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1. Introduction

Let X be a Banach space and let L(X) be the space of bounded linear operators on X . By a

one parameter semigroup of operators on X we mean a map: T : [0,∞)→ L(X) such that

(1) T (0) = I, the identity operator on X ,

(2) T (s+ t) = T (s)T (t), for all s, t ≥ 0.

The linear operator A defined by

D(A) =
{

x ∈ X : lim
t→0+

T (t)x− x
t

, exists
}
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and

Ax = lim
t→0+

T (t)x− x
t

=
d
dt

T (t)x |
t=0

, for all x ∈D(A)

is called the infinitesimal generator of the semigroup T (t), where D(A) is the domain of A; see

[16] and the references therein. Semigroups of operators are a main tool to solve the abstract

Cauchy problem.

Definition 1.1. Let C be an invertible linear operator on X . A map T (t) : [0,∞)→ L(X) is

called C-semigroup if

(1) T (0) =C,

(2) CT (s+ t) = T (s)T (t), for all s, t ∈ [0,∞).

Let T (t) be a C-semigroup on X . The operator A defined by Ax = C−1
(

lim
t→0+

T (t)x−Cx
t

)
with

D(A) = {x ∈ X : lim
t→0+

T (t)x−Cx
t

exists}

is called the generator of T (t) . The notion of C-semigroups were introduced in 1987 by Davis

and Pang. We refer authors to [3] and [5] for the basic structure of one parameter C-semigroups.

2. Tensor product of C-semigroups

Let X be a Banach space and L(X) be the space of all bounded linear operators on X .

Definition 2.1. A map T (s, t) : [0,∞)× [0,∞)→ L(X) is called a two-parameter semigroup of

bounded linear operators on X if

(1) T (0,0) = I, where I is the identity operator on X ,

(2) T ((s1, t1)+(s2, t2)) = T (s1, t1)T (s2, t2) , for all s1,s2, t1 and t2 ≥ 0.

Basic properties and structure of two parameter semigroups were studied in [2] and [19].

In [20], Jafanda studied very specific two-parameter semigroups associated with differentia-

bilty. The problem of tensor product semi-semigroups of different parameters, were studied in

[1].
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Now, for two Banach spaces X and Y we use X
∧
⊗Y to denote the completed projective tensor

product of X and Y. We refer authors to [1] and [13] for a good account on tensor products of

Banach spaces and tensor products of operators.

Definition 2.2. Let X and Y be two Banach spaces. Let T (s) and S (t) be two semigroups in

L(X) and L(Y ) respectively. Define a two-parameter semigroup as a vector valued function of

two variables F : [0,∞)× [0,∞)→ L(X
∧
⊗Y ), by F (s, t) = T (s)⊗S (t) , where T (s)⊗S (t)(x⊗

y) = T (s)x⊗S (t)y. Then F(s, t) is called a tensor product semigroup.

Tensor products of one-parameter semigroups of operators were studied in [1]. Let us recall

the following result from [1].

Theorem 2.3. Let T (s)
∧
⊗ S(t) : X

∧
⊗Y → X

∧
⊗Y be a semigroup of class c0. If A1 and A2 are

the infinitesimal generators of T (s) and S(t) respectively, then the infinitesimal generator of

T (s)⊗S(t) is the linear transformation L : R+2 → L(X
∧
⊗Y ), defined by

L(s, t)(x⊗ y) =
(
A1⊗ I I⊗A2

)(s
t

)
(x⊗ y)

= s
(
A1⊗ I

)
(x⊗ y)+ t

(
I⊗A2

)
(x⊗ y) .

Here,
−
A denotes the closed extension of A. We refer authors to [13] for more details on tensor

product operators and closed extension of operators.

Now we introduce C-tensor product semigroups of operators.

Definition 2.4. Let T (s) and S (t) be two maps from [0,∞) into L(X) and L(Y ) respectively,

and C1,C2 be two invertible operators on L(X) and L(Y ) respectively. Then we say T (s)⊗S (t)

is a C1⊗C2−tensor product semigroup in L
(

X
∧
⊗Y
)

if

(1) T (0)⊗S (0) =C1⊗C2,

(2) (C1⊗C2)◦ (T ⊗S)((s1, t1)+(s2, t2)) = (T (s1)⊗S (t1))◦ (T (s2)⊗S (t2)) .

For simplicity, a tensor product C1⊗C2-semigroup T (s)⊗S (t) will be called a C1⊗C2−semigroup

from now on.

Proposition 2.5. If T (s)⊗S (t) is a C1⊗C2-semigroup, then T (s) and S (t) are C1-semigroup

and C2-semigroup respectively.



4 O. YASIN, R. KHALIL

Proof. Since T (s)⊗S (t) is a tensor product C1⊗C2-semigroup, we have

T (0)⊗S (0) =C1⊗C2,

which implies from [1] that there exists a nonzero λ ∈ R such that T (0) = λC1, and S (0) =
1
λ

C2. With no loss of generality, we can assume that T (0) =C1 and S (0) =C2. Moreover,

(C1⊗C2)◦ (T ⊗S)((s1, t1)+(s2, t2)) = (C1⊗C2)◦ (T ⊗S)((s1 + s2, t1 + t2))

= (T (s1)⊗S (t1))◦ (T (s2)⊗S (t2))

= T (s1)T (s2)⊗S (t1)S (t2) .

Hence, we have

T (s1)T (s2)⊗S (t1)S (t2) = (C1⊗C2)◦ (T ⊗S)((s1 + s2, t1 + t2))

= C1T (s1 + s2)⊗C2S (t1 + t2) ,

which implies that C1T (s1 + s2) = λT (s1)T (s2) , and C2S (t1 + t2) =
1
λ

S(t1)S (t2) . Assume

that C1T (s1 + s2) = T (s1)T (s2) and C2S (t1 + t2) = S(t1)S (t2) . It follows that T (s) is a C1-

semigroup and S (t) is a C2-semigroup.

Theorem 2.6. Let T (s) and S(t) be C1-semigroup and C2-semigroup on L(X) and L(Y ) , re-

spectively. Let A1 be the infinitesimal generator of T (s) and A2 be the infinitesimal generator

of S (t). Then the infinitesimal generator of the C1⊗ I-semigroup T (s)
∧
⊗ I : X

∧
⊗Y → X

∧
⊗Y is

A1⊗ I, and the infinitesimal generator of the I⊗C2−semigroup I
∧
⊗ S(t) : X

∧
⊗Y → X

∧
⊗Y is

I⊗A2.

Proof. Let z= x⊗y for some x⊗y∈D(A1)⊗Y. Let A be the infinitesimal generator of T (s)
∧
⊗I.

Then Az = (A1⊗ I)z. This means that

A |
D(A1)⊗Y

= A1⊗ I.

In other words, A is an extension of A1⊗ I from the subspace D(A1)⊗Y to the domain D(A) .

Being the infinitesimal generator of a one parameter C−semigroup, then [16], A is closed. Thus,

A is a closed extension of A1⊗ I. But A1⊗ I is closable [13]. Since the closure of an operator is

the smallest closed extension, then A1⊗ I ⊂ A1⊗ I ⊂ A. On the other hand since the closure of
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a closable operator is its maximal extension we have A⊂ A1⊗ I. Hence A = A1⊗ I.

Similarly, one can show that I⊗A2 generates I
∧
⊗S(t).

Definition 2.7. The infinitesimal generator of a C1⊗C2-semigroup T (s)⊗S (t) is
(
C−1

1 ⊗C−1
2
)
.

L (0,0) , where L (0,0) is the derivative of T (s)⊗S (t) at (0,0) .

Theorem 2.8. Let T (s)⊗ S (t) be a C1⊗C2-semigroup. Then the infinitesimal generator of

T (s)⊗S (t) is the linear transformation A : R+2 → L(X⊗Y ) defined by

A(a,b)(x⊗ y) = (A1⊗ I I⊗A2)

(
a
b

)
(x⊗ y)

= a(A1⊗ I)(x⊗ y)+b(I⊗A2)(x⊗ y) ,

where A1 and A2 are the infinitesimal generators of T (s) and S (t) respectively.

Proof. Let F = T (s)⊗S (t) . The infinitesimal generator of F is
(
C−1

1 ⊗C−1
2
)
. L (0,0) , where

L (0,0) is the derivative of F at (0,0) . But the derivative of F at (0,0) is
(

∂F
∂ s
|

s=0

∂F
∂ t
|

t=0

)
.

Now we have

∂F
∂ s
|

s=0
= lim

s→0+

F (s,0)−F (0,0)
s

(x⊗ y)

= lim
s→0+

T (s)x−C1x
s

⊗C2y

= C1A1x⊗C2y.

Similarly, we have
∂F
∂ t
|

t=0
=C1x⊗C2A2y. It follows that L (0,0) = (C1⊗C2)(A1⊗ I I⊗A2) .

Hence, the infinitesimal generator of T (s)⊗S (t) is (A1⊗ I I⊗A2) .

From Theorem 2.8, we find the following result immediately.

Lemma 2.9. If T (t) and S (t) are C1-semigroup and C2-semigroup respectively, with generators

A1 and A2, then the generator of the one parameter semigroup T (at)⊗S (bt) is aA1⊗ I +bI⊗

A2.

Lemma 2.10. If T (t) and S (t) are C1-semigroup and C2-semigroup respectively, with infini-

tesimal generators A1 and A2 then the infinitesimal generator of the one parameter semigroup

e−λ tT (at)⊗S (bt) is [aA1⊗ I]+ [bI⊗A2]−λ I⊗ I.
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Proof. Let z = x⊗ y. Define

J =C−1
1 ⊗C−1

2 lim
t→0+

e−λ tT (at)⊗S (bt)−C1⊗C2

t
z.

It follows that

J = C−1
1 ⊗C−1

2 lim
t→0+

e−λ tT (at)⊗S (bt)− e−λ tC1⊗C2 + e−λ tC1⊗C2−C1⊗C2

t
z

= C−1
1 ⊗C−1

2 lim
t→0+

e−λ t T (at)⊗S (bt)−C1⊗C2

t
z

+C−1
1 ⊗C−1

2 lim
t→0+

C1⊗C2
e−λ tI⊗ I− I⊗ I

t
z

= (aA1⊗ I +bI⊗A2)z−λ I⊗ Iz.

Thus, the infinitesimal generator of the one parameter semigroup e−λ tT (at)⊗S (bt) is [aA1⊗ I]+

[bI⊗A2]−λ I⊗ I.

Lemma 2.11. Let T (at)⊗S (bt) be a C1⊗C2-semigroup with ‖T (s)‖ ≤M1ew1s and ‖S (t)‖ ≤

M2ew2t . If Re(λ )> (a+b)max(w1,w2), then lim
t→∞

e−λ tT (at)⊗S (bt) = 0.

Proof. Note that ∥∥∥e−λ tT (at)⊗S (bt)
∥∥∥ =

∥∥∥e−λ tT (at)
∥∥∥‖S (bt)‖

≤
∥∥∥e−λ t

∥∥∥M1M2et(aw1+bw2)

= M1M2e−t(Re(λ )−aw1−bw2),

which tends to zero as t→ ∞, since Re(λ )> (a+b)max(w1,w2).

The proof of the following two lemmas is standard, and is therefore omitted.

Lemma 2.12. Let T (t) be a one parameter C-semigroup. Then for any x ∈ X , we have

limh→0+
1
h
∫ t+h

t T (s)xds = T (t)x.

Lemma 2.13. Let T (t) be a one parameter C− semigroup whose infinitesimal generator is A.

Then for any x ∈ X , s≥ 0 we have
∫ s

0 T (t)xdt ∈ D(A) with A
∫ s

0 T (t)xdt = T (s)x−Cx.

Theorem 2.14. Let T (s)⊗S(t) be a C1⊗C2-semigroup whose infinitesimal generator is (A1⊗

I I⊗A2), with ‖T (s)‖ ≤M1ew1s and ‖S (t)‖ ≤M2ew2t . If λ ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
, where
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(a,b) ∈ R+2
and Re(λ )> (a+b)max(w1,w2), then

R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
(x⊗ y) =C−1

1 ⊗C−1
2

∞∫
0

e−λ t (T (at)⊗S(bt))(x⊗ y)dt,

and ∥∥∥∥R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))∥∥∥∥≤ M
∥∥C−1

1

∥∥∥∥C−1
2

∥∥
Re(λ )−aw1−bw2

.

Proof. From Lemma 2.10, the infinitesimal generator of the one parameter C-semigroup e−λ tT (at)⊗

S(bt) is ([aA1⊗ I]+ [bI⊗A2]−λ I⊗ I) . This equals to

(A1⊗ I I⊗A2)

(
a
b

)
−λ I⊗ I.

Let A = (A1⊗ I I⊗A2)
(a

b

)
−λ I⊗ I. It follows from Lemma 2.13 that

A
t∫
0

e−λ s (T (as)⊗S(bs))(x⊗ y)ds = e−λ tT (at)⊗S(bt)(x⊗ y)−C1⊗C2 (x⊗ y) .

From Lemma 2.11, we see that s lim
t→∞

e−λ tT (at)⊗S(bt) = 0. Thus, taking the limit as t→∞ for

both sides the right hand side becomes−C1⊗C2 (x⊗ y) . Hence, we conclude

(
(A1⊗ I I⊗A2)

(
a
b

)
−λ I⊗ I

) ∞∫
0

e−λ s (T (as)⊗S(bs))(x⊗ y)ds =−C1⊗C2 (x⊗ y) .

This implies that

(
λ I⊗ I− (A1⊗ I I⊗A2)

(
a
b

))(
C−1

1 ⊗C−2
2
) ∞∫

0

e−λ s (T (as)⊗S(bs))(x⊗ y)ds = x⊗ y.

It follows that

R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
(x⊗ y) =C−1

1 ⊗C−1
2

∞∫
0

e−λ t (T (at)⊗S(bt))(x⊗ y)dt.
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Moreover, we have

∥∥∥∥R
(

λ ,(A1⊗ I, I⊗A2)

(
a
b

))∥∥∥∥ =

∥∥∥∥∥∥C−1
1 ⊗C−1

2

∞∫
0

e−λ t (T (at)⊗S(bt))(x⊗ y)dt

∥∥∥∥∥∥
≤ ‖C−1

1 ‖‖C
−1
2 ‖

∫
∞

0
M1M2e−Re(λ )t+aw1+bw2dt

= M1M2‖C−1
1 ‖‖C

−1
2 ‖

∫
∞

0
e−Re(λ )t+aw1+bw2dt

=
M1M2

∥∥C−1
1

∥∥∥∥C−1
2

∥∥
Re(λ )−aw1−bw2

.

As required.

3. Compact tensor product C-semigroups

In this section, necessary conditions and sufficient conditions for C-tensor product semi-

groups to be compact are obtained.

Definition 3.1. An operator T on a Banach space X is said to be compact if for every bounded

sequence xn in X the sequence T xn has a convergent subsequence.

Remark 3.2. An operator T ∈ L(X) is compact iff T takes any bounded set to a relatively

compact set. Hence, every finite rank operator is compact.

Definition 3.3. A C-semigroup T (t) is called compact, if T (t) is a compact operator on X for

all t ∈ (0,∞).

The following is a known result in [8].

Theorem 3.4. For any bounded linear operators A and B on a Banach spaces X and Y respec-

tively, one has A⊗B is compact iff both A and B are compact.

As a consequence we get the following.

Theorem 3.5. Let T (s)⊗S (t) be a C1⊗C2−semigroup. Then T (s)⊗S (t) is compact iff T (s)

and S (t) are compact.

In the following Theorem, we need C1, and C2 to be bounded.



TENSOR PRODUCT C-SEMIGROUPS OF OPERATORS 9

Theorem 3.6. Let T (s) be a compact C1-semigroup with infinitesimal generator A1 such

that ‖T (s)‖ ≤ M1ew1s and S (t) be a compact C2−semigroup with infinitesimal generator A2

such that ‖S (t)‖ ≤ M2ew2t . Then (C1⊗C2)
2 R
(
λ ,(A1⊗ I I⊗A2)

(a
b

))
is compact for all

λ ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
.

Proof. Let λ ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
, such that Re(λ ) > (a+b)max(w1,w2) . Then by

Theorem 14, we have

(C1⊗C2)R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
(x⊗ y) =

∫
∞

0
e−λ sT (as)⊗S (bs)(x⊗ y)ds.

Define

Rt

(
λ ,(A1⊗ I I⊗A2)

(
a
b

))
= (C1⊗C2)

∫
∞

t
e−λ sT (as)⊗S (bs)ds

=
∫

∞

t
e−λ sC1T (as)⊗C2S (bs)ds

= T (at)⊗S (bt)
∫

∞

t
e−λ sT (a(s− t))⊗S (b(s− t))ds.

Since Re(λ ) > (a+b)max(w1,w2) , we have
∫

∞

t e−λ sT (a(s− t))⊗ S (b(s− t))ds is bound-

ed. Since T (s) and S (t) are compact, we have by Theorem 2.20, we get T (at)⊗ S (bt) is

compact, and since the composition of a compact and a bounded operators is compact we get,

Rt
(
λ ,(A1⊗ I I⊗A2)

(a
b

))
is compact for all t > 0. Further, let

J = Rt

(
λ ,(A1⊗ I I⊗A2)

(
a
b

))
− (C1⊗C2)

2 R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
.

It follows that

‖J‖ =

∥∥∥∥(C1⊗C2)
∫

∞

t
e−λ sT (as)⊗S (bs)ds− (C1⊗C2)

∫
∞

0
e−λ sT (as)⊗S (bs)ds

∥∥∥∥
≤ ‖C1⊗C2‖

t∫
0

∥∥∥e−λ sT (as)⊗S (bs)
∥∥∥ds.

On the other hand, we have
∥∥∥e−λ sT (as)⊗S (bs)

∥∥∥ ≤ e−Re(λ )s ‖T (as)‖‖S (bs)‖ . Further, we

have ‖T (s)‖ ≤M1ew1s and ‖S (t)‖ ≤M2ew2t . Thus, we get

‖J‖ ≤M1M2 ‖(C1⊗C2)‖
∫ t

0
e−s(Re(λ )−aw1−bw2)ds.
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And since lim
t→0+

∫ t
0 e−s(Re(λ )−aw1−bw2)ds = 0, and Rt

(
λ ,(A1⊗ I I⊗A2)

(a
b

))
is compact for all

t > 0, and since the uniform limit of compact operators is compact, then

(C1⊗C2)
2 R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))

is compact for all λ ∈ C, Re(λ )> (a+b)max(w1,w2) .

Now let µ be any element in ρ
(
(A1⊗ I I⊗A2)

(a
b

))
. Then from the resolvent identity we

have

(C1⊗C2)
2 R(µ,A) = (C1⊗C2)

2 R(λ ,A)+(λ −µ)(C1⊗C2)
2 R(µ,A)R(λ ,A) ,

for any λ ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
, where A = (A1⊗ I I⊗A2)

(a
b

)
. Thus, if

λ ∈ ρ

(
(A1⊗ I I⊗A2)

(
a
b

))
and Re(λ )> (a+b)max(w1,w2) we get

(C1⊗C2)
2 R
(

µ,(A1⊗ I I⊗A2)

(
a
b

))
is compact. Hence, it is compact for all µ ∈ ρ

(
(A1⊗ I I⊗A2)

(a
b

))
.

Theorem 3.7. Let T (s)⊗ S (t) be a C1⊗C2-semigroup on X ⊗Y with ‖T (s)‖ ≤ M1ew1s and

‖S (t)‖ ≤M2ew2t . If R
(
λ ,(A1⊗ I I⊗A2)

(a
b

))
is compact for all λ ∈ ρ

(
(A1⊗ I I⊗A2)

(a
b

))
and T (t)⊗S (t) is uniformly continuous on (0,∞), then T (s)⊗S (t) is compact for all s, t > 0.

Proof. Since R
(
λ ,(A1⊗ I I⊗A2)

(a
b

))
is compact for all λ and T (at)⊗ S (bt) ∈ L(X⊗Y )

for all t > 0, this implies that λR
(
λ ,(A1⊗ I I⊗A2)

(a
b

))
T (at)⊗S (bt) is compact. Now for

λ ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
with Re(λ )> (a+b)max(w1 +w2) we have by Theorem 2.14

R
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
=C−1

1 ⊗C−1
2

∫
∞

0
e−λ sT (as)⊗S (bs)ds.

Let

J = λR
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
T (at)⊗S (bt)−T (at)⊗S (bt) .
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It follows that

‖J‖ =

∥∥∥∥λC−1
1 ⊗C−1

2

∫
∞

0
e−λ s (T (as)⊗S (bs))(T (at)⊗S (bt))ds−T (at)⊗S (bt)

∥∥∥∥
≤ ‖λ‖

∫
∞

0

∥∥∥e−λ s (T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))
∥∥∥ds

≤ ‖λ‖
∫

∞

0
e−Re(λ )s ‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖ds.

By dividing the integral to to integrals, we get

‖J‖ ≤ ‖λ‖
∫ c

0
e−Re(λ )s ‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖ds

+‖λ‖
∫

∞

c
e−Re(λ )s ‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖ds.

It follows that

‖J‖ ≤ ‖λ‖ sup
0≤s≤c

‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖
∫ c

0
e−Re(λ )sds

+‖λ‖
∫

∞

c
e−Re(λ )sM1M2

(
ew1a(s+t)+bw2(s+t)+ eaw1t+bw2t

)
ds

= sup
0≤s≤c

‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖‖λ‖
(

1
Re(λ )

− e−Re(λ )s

Re(λ )

)

+‖λ‖M1M2e(aw1+bw2)t

(
e−c(Re(λ )−aw1−bw2)

Re(λ )−aw1−bw2
+

e−Re(λ )c

Re(λ )

)
.

Since T (t)⊗S (t) is uniformly continuous, we have

sup
0≤s≤c

‖(T (a(s+ t))⊗S (b(s+ t))ds−T (at)⊗S (bt))‖

can be made less than any ε > 0. This implies

limsup
Re(λ )→∞

∥∥∥∥λR
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
T (at)⊗S (bt)−T (at)⊗S (bt)

∥∥∥∥≤ ε

for every c > 0. Since c is arbitrary we have

lim
Re(λ )→∞

∥∥∥∥λR
(

λ ,(A1⊗ I I⊗A2)

(
a
b

))
T (at)⊗S (bt)−T (at)⊗S (bt)

∥∥∥∥= 0.

Thus, T (at)⊗ S (bt) is compact being the limit of a compact operator. Now T (at) and S (bt)

are compact. Thus, T (s)⊗S (t) is compact.
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Theorem 3.8. Let T (s)⊗S (t) be a C1⊗C2−semigroup on X⊗Y whose infinitesimal generator

is (A1⊗ I I⊗A2)
(a

b

)
. If T (t)⊗S (t) is differentiable and

(1) There exists λ0 ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
such that R

(
λ0,(A1⊗ I I⊗A2)

(a
b

))
is com-

pact,

(2) T (t)⊗S (t) is uniformly continuous on (0,∞) ,

then T (s)⊗S (t) is compact for all s, t > 0.

Proof. Let λ0 ∈ ρ
(
(A1⊗ I I⊗A2)

(a
b

))
. Then using the rescaled semigroup S (t)= e−λ0tT (at)⊗

S (bt) we may assume without loss of generality that λ0 = 0. Define

B(t)(x⊗ y) =
∫ t

0
T (as)⊗S (bs)(x⊗ y)ds.

Then B ∈ L(X⊗Y ) and we have

(A1⊗ I I⊗A2)

(
a
b

)
B(t)(x⊗ y) = (A1⊗ I I⊗A2)

(
a
b

)∫ t

0
T (as)⊗S (bs)(x⊗ y)ds

= (T (at)⊗S (bt)−C1⊗C2)(x⊗ y) .

For all x⊗ y ∈D(C1⊗C2) . Hence

−(A1⊗ I I⊗A2)

(
a
b

)
B(t)(x⊗ y) = (0− (A1⊗ I I⊗A2)

(
a
b

)
B(t)(x⊗ y))

= (C1⊗C2−T (at)⊗S (bt))(x⊗ y) .

It follows that

B(t)(x⊗ y) = R
(

0,(A1⊗ I I⊗A2)

(
a
b

))
(C1⊗C2−T (at)⊗S (bt))(x⊗ y) .

Since D
(
(A1⊗ I I⊗A2)

(a
b

))
and Range(C1⊗C2) are dense in X⊗Y, then

B(t) = R
(

0,(A1⊗ I I⊗A2)

(
a
b

))
(C1⊗C2−T (at)⊗S (bt)) .

But R
(
0,(A1⊗ I I⊗A2)

(a
b

))
is compact. Thus, B(t) is compact for all t > 0. Let A =

(A1⊗ I I⊗A2)
(a

b

)
. Then we have,

B′ (t)(x⊗ y) = lim
h→0

B(h+ t)−B(t)
h

= lim
n→∞

n
(

B
(

1
n
+ t
)
−B(t)

)
.
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Thus, we have

B′ (t)(x⊗ y) = lim
n→∞

nR(0,A)
(

T
(

a
(

t +
1
n

))
⊗S
(

b
(

t +
1
n

))
−T (at)⊗S (bt)

)
(x⊗ y) .

Define

Dn (t)(x⊗ y) = nR(0,A)
(

T
(

a
(

t +
1
n

))
⊗S
(

b
(

t +
1
n

))
−T (at)⊗S (bt)

)
(x⊗ y) .

Since R(0,A) is compact then Dn (t)(x⊗ y) is compact for all t > 0 and n ∈ N. But

B′ (t)(x⊗ y) =
d
dt

∫ t

0
T (as)⊗S (bs)(x⊗ y)ds = T (at)⊗S (bt)(x⊗ y) .

Since T (t)⊗S (t) is uniformly continuous, it follows that T (at)⊗S (bt) is compact for all t > 0.

That is T (at) and S (bt) are compact, which implies T (s)⊗S (t) is compact.

The following result is standard, and the proof is therefore omitted.

Theorem 3.9. Let T (s)⊗ S (t) be a C1⊗C2-semigroup such that ‖T (s)⊗S (t)‖ ≤ Mew(s+t).

If T (t)⊗ S (t) is compact for all t > t0 > 0, then (C1⊗C2)(T (t)⊗S (t)) is continuous in the

uniform topology for all t > t0.

Theorem 3.10. Let T (s)⊗S (t) be a C1⊗C2-semigroup satisfying

(1) (C1⊗C2)(T (t)⊗S (t))(x⊗ y)= (T (t)⊗S (t))(C1⊗C2)(x⊗ y) , for all x⊗ y ∈ X⊗Y,

(2) T (t)⊗S (t) is compact for all t > t0 > 0.

Then T (t)⊗S (t) is uniformly continuous for all t > 0.
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