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Abstract. It is proved that if (S,∗) is a proper *-semigroup and if D is 0-characteristic integral

domain then (D[S],∗) is nil-semisimple provided that S is finite or i ∈ D.Let (S,∗) be a finite

proper *-semigroup and F be a finite field of characteristic p such that (F [S],∗) is a proper

*-ring. Then F [S] is a direct product of fields and 2×2 matrix rings over fields. Furthermore,

p 6= 2, p 6= 1 mod 4.
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1. Introduction

A semigroup with involution (S,∗) is called a *-semigroup. It is called a p*-semigroup if the

involution * is proper. Thus ∀a,b ∈ S,aa∗ = ab∗ = bb∗⇒ a = b . A ring with involution (R,∗)

is called a *-ring. It is called a p*-ring if the involution * is proper. Thus aa∗= 0⇒ a= 0 for all

a ∈ R. Let (S,∗),(T,∗) be two *-semigroups. An injective mapping f : (S,∗)−−> (R,∗) from

a *-semigroup (S,∗) into a *-ring (R,∗) such that for all a,b∈ (S,∗), f (ab) = f (a) f (b), f (a∗) =

( f (a))∗ is called a *-embedding. Let (S,∗) be a *-semigroup and consider the semigroup ring

Z[S] of S over Z. If (S,∗) is a p*-semigroup then (Z[S],∗) need not be a p*-ring as in ( [6]).

Let (S,∗) be a *-semigroup. The involution * is called a maximal proper involution if for

every distinct elements s1, ...,sn ∈ S, there exists an element si such that sis∗i 6= sis∗j , j 6= i, and
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2 A.A. ABDELKARIM

sis∗i = sks∗l ⇒ s∗i sk = s∗i sl;k, l = 1, ...,n. Such a *-semigroup is called an mp-semigroup. For

example any inverse semigroup is an mp-semigroup under its inverse involution as in ([6]). If

(S,∗) is an mp-semigroup then (Z[S],∗) is a p*-ring and (S,∗) is *-embeddable in (Z[S],∗),

([6]). Let (R,∗) be a *-ring and let n be a fixed positive integer. If for every distinct elements

r1, ...,rn ∈ R it holds that ∑rir∗i = 0 implies that ri = 0, i = 1, ...,n then we say that (R,∗) is n-

formally complex. Let F be a field, let α be an automorphism of order 1 or 2 and let D ∈Mn(F)

be a diagonal matrix. Then F is D(α)−formally complex if and only if ∑diaiα(ai) = 0 implies

all ai = 0. If D is the identity matrix we say that F is n−formally complex and if this true for all

n we say that F is formally-complex. On the other hand, if α is the identity then we say that F

is D(α)− real and if D is the identity we say that F is n−formally real and if this is the case for

all n we say that F is formally real. If (S,∗) is an mp-semigroup and (R,∗) is formally complex

*-ring then (R[S],∗) is a p*-ring and (S,∗) is *-embeddable in (R[S],∗), as in [6]) where it is

shown there is a finite p*-semigroup that cannot be *-embedded in any p*-ring. Let (R,∗) be a

*-ring. An ideal I in R is called a *-ideal if I∗ = I. In this case the ring R/I is a *-ring under

the involution (r+ I)∗ = r∗+ I.

Let F be a field and let α be an automorphism on F of order 1 or 2. Let R = Mn(R) and let

A ∈ R. If we apply to every entry in A the automorphism α we get Aα . An involution * on R is

called α−inner if there is an invertible matrix P such that for all A in R we have A∗ = P−1Aα tP

and if α is the identity mapping then * is called inner.

Let F be a field and let α be an automorphism on F and let two matrices A,B ∈Mn(F).We

say that the matrices A,B are α−congruent if there is a matrix C such that A = CBCαt . Also

we say that a matrix A ∈Mn(F) is α−symmetric if A = Aαt and it is called α−antisymmetric if

Aαt = −A. Here Aα is got from the matrix A by applying α to its entries. It is known that if A

is a symmetric matrix in Mn(F),F is a field then it is congruent to a diagonal matrix and if A is

anti-symmetric invertible matrix then A is congruent to a direct sum of 2 by 2 matrices each of

which is of the form α

 0 1

−1 0

 ,α ∈ F. See [3] pp. 365-372.

Let (S,∗) be a proper *-semigroup of order 5 or less. It was noticed (through a computer

program ) that once the involution * in the *-semigroup ring (Z[S],∗) is not proper then the
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p*-semigroup (S,∗) is not *-embeddable in any ring p*-ring. Up to now there is no proof or

disproof for this claim.

In the first part of this note we find a necessary and sufficient condition for a certain class of

involutions on R = Mn(F),F is a field, to be proper involutions. In the second part we give a

plan to decide if a given proper *-semigroup is *-embeddable in a p*-ring and if so we seek to

find a p*-algebra of matrices that *-embeds (S,∗) and we look for all involutions *’ on S that

makes (S,∗′) *-isomorphic with (S,∗). Incase (S,∗) is not *-embeddable in a p*-ring we locate

the *-subsemigroup (T,∗) such that (S/T,∗) is *-embeddable in a p*-ring.

2. Preliminaries

We cite the following known facts.

Theorem 1. (A) Let (S,∗) be an mp semigroup and let (R,∗) be a formally complex ring. Then

(R[S],∗) is a proper *-ring and hence it has a zero nil radical, ([6]).

We cite the following version of Wedderburn Theorem from [2] p. 435

Theorem 2. (B) If R is a non zero left Artinean nil-semisimple ring then it isomorphic with a

finite direct sum of finite matrix rings over a division ring.

We Also cite the following from [5], p.63.

Theorem 3. (B): If A is a left Noetherian ring, then every nil ideal is nilpotent.

We also cite the following version of Skolem-Noether theorem; see[2], p.460.

Theorem 4. (C): Let R be a simple left-Artinian ring and let K be the center of R ( so that R

is a K-algebra). Let A and B be finite dimensional simple K-algebras of R that contain K. If

α : A→ B is a K-algebra isomorphism that leaves K fixed elementwise, then α extends to an

inner automorphism of R.

We cite the following theorem from [1], p136.

Theorem 5. (D): Let (R,∗) be a semi-simple *-ring with involution * such that ∀x∈R,∃n(x),(x+

x∗)n(x) = x+ x∗. Then R is a subdirect product of fields and 2×2 matrix rings over fields.
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Proposition 6. Let F be a field and let P ∈ Mn(F) be a symmetric matrix then there is a

diagonal matrix D congruent to P ; i.e.,

∃C ∈Mn(F),CPCt = D, see [4], for example. If P is antisymmetric then P is congruent to a

direct sum of matrices of the form α

 0 1

−1 0

 and 0-matrices where α ∈ F.

As a generalization we state a similar proposition whose proof is similar to that of proposition

[6] and its proof is omitted.

Proposition 7. Let F be a field and let α be an automorphism of order 2 on F. Let P ∈Mn(F)

be an inverteble matrix such that Pαt = P. Then there is a matrix C and a diagonal matrix D

such that CPCαt = D.

3. Main results

Given a semigroup S we can ask how to find all proper involutions on S.For example if S is

an inverse semigroup then the inverse operator is one of the proper involutions on S. Similarly

given a ring R there is a problem of finding all proper involutions on R. For example if we

take a field F and its corresponding matrix ring R = Mn(F) the problem is to find all proper

involutions on R. The transpose operator is an involution which need not be proper unless F is

n-real. For example the transpose involution is not proper on R = M2(Z2).

Let F be a field and let R = Mn(F) be the matrix ring over F and let Z(R) = {cI : c ∈ F}

be the center of R. Let * be an involution on R. Let A ∈ Z(R). Then for all X ∈ R,AX = XA

implies that A∗X∗ = X∗A∗ and so A∗ ∈ Z. Thus for all c ∈ F,(cI)∗ = c∗I and so ∗ induces an

automorphism (called the corresponding automorphism) of order at most 2 on F. Conversely

we will show that any automorphism α of order at most 2 on F induces an involution * on

R = Mn(F) given by A∗ = P−1AαtP for all A ∈ R as shown in the following proposition.

Proposition 8. (1) Let ∗ be an involution on R = Mn(F) whose corresponding automorphism is

the identity on F. Then there is an invertible matrix P such that A∗ = P−1AtP for every matrix

A in Mn(F).
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(2) Let ∗ be an involution on Mn(F) whose corresponding automorphism α on F has order

2. Then there is an invertible matrix P such that A∗ = P−1AαtP for every matrix A ∈Mn(F).

Proof. (1) The operator h : A−− > A∗t is an automorphism that fixes the center of Mn(F)

elementwise. From Noether-Skolem Theorem it follows that there is an invertible matrix P

such that for all A ∈ R,h(A) = A∗t = PAP−1. Thus A∗ = Q−1AtQ,Q = Pt for every A ∈Mn(F).

(2)The operator k : A−−> A∗αt is an automorphism on Mn(F) that fixes the center Z(R) =

{cI : c ∈ F} elementwise. From Noether-Skolem Theorem there is an invertible matrix P such

that for every matrix A we have k(A) = A∗αt = P−1AP. Thus for every matrix A ∈ R we have

A∗ = PαtAαtP−1αt = Q−1AαtQ,Q = P−1αt .

Corollary 9. Let ∗ be an involution on R = Mn(F) whose corresponding automorphism αis of

order 1 or 2 on F. Then there is an inverteble matrix P such that A∗= P−1AαtP for every matrix

A in Mn(F).

We can generalize the preceding propositions to division rings. The proof of the following

proposition is similar to the proof of proposition 8 and it is omitted.

Proposition 10. Let R = Mn(D) be a matrix ring on a division ring D. Let * be an involution

on R. Let Z(R) be the center of D. Then there is an automorphism α on the ring Z(R) of order

1 or 2 and there is an invertible matrix P such that for all A ∈ R, A∗ = P−1AαtP.

We prove the following.

Proposition 11. Let α be an automorphism of order 1 or 2 on the field F. Let P ∈ R be an

invertible matrix on F. Define ∗ on R as A∗ = P−1AαtP for all A ∈ R. Then ∗ is an involution if

and only if Pαt = cI ,c =±1,cn = 1.

Proof. We have for all A,B ∈ R,(A+B)∗ = A∗+B∗,(AB)∗ = B∗A∗. To make * as an involution

we need A∗∗ = A to hold on R.Thus P−1PαtAP−1αtP = A for all A ∈ R. Thus P−1Pαt = cI or

Pαt = cP for some nonzero scalar c..Also we notice that P∗∗ = P and from P∗ = P−1PαtP =

P−1cPP = cP we get P = P∗∗ = (cP)∗ = c2P and so c2 = 1 and so c =±1. From P t = cP and

upon taking determinants we get we get cn = 1. If n is odd we must have c = 1 and if n is even

we still have c =±1.
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Remark 1. If one of the diagonal elements of P in proposition (11) is nonzero then c = 1 and

Pt = P. Otherwise and if all diagonal elements are 0 we have only the condition c =±1 and n

is even.

Next we discuss conditions on P that guarantees that the involution * is proper

Proposition 12. Let F be a field and let let R = Mn(F).

(1) Let * be an involution on R defined by A∗=P−1AtP for all A∈R. Let Pt =P. If P−1 =QQt

for some matrix Q and if F is formally real then * is a proper involution.

(2) Let * be an involution on R defined by A∗ = P−1AαtP for all A ∈ R with Pt = P and let

the corresponding automorphism αon F be of order 2 . If P−1 = QQαt for some matrix Q and

if F is formally α−complex then is a proper involution.

Proof. (1) For * to be proper we need the condition AA∗ = 0 to hold if and only if A = 0 for

all A ∈ R. This is equivalent to require that AP−1AtP = 0 implies that A = 0. Or AP−1At = 0

implies that A = 0. Or, AQQtAt = 0 implies that A = 0. If F is formally real this is equivalent to

AQ = 0 implies that A = 0 which is the case since Q is invertible.

(2) For * to be proper we need the condition AA∗ = 0 to hold if and only if A = 0 for all

A ∈ R. This is equivalent to AP−1AαtP = 0 if and only if A = 0. Or AP−1Aαt = 0 if and only

if A = 0. But P−1 = QQαt and so AP−1Aαt = AQQαtAαt = 0 implies that AQ and hence A = 0

since F is α−formally complex.

Proposition 13. Let R = Mn(F),F being a field. Let * be an involution on R with a corre-

sponding automorphism α and a corresponding matrix P,Pαt = P. Let D be the corresponding

diagonal matrix that is congruent to P as was mentioned in proposition 7. If αis the identity

mapping then * is proper if and only if F is D-real. If α is of order 2 then * is proper if and

only if F is D-complex.

Proof. We need to show, for * to be proper, that AP−1Aαt = 0 if and only if A = 0. Since

P−1 =CDCαt , we see that we need

ACDCαtAαt = 0 if and only if A = 0 if and only If AC = 0 if and only if A = 0.It is clear that

we need F to be D(α)−complex.
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Proposition 14. Let F be p-characteristic field and let * be a proper involution on R = Mn(F)

such that its corresponding automorphism is the identity. Let P be the corresponding matrix for

the involution * as in the proof of proposition (11) and let D be a diagonal matrix congruent

to P with diagonal entries set D = { d1, ...,dn}.Then p 6= 2,P∗ = Pt = P, and F is D−real .

Conversely if F is D−real then the involution is proper.

Proof. We have seen in the proof of proposition (11) that Pt =±P. Assume, to get a contradic-

tion, that P∗=−P. Let Q= Pt . Define f : Fn×Fn→ Fn by f (u,v) = utQv. Then f is a bilinear

form on Fn. In fact, f is alternating because f (u,v) = ( f (u,v))t ⇒ utQv = vtQtu = −vtQu =

− f (v,u),∀u,v ∈ Fn. Thus ∀v 6= 0, f (v,v) = 0. Let us pick one such v and let us form the matrix

A whose first row is vt and whose all other rows are zero rows. Straightforward calculations

show that AtQA = 0. Thus AtPA = 0. Thus A 6= 0,A∗A = P−1AtPA = 0, a contradiction with

properness of * on R. It follows that p 6= 2,for otherwise P=−P and we saw that this contradicts

properness of *. To complete the proof let C be an invertible matrix such that CP−1Ct = D, a di-

agonal invertible matrix. Now ∀A ∈ R,∃B ∈ R,A = BC,AA∗ = 0⇔ BC(P−1CtBtP) = BDBtP =

0⇐⇒ BDBt = 0. Thus * is proper if and only if the only solution in B∈Mn(F) for the equation

BDBt = 0 is B = 0. If we take for B a matrix which is every where 0 except possibly on its first

row {x1, ...,xn} we see that the condition implies the equation ∑dix2
i = 0 has only the trivial

solution . Thus F is D-real.

Let * be an involution on R = Mn(F),n is even, with a corresponding matrix P with Pt =

−P.We give an example that * is not proper.

Example 1. Let F be any field and let R = M2(F) and we take the invertible anti-symmetric

matrix matrix P =

 0 1

−1 0

 .Let α be an automorphism on F of degree 1 or 2. We define

an involution * on R defined by A∗ = P−1AαtP for all A ∈ R. This involution is not proper for

if we take A =

 1 1

0 0

 then a simple calculation reveals that AA∗ = 0-matrix although A is

not zero.

Proposition 15. Let F be a field and let * be a proper involution on Mn(F) with a corresponding

matrix P. Then Pt = P and ch(F) 6= 2.
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Proof. If Pt = −P then from the fact in the introduction and from the preceding example * is

not proper. If the characteristic of the field is 2 then Pt = −P and again the involution is not

proper.

Proposition 16. Let (S,∗) be a finite proper *-semigroup and F be a finite field of characteristic

p 6= 0 such that (R,∗) = (F [S],∗) is a proper *-ring. Then R is a direct product of fields and

2×2 matrix rings over fields. Furthermore, p 6= 2, p 6= 1 mod 4. The converse is also true.

Proof. x ∈ R,y = x+ x∗. Then not all positive powers of y are distinct owing to the finiteness

of R. Let m > 1 be a positive power of y such that ∃n > m,ym = yn such that m = 2k,n = 2l.

Then, since y = y∗, ym = (yy∗)k = yn = (yy∗)l. Using *-cancellation, we get yk = y,k > 1. Thus

∀x ∈ R,∃n(x),(x+ x∗)n(x) = x+ x∗ and Theorem D applies. The last part follows from the fact

that any involution on M2(Zp) is transpose-inner and the transpose involution is proper if and

only if p 6= 2, p 6= 1 mod 4.

Proposition 17. Let (R,∗) = (Mm(Zn),∗) be a proper *-ring. Then m= 2, n= p1...pk, pi 6=

p j(i 6= j), pi 6= 2, pi 6= 1 mod 4,∀i = 1, ...,k.

Proof. That m = 2 follows from Theorem D. That pi 6= p j(i 6= j) follows from * being proper:

p1 = p2⇒ n
p1
( n

p1
)∗ = 0 6= n

p1
. The proof of the other parts is similar to the proof in proposition

16 .

Proposition 18. Let (R,∗) = (M2(Zp),∗) be a proper *-ring. Then * is inner.

Proof. Let C =

 0 1

1 0

 ,D=

 1 0

0 −1

 .,G=

 0 −1

1 0

 . Then C,D generate the ring

R. This is easily seen. Let C∗ = A,D∗ = B. We are looking for a matrix u =

 x y

z t

 such that

C∗ = A = u−1Cu = u−1Ctu =

 a b

c d

 , D∗ = B = u−1Du = u−1Dtu =

 e f

g h

 . Thus

uA =Cu,uB = Du⇒ uA =CD−1uB = GuB⇒

 z t

−x −y

 .A = B. The last matrix equation

gives rise to solutions in x,y,z and t since A and B are invertible. Furthermore the resulting
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matrix

 z t

−x −y

 ,which has the same determinant as that of u, is invertible since A and B

are. Thus u is invertible. Thus * is inner at least for the matrices C and D. But C and D generate

the whole matrix ring and, for example, (CD)∗ = D∗C∗ = u−1Dtuu−1Ctu = u−1(CD)∗u. Thus

* is inner in general.

3.1. *-Semigroup Embedding in a Proper *-Ring. We start this subsection with the follow-

ing remarks:

Although the following remarks are almost routine we present them here for the sake of

completeness.

Remark 2. Let (R,∗)be an m-characteristic proper *-ring without 1. Then either m = 0 or m is

square-free. Also (R,∗) can be *-embedded in an m-characteristic proper *-ring (R1,∗) with 1.

Illustration 1. Let r be a nonzero element of R such that there is a smallest positive integer

m with mr = 0 and m = kp2,k is not a unit and p is a prime. then kp is not zero. But then

(kpr)(kpr)∗ = 0. From properness of * it follows that kpr = 0 which is a contradiction with

kpr not zero. To prove the other part we have two cases to consider.

Illustration 2.

Case 1. : m = 0. In this case we take the Cartesian product Z⊗R and define addition and

multiplication as follows. (m,r)+(m′,r′) = (m+m′,r+ r′),(m,r).(m′,r′) = (mm′,mr′+m′r+

rr′) for every m,m′ ∈ Z,r,r′ ∈ R. This makes of Z⊗R a ring R1. We define an operator * on R′

by (m,r)∗ = (m,r∗). Then it is straightforward to see that * is an involution. In fact, it is proper.

For, (m,r)(m,r)∗ = (0,0) = (m2,mr+mr∗+ rr∗)⇒ m = 0,rr∗ = 0⇒ r = 0,(m,r) = (0,0).

Illustration 3.

Case 2. :m 6= 0. In this case m is square-free. For if m = p2k, p is prime, then there exists

0 6= r ∈ R,mr = 0,nr 6= 0,for all positive integers n < m. But then 0 6= pkr,(pkr)(pkr)∗ = 0, a

contradiction with the properness of the involution *. Now we form Zm⊗R. We define addition

and multiplication as in Case 1. It is straightforward to see that these operations are well-

defined making of Zm⊗R. a ring denoted by R2. We define * on R1 as in Case 1. Then * is an
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involution and it is proper. For, (0,0) = (k,r)(k,r)∗ = (k2,kr∗+ kr+ rr∗)⇒ k2 = 0⇒ k = 0

for all k ∈ Zm,r ∈ R. The last implication follows since m is square-free forcing Zm to have a

0-radical. It follows that rr∗ = 0 and so r = 0,(m,r) = (0,0).

Remark 3. Let (R,∗) be an 0-characteristic proper *-ring. Then (R,∗) can be *-embedded in

a 0-characteristic proper *-algebra (R1,∗) over Q.

Illustration 4. : We may assume that R contains 1. Then R contains a copy of Z. Now we

localize R at the multiplicatively closed set Z\{0}.(See [2] for definition of localization ). The

resulting *-ring denoted by (R1,∗) contains a copy of Q and it is a proper *-ring. For if

[(r,m)][(r,m)]∗ = [(0,1)] then rr∗ = 0 and so r = 0, [(r,m)] = [(0,0)].

Now we prove the following.

Proposition 19. Let (R,∗) be a *-ring. Let I1 be the ideal generated by all A in (R,∗)such that

AA∗ or A∗A is 0 and, for k > 1, let Ik be the ideal generated by all A ∈ (R,∗) such that AA∗ or

A∗A is in Ik−1. Then Ik is a *-ideal , Ik ⊆ Ik+1, and if I is the union of all Ik ,k > 0, then I is a

*-ideal and (R/I,∗) is a p*-ring.

Proof. That Ik is a *-ideal and that Ik ⊆ Ik+1 are trivial to verify. Also I is a *-ideal. If AA∗ is in

I then it is in some Ik and so A is in Ik+1 and hence A is in I. Thus (R/I) is a p*-ring.

Corollary 20. Let (S,∗) be a *-semigroup, not necessarily a p*-semigroup, and let (Z[S],∗) be

the corresponding *-semigroup ring of (S,∗) over Z.Let Ik,k > 0, and I be the ideals as in the

preceding proposition. Then (Z[S]/I,∗) is a p*-ring. If (S,∗) is a finite p*-semigroup then it is

*-embeddable in a p*-ring if and only if there are no distinct elements s, t in S such that s− t

in any Ik.In this case if S is commutative then (S,∗) is *-embeddable in a subdirect product of

fields. Also in this case if Z[S]/I is finite then (S,∗) is *-embeddable in a finite direct product of

matrix rings each over a finite field.

Proof. The proof is a direct consequence of the proposition (19), remarks 3 and 2 and Wed-

derburn’s Theorem since (S,∗) in case of S is finite and hence the corresponding algebra is

Artinean. For then (S,∗) is a finite p*-semigroup such that (R,∗) = (Z[S]/I,∗) is infinite and
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there are no distinct elements s, t in S such that s− t is in any Ik. Then (Q[S]/I,∗) is isomor-

phic to a finite direct product of matrices over division ring and hence (S,∗) is represented as

a p*-semigroup of matrices over a division ring.

Proposition 21. :Let (S,∗)be an mp semigroup and let (D,∗) be a 0-characteristic integral

domain with proper involution *. If S is finite, or if i ∈ D then D[S] is nil-semisimple while

(D[S],∗) need not be a proper *ring and the extended involution need not be a proper ring

involution.

Proof. : We can assume that D is contained in the complex number field C. Assume first that

i ∈ D. Then D is closed under complex conjugation which is a proper involution. Since (S,∗)

is an mp-semigroup it follows from Theorem A that (D[S],∗) is proper * and nil-semisimple.

Now assume that i /∈ D and assume that S is finite. Let J be a nil ideal in D[S]. Since S is

finite and the D-module D[S] is isomorphic to the direct sum of |S| copies of the Noetherian left

D-modules (each is isomorphic to D), then D[S] is a Noetherian left D-module. Hence it is also

a Noetherian left D[S]-module and thus it is a left-Noetherian ring. By theorem B, J is nilpotent

and there is a positive integer n such that Jn = 0. Then I = J + iJ is a nilpotent ideal in D[i][S]

which is nil-semisimple. Thus I is 0 and hence J is a 0 ideal.

Proposition 22. Let (S,∗) be a finite mp-semigroup and let F be a 0-chacteristic field. Then

F [S] is a finite direct product of matrices over a skew field and (S,∗) is *-embeddablle in the

*-ring (F [S],∗) where * is the natural involution inherited from the involution * in (S,∗). If the

field F has a non zero characteristic then F [S]is a finite direct product of matrices over a field .

Proof. We can assume without loss of generality that S has an identity element 1 (This easy to

prove). Since F [S] is a nil- semisimple ring by proposition 21 and since it is a finite dimensional

F-vector space, it follows that it is a finite direct product of matrix rings over a skew field. Let

(S,∗) be a finite mp-semigroup and let F be a field of 0-characteristic. Then the involution on

S gets extended to an involution on F [S] in a natural way: (∑aisi)
∗ = ∑ais∗i .(But there is no

guarantee that this involution is proper on R[S], unless R is formally complex). If ch(F) 6= 0 the

prime field is Zp and the subring generated by Zp and S is finite and has a proper involution and

so it is a finite direct sum of matrix rings over a finite skew field ( a field then).
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Proposition 23. Let (R,∗) be a finite proper *-ring. Then (R,∗) is *-isomorphic with a finite

direct product of matrix rings over a field.

Proof. We show that R has a 0-radical I. For let A be in I. Then AA∗ is in I. But then there is

a natural number n such that (AA∗)n = 0. By properness of * it follows that AA∗ = 0 and hence

A = 0. Thus I is the zero ideal. From Wedderburn Theorem it follows that R is isomorphic

with a finite direct product of matrix rings over a skew field. Since R is finite the skew fields are

fields.

Proposition 24. : Let (S,∗) be a proper *-semigroup *-embeddable in a proper *-ring (R,∗).

Then

(1) There is a *-ideal I in (Z[S],∗) such that (Z[S]/I,∗) is a p*-ring which *-embeds (S,∗).

(2) If ch(R) = 0 and S is finite then (S,∗) is *-embeddable in a finite direct sum of matrix

rings over a division ring with proper involution.

(3) If ch(R) = m 6= 0 and S is finite then (S,∗) is *-embeddable in a finite direct sum of

matrix rings over a finite prime- characteristic field with proper involution.

Proof. (1) There is a natural *-mapping f : (Z[S],∗)−> (R,∗) given by f (∑misi) = ∑mig(si),

where g is the *-embedding of (S,∗) into (R,∗). If (Z[S],∗) is p* then we can take I = 0. If

there is A not 0 in Z[S] such that AA∗ or A∗A = 0 then we take the ideal I1 generated by all such

A and we consider the *-ring Z[S/I1.We notice that there can be no two different elements s, t in

S such that s− t is in I1 lest s− t = 0 in R which would imply non *-embeddability of (S,∗) in

(R,∗). If this *-ring is p∗ then we are done with getting the required p*-ring Z[S]/I. Otherwise

there is A not in I1 such that AA∗ is in I1. We take all such A and all B such that B∗B is in I1 and

form the ideal I2. These are 0 in R of course. Now we form the *-ring R/I2. There can be no

two different elements s, t in S such that s− t is in I2 lest that would contradict *- embeddability

of (S,∗) into (R,∗). If this *- ring is p∗ then we are finished by getting a p∗−ring R/I2 which

*-embeds (S,∗). We continue this way. The union of these *-ideals is clearly a *-ideal I and

(R/I,∗) is a p∗−ring which *-embeds (S,∗).

(2) If ch(R) = 0 and S is finite we can assume that R contains a copy of Q. Let R′ = 〈Q,S〉 be

the set of all rational linear combinations of elements of S in R. Then R′ is a proper *-ring which
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*-embeds (S,∗). Being a homomorphic image of the Artinian ring Q[S], R′ is Artinian. Since

a proper *-ring has 0 nil-radical, by Wedderburn’s Theorem R′ is isomorphic to a finite direct

sum R2 of matrix rings over a skew field. We define an involution * on R′ as follows. Let f be

the isomorphism of R′ onto R2. Take b in R′. Then b = f (a) for a unique element a ∈ R′. Define

b∗ = f (a∗). We show that * is a proper involution. Let b,c ∈ R2 and let b = f (a1),c = f (a2).

Then (b+ c)∗ = ( f (a1)+ f (a2))
∗ = ( f (a1 +a2))

∗ = f (a∗1 +a∗2) = f (a∗1)+ f (a∗2) = ( f (a1))
∗+

( f (a2))
∗ = b∗+ c∗,(bc)∗ = ( f (a1a2))

∗ = f (a∗2) f (a∗1)

= ( f (a2))
∗( f (a1))

∗= c∗b∗,b∗∗=( f (a∗1))
∗= f (a∗∗1 )= f (a1)= b. And if bb∗= 0 then f (a1)( f (a∗1)=

f (a1a∗1) = 0 and so a1a∗1 = 0 which implies that a1 and hence b = 0.

(3) If ch(R) = m 6= 0 and S is finite we can argue similarly that there is a copy of Zm in R

and R′′ = 〈Zm,S〉 is proper *. Since R′′ is finite it is isomorphic to a finite direct sum of matrix

rings over a prime characteristic finite field. This is because a finite skew field is a field. The

same argument as above applies to show that the involution inherited from S on the finite sum

of matrix rings is proper. This completes the proof.

Proposition 25. Let (S,∗) be a simple *-semigroup. Then it is a p*-semigroup and it is *-

embeddable in a p*-ring.

Proof. There is a natural *-homomorphism f : (S,∗)− > (Z[S]/I,∗) of (S,∗) into the proper

*-ring (Z[S]/I,∗). Now the kernel of f gives rise to a *-ideal in (S,∗) which is *-simple. This

ideal must be zero and so f is a *-embedding and (S,∗) is a p*-semigroup which is *-embedded

in a p*-ring.

Strategy 1. Assume we have a finite proper *-semigroup (S,∗) with 1 and assume that we would

like to know if (S,∗) is *-embeddable in a proper *-ring (R,∗) of matrices of characteristic 0.

Then we form the algebra (R,∗) = (Q[S],∗) where * is the natural involution. If (R,∗) is p*

then we are done. If not then we form the ideal I1 generated by all A ∈ R such that AA∗ or

A∗A = 0.Then I1 is closed under the involution * and so (R1,∗) = (R/I,∗) is an algebra with

involution and with dimension n1 < n =| S | . If there are elements s 6= t in S such that s− t ∈ I

then (S,∗) is not *-embeddable in a p*-ring of characteristic 0. If there is no such pair we

check if (R1,∗) is p*. If it is p* then we are done and If not then we look for all A ∈ R such
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that A /∈ I1 such that AA∗ or A∗A /∈ I1 and we form the ideal I2 generated by all such A and its

involution A∗.This ideal I2 is closed under involution. Then we form (R2,∗) = (R/I2,∗) and with

dimension n2 < n1.If there are distinct s, t ∈ S such that s−t ∈ I2 then (S,∗) is not *-embeddable

in a p*-ring of characteristic 0. If there is no such pair we check is (R2,∗) is p*. If so then we

are done and If not we look for all A 6= 0 in R such that AA∗ or A∗A is in I2 and form the ideal

I3 generated by these A. This is closed under taking * and we form (R3,∗) = (R/I3,∗). This

has dimension n3 < n2 < n1 < n. etc. In a finite number of steps either we come up with a

p*-algebra of 0-characteristic which *-embeds (S,∗) or we conclude that there is no such p*-

ring. The same procedure we can use to check if there is a p*- ring of any prescribed nonzero

characteristic or not.

Strategy 2. Assume we have a finite proper *-semigroup (S,∗) with 1 which is not *-embeddable

in a p*-ring with characteristic 0. It is desired to reform (S,*) to a p*-semigroup that is *-

embeddable in a p*-ring of characteristic 0. We form as before the p*-ring (Q[S]/I,∗). Then

there is a p*-image (T,∗) of (S,∗) in (Q[S]/I,∗). Then there is a *-congruence ˜ in S such that

the p*-semigroup (S/˜,∗) is isomorphic with the (T,∗) inside the p*-ring (Q[S]/I,∗)..
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