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1. Introduction

The concept of fuzzy set was initiated by L. Zadeh [1]. The study of fuzzy algebraic structures
started with the introduction of the concepts of fuzzy groups in the pioneering paper of
Rosenfeld [2]. Kuroki [3, 4, 5, 6] defined a fuzzy semigroup and various kinds of fuzzy ideals in
semigroups and characterized them. M. Santiago and S. Bala developed the theory of ternary
semigroups[7]. Recently, S. Kar and P. Sarkar defined fuzzy left (right, lateral) ideals of ternary
semigroups and characterize regular and intra-regular ternary semigroups by using the concept of
fuzzy ideals of ternary semigroups[8]. Kim in [9], considered the semigroup S of the fuzzy
points of a semigroup S, and discussed the relation between some fuzzy ideals of a semigroup S
and the subsets of S.In the present paper, we consider the ternary semigroup S of the fuzzy
points of a ternary semigroup S, and discuss the relation between some fuzzy ideals of a ternary

semigroup S and the subsets of S.
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2. Preliminaries
Definition 2.1 [7] A ternary semigroup is a nonempty set S together with a ternary operation
(a,b,c) — abc satisfying (abc)de = a(bcd)e = ab(cde) for all a; b; c;d; e € S.
Example 2.2 [8] Let Z~ be the set of all negative integers. Then with the usual ternary
multiplication, Z~ forms a ternary semigroup.
Definition 2.3 [7,10] A non-empty subset A of a ternary semigroup is called
1) A ternary subsemigroup if A3 = AAA C A.
2) Aleftideal of Sif SSA c A.
3) A lateral ideal of S if SAS € A.
4) Aright ideal of S if ASS C A.
5) Anideal of S if A isa leftideal, a lateral ideal and a right ideal of S.
Definition 2.4 [10] A ternary subsemigroup B of a ternary semigroup S is said to be a bi-ideal
of Sif BSBSB < B.
Definition 2.5 [11] A ternary subsemigroup B of a ternary semigroup S is called an interior
ideal of S if SSBSS € B.
Example 2.6 Let S ={(0,0),(0,1),(1,0),(1,1)}. Then S is a ternary semigroup with respect
to ternary multiplication defined by
(0, )k, D(m,n) = (i,n).
Let A ={(0,0),(0,1)} be a subset of S. Then A is a right ideal of S, but not a lateral ideal nor a
left ideal because
in SAS,
(1,0)(0,1)(1,1) = (1,1) € 4,
in SSA4,
(1,0)(1,1)(0,0) = (1,0) & A.
Let B ={(0,1),(1,1)} be a subset of S. Then B is a left ideal of S, but not a lateral ideal nor a
right ideal because
in SBS,
(1,0)(1,1)(1,0) = (1,0) ¢ B,
in BSS,
(0,0)(1,1)(0,0) = (0,0) ¢ B.
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A function f from S to the closed interval [0, 1] is called a fuzzy set in S [1]. The ternary
semigroup S itself is a fuzzy set in S such that S(x) = 1 for all x € S, denoted also by Cs .
Definition 2.7 [1] Let f be a fuzzy set in a nonempty set S. For any t € [0,1]; the subset
fe ={x €S:f(x) >t} of Siscalled a level subset of f.

Let A and B be two fuzzy sets in S. Then the inclusion relation A € B is defined by A(x) <
B(x) for all xe€S . AnB and AUB are fuzzy sets in S defined by
(AnB)(x) =min{A(x),B(x)} =A(x)AB(x) , (AUB)(x)=max{A(x),B(x)}=A(x)V
B(x), forall x € S.

Definition 2.8 [10] Let S be a non-empty setand x € S, t € (0,1]. A fuzzy point x; of S isa
fuzzy set in S, defined by,

_(t ifx=y,
x(y) = {O otherwise,

forally e s§.

The fuzzy point x, is said to be contained in a fuzzy set A, denoted by x; € 4, ifft < A(x).
Definition 2.9 [8] A non-empty fuzzy set A in a ternary semigroup S is called a fuzzy ternary
subsemigroup of S if A(xyz) > A(x) NA(y) ANA(z) forall x,y,z € S.

Definition 2.10 [8] A non-empty fuzzy set A in a ternary semigroup S is called a fuzzy left
(resp. lateral, right) ideal of Sif A(xyz) = A(z) (resp. A(xyz) = A(y),A(xyz) = A(x)) for all
X,y,Z€S.

If Ais a fuzzy left ideal, a fuzzy lateral ideal and a fuzzy right ideal of S, then Ais called a
fuzzy ideal of S.

It is clear that A is a fuzzy ideal of a ternary semigroup S if and only if A(xyz) = A(x) v
A(y) v A(z) for all x,y,z € S, and that every fuzzy left (lateral, right) ideal is a fuzzy ternary
semigroup of S.

Definition 2.11 [11] A fuzzy ternary subsemigroup B in a ternary semigroup S is called a fuzzy
interior ideal of S if B(xsary) = B(a) forall x,a,r,s,y € S.
Example 2.12 In example 2.6, S = {(0,0),(0,1),(1,0),(1,1)} is a ternary semigroup and
A ={(0,0),(0,1)} is aright ideal of S. Define a fuzzy set f in S as follows:

Flx) = { 0.6 if x €A

0 otherwise.



4 ESSAM. H. HAMOUDA

It is clear that f is a fuzzy left ideal, not a fuzzy lateral ideal nor a fuzzy right ideal. Similarly,
for the left ideal B = {(0,1), (1,1)} we can define a fuzzy right ideal f which is neither a fuzzy

lateral ideal nor a fuzzy left ideal.

3. Some ideals of fuzzy points

Let F(S) be the set of all fuzzy sets in a ternary semigroup S. For each A4, B, C € F(S), the
product of A, B, C is a fuzzy set A o B o C defined as follows:
\/ {A(a) AB(b) AC(c)} if abc = x

x=abc

(A°BoC)(x) =
0 otherwise.

for each x € S. Since (AecBoC)oDoE =Ac(BoCoD)oE=AcB(cCoDoE)][9], then

F(S) is a ternary semigroup with the product " o "

Let S be the set of all fuzzy points in a ternary semigroup S. Then x4 oyg ez, =
(XYZ)anpry €S [8] and (xq 5o 2) oWy oty = Xg 0 (yg 02y 0 W) o Ur = Xg 0 Yp 0 (2 ©
Wg © Ug) for x4, 5,2, ws,u; €S . Thus S is a ternary subsemigroup of F(S). For any A €
F(S), A denotes the set of all fuzzy points contained in 4, that is, A = { x, € S: A(x) = a}. for
any A,B, C < S, we define the product of A, Band Cas Ao BoC ={x o yp°2z,:x, €A yg €
B,z, € C}.

Lemma 3.1. Let A, B and C be fuzzy sets in a ternary semigroup S. Then

a) AUBUC=AUBUC.

b) ANBNC=AnBnC.

) AoBoC2AoBoC.
Proof. (a) Letz, € AUBUC , then

(AUBUC)(2) =A(z)VB(2)v(C(2) = a.

Hence, A(z) = aor B(z) = a or C(z) = a, and consequently, z, € AUB U C. This implies
that AUBUC<CAUBUC. Let z,€e AUBUC , then (z) 2 aorB(z)=a ,orC(z) =«
and hence (AU B U C)(z) = a. This implies that z, € AU B U C and consequently, AU B U
C €cAUBUC.Hence AUBUC=AUBUC.

(b) is similar to (a).
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(c)LetzeSandz, €A°Bo(,thenz, =a,-obgeoc,suchthat a, € A,bz € Band ¢, € C.
If z = pqr for somep, q,r € S, then A(p) = a,(p), B(q) = bg(q) and C(r) = c,(r). From the
definition of fuzzy points we have A(p) =V, ea ao(p),B(q) = Vb, en bg(q) and C(r) =
Ve, ec ¢y (r). Thus

(AeBeC)(2) = Vz=pqr A(P) AB(q) AC(r)

=\/ \/ aa(p) Abg(@) A ey (r)
zZ=pqr ag€A, bBEQ, cye C
=\/ V  woab@neo
aq€A,bg€EB, cye C z=pqr

= \/ (ag ° bg © ¢,)(2) = \/ Zy(2) = w.
aq€A,bg€EB, cye C aq€A, bgEB, cye C
This implies that z,, € AeBoC, andhence AeBoC2A°Bo(C.O

Theorem 3.2. Let A be a fuzzy set in a ternary semigroup S. then the following conditions are
equivalent:
a) Aisafuzzy left (lateral, right) ideal of S.
b) A isa left (lateral, right)ideal of S.
Proof. Let A is a fuzzy left ideal in S, and let x, € A and y,,z. €S. Then y, cz, ox, =
(YzX) garap € S© S o A. Since A is a fuzzy left ideal, we have A(yzx) = A(x) =p = qAr Ap.
Hence y, © z, o x, = (¥ZX)garnp € A. This implies that S oS o A € A, thus A is a left ideal of S.
conversely, assume that A is a left ideal of S. Let x,y,z € S,if A(z) = 0, then A(xyz) = 0 =
A(z). If A(z) # 0, then z,,) € A and x4, Ya(z) € S. Since A is a left ideal of S, we have
Xa(z) ° Ya(z) © Za(z) = (XYZ)az) € S S ° A S A. This implies that A(xyz) = A(z), and hence A
is a fuzzy left ideal of S. By a similar argument, one can prove the other cases. o
Lemma 3.3. Let A and B be any fuzzy interior ideals of a ternary semigroup S. Then
a) AN B isalso a fuzzy interior ideal of S (provided AN B # 0) .
b) AN B isalso an interior ideal of S.
Proof. a) Since A and B are fuzzy ternary subsemigroups of S , AnB is a fuzzy ternary

subsemigroup of S [8, lemma 2.3]. Let x,a,r,s,y € S, be arbitrary elements of S. Since A and B

are fuzzy interior ideals of S, then

(AN B)(xsary) = A(xsary) A B(xsary)
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> A(a) A B(a) = (AN B)(a).
Hence A N B is a fuzzy interior ideal of S .
b) At first, it is an easy exercise to show that: A is a fuzzy ternary subsemigroup of S if and only
if Ais a ternary subsemigroup of S. From lemma 3.1, we have AnB=AnNBand so it is a
ternary subsemigroup of S. Let a, € A N B and x,, X, Y5, ¥, € S, then
(XXaYy)parnansng = Xp © Xp o Agoysoys €SeSeANBeSo S.
Since A N B is a fuzzy interior ideal of S, then
(AnB)(xxayy) = (AnB)(a) =A(a)AB(a) ZaA a=a
=pArAaAsAg.
This implies that
Xp © XpoQgoyse Vg = (xkayy)p/\rmx/\s/\q €EANB.
Therefore, A N B isalso an interior deal of S.O
Theorem 3.4. Let A be a fuzzy set in a ternary semigroup S. Then A is an interior ideal of S if
and only if A'is a fuzzy interior ideal of S.
Proof. Let A is a fuzzy interior ideal of S, then A is a ternary subsemigroup of S . Suppose that
Xp)Xr Y5, ¥qg €S and z, € A. Then A(z) = a, and A(xxzyy) =2 A(z) Za =ZpArAaAsAq.
Hence So SoAoSo 8 3 (xp 0%, 024 0¥ °Yy) = (XXZYY)parnansng € A. This implies that
SoSo0AoSo SC A thusAis an interior ideal of S. Conversely, suppose that 4 is an interior
ideal of S. For all ,y,z € S, the elements x4y, Ya(y), Za(z) belONg to A . Since A is an interior
ideal of S, we have
Xax) © Ya@) © Zaiz) = (XYZ) aconaoinaz) € A

Thus A(xyz) = A(x) NA(y) A A(z) and so A is a fuzzy ternary subsemigroup in S. Let
x,%X,2,3,y €S,ifA(z) # 0, then z,4(,) € A and x4 (), Xa(z), Ya(z) Yaz) € S- Since A is an interior
ideal of S , we get (xXXzyY)aw) = (XX2VY)a)na@)na@na@naz) = Xa(z) © Xa(z) ©
Za(z) ° Va(z) © Ya(z) € A. This implies that A(xxzyy) = A(z), and hence A is a fuzzy interior
ideal of S. O

Let S be a ternary semigroup. An element x € S is called regular if there exists an element

a € S such that x = xax. A ternary semigroup is called regular if all its elements are regular [7].
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Theorem 3.6. Let A be a fuzzy set in a regular ternary semigroup S. Then the following
conditions are equivalent:
a) Aisafuzzy ideal of S.
b) Aisan interior ideal of S.

Proof. Let A be a fuzzy ideal of S. Then A is a fuzzy ternary subsemigroup of S, and
consequently A is a ternary subsemigroup of S. Since any fuzzy ideal of S is a fuzzy interior
ideal of S[7], then theorem 3.4 implies that 4 is an interior ideal of S. Assume that (b) holds. Let
x € S, then there exists a € S such that x = xax (since S is regular). If A(x) = 0,A(xyz) >
0=A(x). If A(x) # 0, then x4 € A and ya(x), Zax) € S. Since A is an interior ideal of S, we
have (xyz)aw) = (XaXYZ) ax) = Xacx) © Qagx) © Xa(x) © Yax) © Zax) € A This  implies  that
A(xyz) = A(x), and hence A is a fuzzy right ideal of S. In a similar argument we prove that A is
a fuzzy left ideal of S. It remains to show that A is a fuzzy lateral ideal of S. For this purpose,
assume that y,a € S such that y = yay (since S is regular). By theorem, A(y) = A(yay) =
A(y) AA(a) A A(y) which implies that A(a) = A(y). If A(y) # 0, then y,¢,, as,) € A and
Xa(y) Zay) €S . Since A is an interior ideal of S, we have (xyz)an) = (Xyayz)awy) =
Xa(y) © Ya@) © @acy) © Yay) © Zacy) € A. This implies that A(xyz) = A(y), and hence A is a fuzzy
lateral ideal of S. This completes that A is a fuzzy ideal of S. o

A ternary semigroup S is called intra-regular if for each element a € S, there exist elements
x,y € S such that a = xa3y [8]. For example, let S = {i,0,—i}. Then S is a ternary semigroup
under the multiplication over complex numbers. In S, we have (=)@ 3)(-i)=1i,
(DH(03)(—0) = 0 and (i)(—i)3(@) = —i. Therefore, S = {i, 0, —i} is intra-regular.
Theorem 3.7. Aternary semigroup S is intra-regular if and only if S is intra-regular.
Proof. (=) Let a, be an element is S. Since S is intra-regular and a € S, there exist x,y € S
such that a = xa3y. Thus x, , Yo € Sand x4 © Ay © ag © Ay © Yo = (xay), = a,. Hence S is
intra-regular.
(<) Assume S is intra-regular and a € S. Then for any a € (0,1], there exist xz, y;, € S such that
Qg =Xg © Qg © Qg © Ay © Y, = (Xa>Y) grany- This implies that a = xa®y for x,y € S, hence S'is
intra-regular.

A fuzzy ternary subsemigroup A of a ternary semigroup S is called a fuzzy bi-ideal of S if
A(xaybz) = A(x) NA(y) NA(z) forall x;a;y; b;y € S[10].

7
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Theorem 3.8 (see [10, Theorem 4.4]). A fuzzy ternary subsemigroup B of a ternary semigroup S
is a fuzzy bi-ideal of Sifandonlyif (BeSeoBoSoB)C B.

Theorem 3.9 (see [10, Theorem 4.5]). A fuzzy ternary subsemigroup f of a semigroup S is a
fuzzy bi-ideal of S if and only if the level set of f, f; is a bi-ideal of S fort € Im f.

Theorem 3.10 Let A be a fuzzy set in a ternary semigroup S. Then A is a fuzzy bi- ideal of S if
and only if A is a bi- ideal of S.

Proof. Let A be a fuzzy bi- ideal of S, then by theorem 3.8, AcSo Ao S oA < A. This implies
that AcSoAoSoAC Aand by lemma 3.1, AoSocAoSo0AC AoSoAoSoAC A Since A

is a ternary subsemigroup of S, we conclude that A is a bi-ideal of S. Conversely, let 4 is a bi-
ideal of S, then AoSoAoSoAC A. For somet € ImA, let A, ={x € S:A(x) = t} be the
level set of A. It is clear that x;,y.z, € 4, for x,y,z € A;. Now let w, = (xaybz), = x; o
aioyrob,oz, EAoSoAoSoA,since Ais a bi-ideal of S, then w, € A. Hence, A(xaybz) >t
and implies that (xaybz) € A, fora,b € S. Then A;SA;SA; € A, that is, A, is a bi-ideal of S.
Now by theorem 3.9 and the fact that A is a fuzzy ternary semigroup of S , it follows that A is a
fuzzy bi- ideal of S.
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