

for all x,y ∈ S [13]. An L A -semigroup is the generalization of a semigroup theory [6] and has

vast applications in collaboration with semigroups like other branches of mathematics. Khan

et al. studied an intra-regular class of an L A -semigroup in [3] and proved some interest-

ing problems by using different ideals. They proved that the set of all two-sided ideals of

intra-regular L A -semigroup forms a semilattice structure. They characterized an intra-regular

L A -semigroup by using left, right, two-sided and bi-ideals. An L A -semigroup is the gen-

eralization of a semigroup theory [6]. Many interesting results on L A -semigroups have been

investigated in [4, 8, 9, 10].

In this paper, we investigate two classes of ideals called the (m,n)-ideals and 0-minimal

ideals of an L A -semigroup and their characterizations. First we study (0,2)-ideals of an

L A -semigroup S and prove that A is a (0,2)-ideal of S if and only if A is a left ideal of some

left ideal of S. Further, we characterize (0,2)-bi-ideals in unitary L A -semigroups and proceed

to prove that A is a 0-minimal (0,2)-bi-ideal of a unitary L A -semigroup S with zero. Then

either A2 = {0} or A is right 0-simple. We also study some interesting results in (m,n)-ideals

and investigate that if A is an (m,n)-ideal of S and B is an (m,n)-ideal of A such that B is

idempotent. Then B is an (m,n)-ideal of S. The concept of (m,n)-regular L A -semigroups
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is indeed an important and interesting part of the paper. In this respect, we prove that if S

is a unitary (m,n)-regular L A -semigroup such that m = n. Then for every R ∈ R(m,0) and

L ∈ L(0,n), R∩L = RmL∩RLn.

2. Preliminaries and examples

If S is an L A -semigroup with product · : S×S −→ S, then ab · c and (ab)c both denote the

product (a ·b) · c.

If there is an element 0 of an L A -semigroup (S, ·) such that x ·0 = 0 · x = x ∀ x ∈ S, we call

0 a zero element of S.

Example 1. Let S = {a,b,c,d,e} with a left identity d. Then the following multiplication table

shows that (S, ·) is a unitary L A -semigroup with a zero element a.

· a b c d e

a a a a a a

b a e e c e

c a e e b e

d a b c d e

e a e e e e

Example 2. Let S = {a,b,c,d}. Then the following multiplication table shows that (S, ·) is an

L A -semigroup with a zero element a.

· a b c d

a a a a a

b a d d c

c a c c c

d a c c c
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The above L A -semigroup S has commutative powers, that is aa · a = a · aa for all a ∈ S

which is called a locally associative L A -semigroup [7]. Note that S has no associative powers

for all a ∈ S because (bb ·b)b 6= b(bb ·b) for b ∈ S.

Assume that S is an L A -semigroup. Let us define a1 = a and am = ((((aa)a)a)...a)a =

am−1a for all a ∈ S where m ≥ 1. It is easy to see that am = am−1a = aam−1 for all a ∈ S and

m≥ 3 if S has a left identity. Also, we can show by induction, (ab)m = ambm and aman = am+n

hold for all a,b ∈ S and m,n≥ 3.

A subset A of an L A -semigroup S is called a right (left) ideal of S if AS⊆ A (SA⊆ A), and

is called an ideal of S if it is both left and right ideal of S.

A subset A of an L A -semigroup S is called an L A -subsemigroup of S if A2 ⊆ A.

The concept of (m,n)-ideals of a semigroup and an L A -semigroup was given in [5] and [1]

respectively.

An L A -subsemigroup A of an L A -semigroup S is said to be an (m,n)-ideal of S if AmS ·

An ⊆ A where m,n are non-negative integers such that m = n 6= 0. Here Am or An are suppressed

if m = 0 or n = 0, that is A0S = S or SA0 = S. Note that if m = n = 1, then an (m,n)-ideal A of

an L A -semigroup S is called a bi-ideal of S. If we take m = 0 or n = 0, then an (m,n)-ideal A

of an L A -semigroup S becomes a left or a right ideal of S.

An (m,n)-ideal A of an L A -semigroup S with zero is said to be 0-minimal if A 6= {0} and

{0} is the only (m,n)-ideal of S properly contained in A.

An L A -semigroup S with zero is said to be 0-(0,2)-bisimple if S2 6= {0} and {0} is the only

proper (0,2)-bi-ideal of S.

An L A -semigroup S with zero is said to be nilpotent if Sl = {0} for some positive integer

l.

Let m,n be non-negative integers and S be an L A -semigroup. We say that S is (m,n)-regular

if for every element a ∈ S there exists some x ∈ S such that a = (amx)an. Note that a0 is defined

as an operator element such that a0y = y and za0 = z for any y,z ∈ S.
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3. 0-minimal (0,2)-bi-ideals in unitary L A -semigroups

If S is a unitary L A -semigroup, then it is easy to see that S2 = S, SA2 = A2S and A ⊆ SA

∀ A ⊆ S. Note that every right ideal of a unitary L A -semigroup S is a left ideal of S but the

converse is not true in general. Example 1 shows that there exists a subset {a,b,e} of S which

is a left ideal of S but not a right ideal of S. It is easy to see that SA and SA2 are the left and right

ideals of a unitary L A -semigroup S. Thus SA2 is an ideal of a unitary L A -semigroup S.

Lemma 1. Let S be a unitary L A -semigroup. Then A is a (0,2)-ideal of S if and only if A is

an ideal of some left ideal of S.

Proof. Let A be a (0,2)-ideal of S, then SA ·A= AA ·S = SA2⊆ A and A ·SA= S ·AA= SS ·AA=

SA2 ⊆ A. Hence A is an ideal of a left ideal SA of S.

Conversely, assume that A is a left ideal of a left ideal L of S, then

SA2 = AA ·S = SA ·A⊆ SL ·A⊆ LA⊆ A,

and clearly A is an L A -subsemigroup of S, therefore A is a (0,2)-ideal of S.

Corollary 1. Let S be a unitary L A -semigroup. Then A is a (0,2)-ideal of S if and only if A

is a left ideal of some left ideal of S.

Lemma 2. Let S be a unitary L A -semigroup. Then A is a (0,2)-bi-ideal of S if and only if A

is an ideal of some right ideal of S.

Proof. Let A be a (0,2)-bi-ideal of S, then SA2 ·A = A2S ·A = AS ·A2 ⊆ SA2 ⊆ A and A ·SA2 =

SS ·AA2 = A2A ·SS = SA ·A2 ⊆ SA2 ⊆ A. Hence A is an ideal of some right ideal SA2 of S.

Conversely, assume that A is an ideal of a right ideal R of S, then

SA2 = A ·SA = A · (SS)A = A · (AS)S⊆ A · (RS)R⊆ AR⊆ A,

and (AS)A⊆ (RS)A⊆ RA⊆ A, which shows that A is a (0,2)-ideal of S.

Theorem 1. Let S be a unitary L A -semigroup. Then the following statements are equivalent.
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(i) A is a (1,2)-ideal of S;

(ii) A is a left ideal of some bi-ideal of S;

(iii) A is a bi-ideal of some ideal of S;

(iv) A is a (0,2)-ideal of some right ideal of S;

(v) A is a left ideal of some (0,2)-ideal of S.

Proof. (i) =⇒ (ii). It is easy to see that SA2 · S is a bi-ideal of S. Let A be a (1,2)-ideal of S,

then

(SA2 ·S)A = (SA2 ·SS)A = (SS ·A2S)A = (S ·A2S)A = A2S ·A

= AS ·A2 ⊆ A,

which shows that A is a left ideal of a bi-ideal SA2 ·S of S.

(ii) =⇒ (iii). Let A be a left ideal of a bi-ideal B of S, then

(A ·SA2)A = (S ·AA2)A⊆ [S(SA ·AA)]A = [S(AA ·AS)]A

= [AA ·S(AS)]A = [{S(AS) ·A}A]A = [(AS ·A)A]A

⊆ [(BS ·B)A]A⊆ BA ·A⊆ A,

which shows that A is a bi-ideal of an ideal SA2 of S.

(iii) =⇒ (iv). Let A be a bi-ideal of an ideal I of S, then

SA2 ·A2 = (A2 ·AA)S = (A ·A2A)S⊆ [A · (AI)A]S = AA ·S

= SA ·A⊆ SI ·S⊆ I,

which shows that A is a (0,2)-ideal of a right ideal SA2 of S.

(iv) =⇒ (v). It is easy to see that SA3 is a (0,2)-ideal of S. Let A be a (0,2)-ideal of a right

ideal R of S, then

A ·SA3 = A(SS ·A2A) = A(AA2 ·S)⊆ A[(SA ·AA)S] = A[(AA ·AS)S]

= (AA)[(A ·AS)S] = [S ·A(AS)]A2 = [A ·S(AS)]A2

⊆ RS ·A2 ⊆ RA2 ⊆ A,

which shows that A is a left ideal of a (0,2)-ideal SA3 of S.
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(v) =⇒ (i). Let A be a left ideal of a (0,2)-ideal O of S, then

AS ·A2 = (AA ·SS)A = SA2 ·A⊆ SO2 ·A⊆ OA⊆ A,

which shows that A is a (1,2)-ideal of S.

Lemma 3. Let S be a unitary L A -semigroup and A be an idempotent subset of S. Then A

is a (1,2)-ideal of S if and only if there exist a left ideal L and a right ideal R of S such that

RL⊆ A⊆ R∩L.

Proof. Assume that A is a (1,2)-ideal of S such that A is idempotent. Setting L = SA and R =

SA2, then

RL = SA2 ·SA = A2S ·SA = (SA ·SS)A2 = (SS ·AS)A2

= [S(AA ·SS)]A2 = [S(SS ·AA)]A2 = [S{A(SS ·A)}]A2

= [A(S ·SA)]A2 ⊆ AS ·A2 ⊆ A.

It is clear that A⊆ R∩L.

Conversely, let R be a right ideal and L be a left ideal of S such that RL ⊆ A ⊆ R∩L, then

AS ·A2 = AS ·AA⊆ RS ·SL⊆ RL⊆ A.

Assume that S is a unitary L A -semigroup with zero. Then it is easy to see that every left

(right) ideal of S is a (0,2)-ideal of S. Hence if O is a 0-minimal (0,2)-ideal of S and A is a left

(right) ideal of S contained in O, then either A = {0} or A = O.

Lemma 4. Let S be a unitary L A -semigroup with zero. Assume that A is a 0-minimal ideal of

S and O is an L A -subsemigroup of A. Then O is a (0,2)-ideal of S contained in A if and only

if O2 = {0} or O = A.

Proof. Let O be a (0,2)-ideal of S contained in a 0-minimal ideal A of S. Then SO2 ⊆ O ⊆ A.

Since SO2 is an ideal of S, therefore by minimality of A, SO2 = {0} or SO2 =A. If SO2 =A, then

A = SO2 ⊆ O and therefore O = A. Let SO2 = {0}, then O2S = SO2 = {0} ⊆ O2, which shows

that O2 is a right ideal of S, and hence an ideal of S contained in A, therefore by minimality of

A, we have O2 = {0} or O2 = A. Now if O2 = A, then O = A.
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Conversely, let O2 = {0}, then SO2 = O2S = {0}S = {0}= O2. Now if O = A, then SO2 =

SS ·OO = SA ·SA⊆ A = O, which shows that O is a (0,2)-ideal of S contained in A.

Corollary 2. Let S be a unitary L A -semigroup with zero. Assume that A is a 0-minimal left

ideal of S and O is an L A -subsemigroup of A. Then O is a (0,2)-ideal of S contained in A if

and only if O2 = {0} or O = A.

Lemma 5. Let S be a unitary L A -semigroup with zero and O be a 0-minimal (0,2)-ideal of

S. Then O2 = {0} or O is a 0-minimal right (left) ideal of S.

Proof. Let O be a 0-minimal (0,2)-ideal of S, then

S(O2)2 = SS ·O2O2 = O2O2 ·S = SO2 ·O2 ⊆ OO2 ⊆ O2,

which shows that O2 is a (0,2)-ideal of S contained in O, therefore by minimality of O,

O2 = {0} or O2 = O. Suppose that O2 = O, then OS = OO ·SS = SO2 ⊆ O, which shows that

O is a right ideal of S. Let R be a right ideal of S contained in O, then R2S = RR ·S⊆ RS ·S⊆ R.

Thus R is a (0,2)-ideal of S contained in O, and again by minimality of O, R = {0} or R = O.

The following Corollary follows from Lemma 4 and Corollary 2.

Corollary 3. Let S be a unitary L A -semigroup. Then O is a minimal (0,2)-ideal of S if and

only if O is a minimal left ideal of S.

Theorem 2. Let S be a unitary L A -semigroup. Then A is a minimal (2,1)-ideal of S if and

only if A is a minimal bi-ideal of S.
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Proof. Let A be a minimal (2,1)-ideal of S. Then

[(A2S ·A)2S](A2S ·A) = [{(A2S ·A)(A2S ·A)}S](A2S ·A)

⊆ [{(AS ·A)(AS ·A)}S](AS ·A)

= [{(AS ·AS)(AA)}S](AS ·A)

= [(A2S ·AA)S](AS ·A)

⊆ [(AS ·AS)S](AS ·A)

= (A2S ·S)(AS ·A)

⊆ (AS ·S)(AS ·A) = (AS ·AS)(SA)

= A2S ·SA = AS ·SA2 = (SA2 ·S)A

= (A2S ·S)A = (SS ·AA)A = A2S ·A,

and similarly we can show that (A2S ·A)2 ⊆ A2S ·A. Thus A2S ·A is a (2,1)-ideal of S con-

tained in A, therefore by minimality of A, A2S ·A = A. Now

AS ·A = (AS)(A2S ·A) = [(A2S ·A)S]A = (SA ·A2S)A

= [A2(SA ·S)]A⊆ A2S ·A = A,

It follows that A is a bi-ideal of S. Suppose that there exists a bi-ideal B of S contained in A,

then B2S ·B⊆ BS ·B⊆ B, so B is a (2,1)-ideal of S contained in A, therefore B = A.

Conversely, assume that A is a minimal bi-ideal of S, then it is easy to see that A is a

(2,1)-ideal of S. Let C be a (2,1)-ideal of S contained in A, then

[(C2S ·C)S](C2S ·C) = (SC ·C2S)(C2S ·C) = (SC2 ·CS)(C2S ·C)

= [C(SC2 ·S)](C2S ·C) = [(C2S ·C)(SC2 ·SS)]C

= [(C2S ·C)(S ·C2S)]C = [(C2S ·C)(C2S)]C

= [C2{(C2S ·C)S}]C ⊆C2S ·C.

This shows that C2S ·C is a bi-ideal of S, and by minimality of A, C2S ·C = A. Thus A =

C2S ·C ⊆C, and therefore A is a minimal (2,1)-ideal of S.
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Theorem 3. Let A be a 0-minimal (0,2)-bi-ideal of a unitary L A -semigroup S with zero. Then

exactly one of the following cases occurs:

(i) A = {0,a}, a2 = 0;

(ii) ∀ a ∈ A\{0}, Sa2 = A.

Proof. Assume that A is a 0-minimal (0,2)-bi-ideal of S. Let a ∈ A\{0}, then Sa2 ⊆ A. Also

Sa2 is a (0,2)-bi-ideal of S, therefore Sa2 = {0} or Sa2 = A.

Let Sa2 = {0}. Since a2 ∈ A, we have either a2 = a or a2 = 0 or a2 ∈ A\{0,a}. If a2 = a,

then a3 = a2a = a, which is impossible because a3 ∈ a2S = Sa2 = {0}. Let a2 ∈ A\{0,a}, we

have

S · {0,a2}{0,a2}= SS ·a2a2 = Sa2 ·Sa2 = {0} ⊆ {0,a2},

and

[{0,a2}S]{0,a2}= {0,a2S}{0,a2}= a2S ·a2 ⊆ Sa2 = {0} ⊆ {0,a2}.

Therefore {0,a2} is a (0,2)-bi-ideal of S contained in A. We observe that {0,a2} 6= {0}

and {0,a2} 6= A. This is a contradiction to the fact that A is a 0-minimal (0,2)-bi-ideal of S.

Therefore a2 = 0 and A = {0,a}.

If Sa2 6= {0}, then Sa2 = A.

Corollary 4. Let A be a 0-minimal (0,2)-bi-ideal of a unitary L A -semigroup S with zero such

that A2 6= 0. Then A = Sa2 for every a ∈ A\{0}.

Lemma 6. Let S be a unitary L A -semigroup. Then every right ideal of S is a (0,2)-bi-ideal

of S.

Proof. Assume that A is a right ideal of S, then

SA2 = AA ·SS = AS ·AS⊆ AA⊆ AS⊆ A, AS ·A⊆ A,

and clearly A2 ⊆ A, therefore A is a (0,2)-bi-ideal of S.

The converse of Lemma 6 is not true in general. Example 1 shows that there exists a (0,2)-

bi-ideal A = {a,c,e} of S which is not a right ideal of S.
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Theorem 4. Let S be a unitary L A -semigroup with zero. Then Sa2 = S ∀ a ∈ S\{0} if and

only if S is 0-(0,2)-bisimple if and only if S is right 0-simple.

Proof. Assume that Sa2 = S for every a ∈ S\{0}. Let A be a (0,2)-bi-ideal of S such that

A 6= {0}. Let a∈A\{0}, then S= Sa2⊆ SA2⊆A. Therefore S=A. Since S= Sa2⊆ SS= S2, we

have S2 = S 6= {0}. Thus S is 0-(0,2)-bisimple. The converse statement follows from Corollary

4.

Let R be a right ideal of 0-(0,2)-bisimple S. Then by Lemma 6, R is a (0,2)-bi-ideal of S and

so R = {0} or R = S.

Conversely, assume that S is right 0-simple. Let a∈ S\{0}, then Sa2 = S. Hence S is 0-(0,2)-

bisimple.

Theorem 5. Let A be a 0-minimal (0,2)-bi-ideal of a unitary L A -semigroup S with zero. Then

either A2 = {0} or A is right 0-simple.

Proof. Assume that A is 0-minimal (0,2)-bi-ideal of S such that A2 6= {0}. Then by using

Corollary 4, Sa2 = A for every a ∈ A\{0}. Since a2 ∈ A\{0} for every a ∈ A\{0}, we have

a4 = (a2)2 ∈ A\{0} for every a ∈ A\{0}. Let a ∈ A\{0}, then

(Aa2)S ·Aa2 = a2A ·S(Aa2) = [(S ·Aa2)A]a2 ⊆ [(S ·A)A]a2

= (AA ·SS)a2 = SA2 ·a2 ⊆ Aa2,

and

S(Aa2)2 = S(Aa2 ·Aa2) = S(a2A ·a2A) = S[a2(a2A ·A)]

= (aa)[S(a2A ·A)] = [(a2A ·A)S]a2

⊆ (AA ·SS)a2 = SA2 ·a2 ⊆ Aa2,

which shows that Aa2 is a (0,2)-bi-ideal of S contained in A. Hence Aa2 = {0} or Aa2 = A.

Since a4 ∈ Aa2 and a4 ∈ A\{0}, we get Aa2 = A. Thus by using Theorem 4, A is right 0-

simple.
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4. (m,n)-ideals in unitary L A -semigroups

In this section, we characterize a unitary L A -semigroup in terms of (m,n)-ideals with the

assumption that m,n≥ 5. If we take m,n≥ 2, then all the results of this section can be trivially

followed for a locally associative unitary L A -semigroup. If S is a unitary L A -semigroup,

then it is easy to see that SAm = AmS and AmAn = AnAm for m,n≥ 3 such that A0 = e if occurs,

where e is a left identity of S.

Lemma 7. Let S be a unitary L A -semigroup. If R and L are the right and left ideals of S

respectively, then RL is an (m,n)-ideal of S.

Proof. Let R and L be the right and left ideals of S respectively, then

(RL)mS · (RL)n = (RmLm ·S)(RnLn) = (RmLm ·Rn)(SLn)

= (LmRm ·Rn)(SLn) = (RnRm ·Lm)(SLn)

= (RmRn ·Lm)(SLn) = (Rm+nLm)(SLn)

= S(Rm+nLm ·Ln) = S(LnLm ·Rm+n)

= SS ·Lm+nRm+n = SLm+n ·SRm+n

= Rm+nS ·Lm+nS = SRm+n ·SLm+n,

and

SRm+n ·SLm+n = (S ·Rm+n−1R)(S ·Lm+n−1L)

= [S(Rm+n−2R ·R)][S(Lm+n−2L ·L)]

= [S(RR ·Rm+n−2)][S(LL ·Lm+n−2)]

⊆ (SS ·RRm+n−2)(SS ·LLm+n−2)

⊆ (SR ·SRm+n−2)(SL ·SLm+n−2)

⊆ (Rm+n−2S ·RS)(L ·SLm+n−2)
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⊆ (Rm+n−2S ·R)(S ·LLm+n−2)

= (RS ·Rm+n−2)(SLm+n−1)

⊆ RRm+n−2 ·SLm+n−1

⊆ SRm+n−1 ·SLm+n−1,

therefore

(RL)mS · (RL)n ⊆ SRm+n ·SLm+n ⊆ SRm+n−1 ·SLm+n−1 ⊆ ...⊆ SR ·SL

⊆ (SS ·R)L = (RS ·S)L⊆ RL,

and also

RL ·RL = LR ·LR = (LR ·R)L = (RR ·L)L⊆ (RS ·S)L⊆ RL.

This shows that RL is an (m,n)-ideal of S.

Theorem 6. Let S be a unitary L A -semigroup with zero. If S has the property that it contains

no non-zero nilpotent (m,n)-ideals and R (L) is a 0-minimal right (left) ideal of S, then either

RL = {0} or RL is a 0-minimal (m,n)-ideal of S.

Proof. Assume that R (L) is a 0-minimal right (left) ideal of S such that RL 6= {0}, then by

lemma 7, RL is an (m,n)-ideal of S. Now we show that RL is a 0-minimal (m,n)-ideal of S.

Let {0} 6= M ⊆ RL be an (m,n)-ideal of S. Note that since RL ⊆ R∩L, we have M ⊆ R∩L.

Hence M ⊆ R and M ⊆ L. By hypothesis, Mm 6= {0} and Mn 6= {0}. Since {0} 6= SMm = MmS,

therefore

{0} 6= MmS⊆ RmS = Rm−1R ·S = SR ·Rm−1 = SR ·Rm−2R

= RRm−2 ·RS⊆ RRm−2 ·R = Rm,
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and

Rm ⊆ SRm = SS ·RRm−1 = Rm−1R ·S = (Rm−2R ·R)S

= (RR ·Rm−2)S = SRm−2 ·RR⊆ SRm−2 ·R

= (SS ·Rm−3R)R = (RRm−3 ·SS)R = (RS ·Rm−3S)R

⊆ (R ·Rm−3S)R = (Rm−3 ·RS)R⊆ Rm−3R ·R = Rm−1,

therefore {0} 6= MmS⊆ Rm ⊆ Rm−1 ⊆ ...⊆ R. It is easy to see that MmS is a right ideal of S.

Thus MmS = R since R is 0-minimal. Also

{0} 6= SMn ⊆ {0} 6= SLn = S ·Ln−1L = Ln−1 ·SL⊆ Ln−1L = Ln,

and

Ln ⊆ SLn = SS ·LLn−1 = Ln−1L ·S = (Ln−2L ·L)S = SL ·Ln−2L

⊆ L ·Ln−2L = Ln−2 ·LL⊆ Ln−2L = Ln−1 ⊆ ...⊆ L,

therefore {0} 6= SMn ⊆ Ln ⊆ Ln−1 ⊆ ... ⊆ L. It is easy to see that SMn is a left ideal of S.

Thus SMn = L since L is 0-minimal. Therefore

M ⊆ RL = MmS ·SMn = MnS ·SMm = (SMm ·S)Mn

= (SMm ·SS)Mn = (S ·MmS)Mn = (Mm ·SS)Mn

= MmS ·Mn ⊆M.

Thus M = RL, which means that RL is a 0-minimal (m,n)-ideal of S.

Theorem 7. Let S be a unitary L A -semigroup. If R (L) is a 0-minimal right (left) ideal of S,

then either RmLn = {0} or RmLn is a 0-minimal (m,n)-ideal of S.

Proof. Assume that R (L) is a 0-minimal right (left) ideal of S such that RmLn 6= {0}, then

Rm 6= {0} and Ln 6= {0}. Hence {0} 6= Rm ⊆ R and {0} 6= Ln ⊆ L, which shows that Rm = R

and Ln = L since R (L) is a 0-minimal right (left) ideal of S. Thus by lemma 7, RmLn = RL is

an (m,n)-ideal of S. Now we show that RmLn is a 0-minimal (m,n)-ideal of S. Let {0} 6= M ⊆

RmLn = RL⊆ R∩L be an (m,n)-ideal of S. Hence {0} 6= SM2 =MM ·SS =MS ·MS⊆ RS ·RS⊆
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R and {0} 6= SM ⊆ SL⊆ L. Thus R = SM2 = MM ·SS = SM ·M ⊆ SM and SM = L since R (L)

is a 0-minimal right (left) ideal of S. Therefore

M ⊆ RmLn ⊆ (SM)m(SM)n = SmMm ·SnMn = SS ·MmMn

= MnMm ·S = SMm ·Mn = MmS ·Mn ⊆M,

Thus M = RmLn, which shows that RmLn is a 0-minimal (m,n)-ideal of S.

Theorem 8. Let S be a unitary L A -semigroup with zero. Assume that A is an (m,n)-ideal of

S and B is an (m,n)-ideal of A such that B is idempotent. Then B is an (m,n)-ideal of S.

Proof. It is trivial that B is an L A -subsemigroup S. Secondly, since AmS ·An ⊆ A and BmA ·

Bn ⊆ B, then

BmS ·Bn = (BmBm ·S)(BnBn) = (BnBn)(S ·BmBm)

= [(S ·BmBm)Bn]Bn = [(Bn ·BmBm)(SS)]Bn

= [(Bm ·BnBm)(SS)]Bn = [S(BnBm ·Bm)]Bn

= [S(BnBm ·Bm−1B)]Bn = [S(BBm−1 ·BmBn)]Bn

= [S(Bm ·BmBn)]Bn = [Bm(SS ·BmBn)]Bn

= [Bm(BnBm ·SS)]Bn = [Bm(SBm ·Bn)]Bn

= [Bm{(SS ·Bm−1B)Bn}]Bn = [Bm(BmS ·Bn)]Bn

⊆ [Bm(AmS ·An)]Bn ⊆ BmA ·Bn ⊆ B,

which shows that B is an (m,n)-ideal of S.

Lemma 8. Let 〈a〉(m,n) = amS ·an, then 〈a〉(m,n) is an (m,n)-ideal of a unitary L A -semigroup

S.
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Proof. Assume that S is a unitary L A -semigroup and m,n are non-negative integers, then

〈a〉(m,n) S · 〈a〉(m,n) = [(amS ·an)S](amS ·an) = (an ·amS)[S(amS ·an)]

= [{S(amS ·an)}(amS)]an = [am[{S(amS ·an)}S]]an

⊆ amS ·an = 〈a〉(m,n) ,

and similarly we can show that
(
〈a〉(m,n)

)2
⊆ 〈a〉(m,n) .

Theorem 9. Let S be a unitary L A -semigroup and 〈a〉(m,n) be an (m,n)-ideal of S. Then the

following statements hold:

(i)
(
〈a〉(1,0)

)m
S = amS;

(ii) S
(
〈a〉(0,1)

)n
= San;

(iii)
(
〈a〉(1,0)

)m
S ·

(
〈a〉(0,1)

)n
= (amS)an.

Proof. (i). As 〈a〉(1,0) = aS, we have(
〈a〉(1,0)

)m
S = (aS)mS = (aS)m−1(aS) ·S = S(aS) · (aS)m−1

= (aS)(aS)m−1 = (aS)[(aS)m−2(aS)]

= (aS)m−2(aS ·aS) = (aS)m−2(a2S)

= ...= (aS)m−(m−1)(am−1S) [if m is odd]

= ...= (am−1S)(aS)m−(m−1) [if m is even]

= amS.

Analogously, we can prove (ii) and (iii) is simple.

Corollary 5. Let S be a unitary L A -semigroup and let 〈a〉(m,n) be an (m,n)-ideal of S. Then

the following statements hold:

(i)
(
〈a〉(1,0)

)m
S = Sam;

(ii) S
(
〈a〉(0,1)

)n
= anS;

(iii)
(
〈a〉(1,0)

)m
S ·

(
〈a〉(0,1)

)n
= (Sam)(anS).
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Let L(0,n), R(m,0) and A(m,n) denote the sets of (0,n)-ideals, (m,0)-ideals and (m,n)-ideals

of an L A -semigroup S respectively.

Theorem 10. If S is a unitary L A -semigroup, then the following statements hold:

(i) S is (0,1)-regular if and only if ∀ L ∈ L(0,1), L = SL;

(ii) S is (2,0)-regular if and only if ∀ R ∈R(2,0), R = R2S such that every R is semiprime;

(iii) S is (0,2)-regular if and only if ∀U ∈ A(0,2), U =U2S such that every U is semiprime.

Proof. (i). Let S be (0,1)-regular, then for a ∈ S there exists x ∈ S such that a = xa. Since L

is (0,1)-ideal, therefore SL ⊆ L. Let a ∈ L, then a = xa ∈ SL ⊆ L. Hence L = SL. Converse is

simple.

(ii). Let S be (2,0)-regular and R be (2,0)-ideal of S, then it is easy to see that R = R2S. Now

for a ∈ S there exists x ∈ S such that a = a2x. Let a2 ∈ R, then

a = a2x ∈ RS = R2S ·S = SS ·R2 = R2S = R,

which shows that every (2,0)-ideal is semiprime.

Conversely, let R = R2S for every R ∈ R(2,0). Since Sa2 is a (2,0)-ideal of S such that

a2 ∈ Sa2, therefore a ∈ Sa2. Thus

a ∈ Sa2 = (Sa2)2S = (Sa2 ·Sa2)S = (a2S ·a2S)S = [a2(a2S ·S)]S

= (a2 ·Sa2)S = (S ·Sa2)a2 ⊆ Sa2 = a2S,

which implies that S is (2,0)-regular.

Analogously, we can prove (iii).

Lemma 9. If S is a unitary L A -semigroup, then the following statements hold:

(i) If S is (0,n)-regular, then ∀ L ∈ L(0,n), L = SLn;

(ii) If S is (m,0)-regular, then ∀ R ∈R(m,0), R = RmS;

(iii) If S is (m,n)-regular, then ∀U ∈ A(m,n), U = (UmS)Un.

Proof. It is simple.

Corollary 6. If S is a unitary L A -semigroup, then the following statements hold:
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(i) If S is (0,n)-regular, then ∀ L ∈ L(0,n), L = LnS;

(ii) If S is (m,0)-regular, then ∀ R ∈R(m,0), R = SRm;

(iii) If S is (m,n)-regular, then ∀U ∈ A(m,n), U =Um+nS = SUm+n.

Theorem 11. Let S be a unitary (m,n)-regular L A -semigroup such that m= n. Then for every

R ∈R(m,0) and L ∈ L(0,n), R∩L = RmL∩RLn.

Proof. It is simple.

Theorem 12. Let S be a unitary (m,n)-regular L A -semigroup. If M (N) is a 0-minimal (m,0)-

ideal ((0,n)-ideal) of S such that MN ⊆M∩N, then either MN = {0} or MN is a 0-minimal

(m,n)-ideal of S.

Proof. Let M (N) be a 0-minimal (m,0)-ideal ((0,n)-ideal) of S. Let O = MN, then clearly

O2 ⊆ O. Moreover

OmS ·On = (MN)mS · (MN)n = (MmNm)S ·MnNn ⊆ (MmS)S ·SNn

= SMm ·SNn = MmS ·SNn ⊆MN = O,

which shows that O is an (m,n)-ideal of S. Let {0} 6= P⊆ O be a non-zero (m,n)-ideal of S.

Since S is (m,n)-regular, therefore by using Lemma 9, we have

{0} 6= P = PmS ·Pn = (Pm ·SS)Pn = (S ·PmS)Pn = (Pn ·PmS)(SS)

= (PnS)(PmS ·S) = PnS ·SPm = PmS ·SPn.

Hence PmS 6= {0} and SPn 6= {0}. Further P ⊆ O = MN ⊆ M ∩N implies that P ⊆ M and

P ⊆ N. Therefore {0} 6= PmS ⊆MmS ⊆M which shows that PmS = M since M is 0-minimal.

Likewise, we can show that SPn = N. Thus we have

P⊆ O = MN = PmS ·SPn = PnS ·SPm = (SPm ·SS)Pn

= (S ·PmS)Pn = PmS ·Pn ⊆ P.

This means that P = MN and hence MN is 0-minimal.

Theorem 13. Let S be a unitary (m,n)-regular L A -semigroup. If M (N) is a 0-minimal (m,0)-

ideal ((0,n)-ideal) of S, then either M∩N = {0} or M∩N is a 0-minimal (m,n)-ideal of S.
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Proof. Once we prove that M ∩N is an (m,n)-ideal of S, the rest of the proof is same as in

Theorem 11. Let O=M∩N, then it is easy to see that O2⊆O. Moreover OmS ·On⊆MmS ·Nn⊆

MNn ⊆ SNn ⊆ N. But, we also have

OmS ·On ⊆MmS ·Nn = (Mm ·SS)Nn = (S ·MmS)Nn = (Nn ·MmS)S

= (Mm ·NnS)(SS) = (MmS)(NnS ·S) = MmS ·SNn

= MmS ·NnS = Nn(MmS ·S) = Nn ·SMm = Nn ·MmS

= Mm ·NnS = Mm ·SNn ⊆MmN ⊆MmS⊆M.

Thus OmS ·On ⊆M∩N = O and therefore O is an (m,n)-ideal of S..
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