Available online at http://scik.org J. Semigroup Theory Appl. 2015, 2015:2 ISSN: 2051-2937 **REGULAR PROPER *-SEMIGROUP EMBEDDINGS AND INVOLUTIONSTITLE** ADEL A. ABDELKARIM Department of Mathematics, Faculty of Science, Jerash University, Jerash, Jordan **Abstract.** It is proved that if (S,*) is a proper *-semigroup and if D is 0-characteristic integral domain then (D[S],*) is nil-semisimple provided that S is finite or $i \in D$.Let (S,*) be a finite proper *-semigroup and F be a finite field of characteristic p such that (F[S],*) is a proper *-ring. Then F[S] is a direct product of fields and 2×2 matrix rings over fields. Furthermore, $p \neq 2, p \neq 1 \mod 4$. **Keywords:** proper *; maximal proper *; symmetric, alpha inner. 2010 AMS Subject Classification: 20M17, 20M19. 1. Introduction A semigroup with involution (S,*) is called a *-semigroup. It is called a p*-semigroup if the involution * is proper. Thus $\forall a, b \in S, aa^* = ab^* = bb^* \Rightarrow a = b$. A ring with involution (R, *) is called a *-ring. It is called a p*-ring if the involution * is proper. Thus $aa^* = 0 \Rightarrow a = 0$ for all $a \in R$. Let (S,*), (T,*) be two *-semigroups. An injective mapping f:(S,*)-->(R,*) from a *-semigroup (S,*) into a *-ring (R,*) such that for all $a,b \in (S,*)$, f(ab) = f(a)f(b), $f(a^*) =$ $(f(a))^*$ is called a *-embedding. Let (S,*) be a *-semigroup and consider the semigroup ring Z[S] of S over Z. If (S,*) is a p*-semigroup then (Z[S],*) need not be a p*-ring as in ([6]). Let (S,*) be a *-semigroup. The involution * is called a maximal proper involution if for every distinct elements $s_1,...,s_n \in S$, there exists an element s_i such that $s_i s_i^* \neq s_i s_j^*, j \neq i$, and Received June 4, 2014 1 $s_is_i^* = s_ks_l^* \Rightarrow s_i^*s_k = s_i^*s_l; k, l = 1, ..., n$. Such a *-semigroup is called an *mp-semigroup*. For example any inverse semigroup is an mp-semigroup under its inverse involution as in ([6]). If (S,*) is an mp-semigroup then (Z[S],*) is a p*-ring and (S,*) is *-embeddable in (Z[S],*), ([6]). Let (R,*) be a *-ring and let n be a fixed positive integer. If for every distinct elements $r_1, ..., r_n \in R$ it holds that $\sum r_i r_i^* = 0$ implies that $r_i = 0, i = 1, ..., n$ then we say that (R,*) is n-formally complex. Let F be a field, let α be an automorphism of order 1 or 2 and let $D \in M_n(F)$ be a diagonal matrix. Then F is $D(\alpha)$ -formally complex if and only if $\sum d_i a_i \alpha(a_i) = 0$ implies all $a_i = 0$. If D is the identity matrix we say that F is n-formally complex and if this true for all n we say that F is formally-complex. On the other hand, if α is the identity then we say that F is $D(\alpha)$ - real and if D is the identity we say that F is n-formally real and if this is the case for all n we say that F is formally real. If (S,*) is an mp-semigroup and (R,*) is formally complex *-ring then (R[S],*) is a p*-ring and (S,*) is *-embeddable in (R[S],*), as in [6]) where it is shown there is a finite p*-semigroup that cannot be *-embedded in any p*-ring. Let (R,*) be a *-ring. An ideal I in R is called a *-ideal if $I^* = I$. In this case the ring R/I is a *-ring under the involution $(r+I)^* = r^* + I$. Let F be a field and let α be an automorphism on F of order 1 or 2. Let $R = M_n(R)$ and let $A \in R$. If we apply to every entry in A the automorphism α we get A^{α} . An involution * on R is called α -inner if there is an invertible matrix P such that for all A in R we have $A^* = P^{-1}A^{\alpha t}P$ and if α is the identity mapping then * is called *inner*. Let F be a field and let α be an automorphism on F and let two matrices $A, B \in M_n(F)$. We say that the matrices A, B are α -congruent if there is a matrix C such that $A = CBC^{\alpha t}$. Also we say that a matrix $A \in M_n(F)$ is α -symmetric if $A = A^{\alpha t}$ and it is called α -antisymmetric if $A^{\alpha t} = -A$. Here A^{α} is got from the matrix A by applying α to its entries. It is known that if A is a symmetric matrix in $M_n(F), F$ is a field then it is congruent to a diagonal matrix and if A is anti-symmetric invertible matrix then A is congruent to a direct sum of A by A matrices each of which is of the form A is A is A in A is A in i Let (S,*) be a proper *-semigroup of order 5 or less. It was noticed (through a computer program) that once the involution * in the *-semigroup ring (Z[S],*) is not proper then the p*-semigroup (S,*) is not *-embeddable in any ring p*-ring. Up to now there is no proof or disproof for this claim. In the first part of this note we find a necessary and sufficient condition for a certain class of involutions on $R = M_n(F)$, F is a field, to be proper involutions. In the second part we give a plan to decide if a given proper *-semigroup is *-embeddable in a p*-ring and if so we seek to find a p*-algebra of matrices that *-embeds (S,*) and we look for all involutions *' on S that makes (S,*') *-isomorphic with (S,*). Incase (S,*) is not *-embeddable in a p*-ring we locate the *-subsemigroup (T,*) such that (S/T,*) is *-embeddable in a p*-ring. ## 2. Preliminaries We cite the following known facts. **Theorem 1.** (A) Let (S,*) be an mp semigroup and let (R,*) be a formally complex ring. Then (R[S],*) is a proper *-ring and hence it has a zero nil radical, ([6]). We cite the following version of Wedderburn Theorem from [2] p. 435 **Theorem 2.** (B) If R is a non zero left Artinean nil-semisimple ring then it isomorphic with a finite direct sum of finite matrix rings over a division ring. We Also cite the following from [5], p.63. **Theorem 3.** (B): If A is a left Noetherian ring, then every nil ideal is nilpotent. We also cite the following version of Skolem-Noether theorem; see[2], p.460. **Theorem 4.** (C): Let R be a simple left-Artinian ring and let K be the center of R (so that R is a K-algebra). Let A and B be finite dimensional simple K-algebras of R that contain K. If $\alpha : A \to B$ is a K-algebra isomorphism that leaves K fixed elementwise, then α extends to an inner automorphism of R. We cite the following theorem from [1], p136. **Theorem 5.** (D): Let (R,*) be a semi-simple *-ring with involution * such that $\forall x \in R, \exists n(x), (x+x^*)^{n(x)} = x+x^*$. Then R is a subdirect product of fields and 2×2 matrix rings over fields. **Proposition 6.** Let F be a field and let $P \in M_n(F)$ be a symmetric matrix then there is a diagonal matrix D congruent to P; i.e., $\exists C \in M_n(F), CPC^t = D$, see [4], for example. If P is antisymmetric then P is congruent to a direct sum of matrices of the form $\alpha \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and 0-matrices where $\alpha \in F$. As a generalization we state a similar proposition whose proof is similar to that of proposition [6] and its proof is omitted. **Proposition 7.** Let F be a field and let α be an automorphism of order 2 on F. Let $P \in M_n(F)$ be an inverteble matrix such that $P^{\alpha t} = P$. Then there is a matrix C and a diagonal matrix D such that $CPC^{\alpha t} = D$. ## 3. Main results Given a semigroup S we can ask how to find all proper involutions on S. For example if S is an inverse semigroup then the inverse operator is one of the proper involutions on S. Similarly given a ring R there is a problem of finding all proper involutions on R. For example if we take a field F and its corresponding matrix ring $R = M_n(F)$ the problem is to find all proper involutions on R. The transpose operator is an involution which need not be proper unless F is n-real. For example the transpose involution is not proper on $R = M_2(Z_2)$. Let F be a field and let $R = M_n(F)$ be the matrix ring over F and let $Z(R) = \{cI : c \in F\}$ be the center of R. Let * be an involution on R. Let $A \in Z(R)$. Then for all $X \in R$, AX = XA implies that $A^*X^* = X^*A^*$ and so $A^* \in Z$. Thus for all $c \in F$, $(cI)^* = c^*I$ and so * induces an automorphism (called the corresponding automorphism) of order at most 2 on F. Conversely we will show that any automorphism α of order at most 2 on F induces an involution * on $R = M_n(F)$ given by $A^* = P^{-1}A^{\alpha t}P$ for all $A \in R$ as shown in the following proposition. **Proposition 8.** (1) Let * be an involution on $R = M_n(F)$ whose corresponding automorphism is the identity on F. Then there is an invertible matrix P such that $A^* = P^{-1}A^tP$ for every matrix A in $M_n(F)$. (2) Let * be an involution on $M_n(F)$ whose corresponding automorphism α on F has order 2. Then there is an invertible matrix P such that $A^* = P^{-1}A^{\alpha t}P$ for every matrix $A \in M_n(F)$. *Proof.* (1) The operator $h: A - - > A^{*t}$ is an automorphism that fixes the center of $M_n(F)$ elementwise. From Noether-Skolem Theorem it follows that there is an invertible matrix P such that for all $A \in R$, $h(A) = A^{*t} = PAP^{-1}$. Thus $A^* = Q^{-1}A^tQ$, $Q = P^t$ for every $A \in M_n(F)$. (2) The operator $k: A - - > A^{*\alpha t}$ is an automorphism on $M_n(F)$ that fixes the center $Z(R) = \{cI: c \in F\}$ elementwise. From Noether-Skolem Theorem there is an invertible matrix P such that for every matrix A we have $k(A) = A^{*\alpha t} = P^{-1}AP$. Thus for every matrix $A \in R$ we have $A^* = P^{\alpha t}A^{\alpha t}P^{-1\alpha t} = O^{-1}A^{\alpha t}O$, $O = P^{-1\alpha t}$. ■ **Corollary 9.** Let * be an involution on $R = M_n(F)$ whose corresponding automorphism α is of order 1 or 2 on F. Then there is an inverteble matrix P such that $A^* = P^{-1}A^{\alpha t}P$ for every matrix A in $M_n(F)$. We can generalize the preceding propositions to division rings. The proof of the following proposition is similar to the proof of proposition 8 and it is omitted. **Proposition 10.** Let $R = M_n(D)$ be a matrix ring on a division ring D. Let * be an involution on R. Let Z(R) be the center of D. Then there is an automorphism α on the ring Z(R) of order I or 2 and there is an invertible matrix P such that for all $A \in R$, $A^* = P^{-1}A^{\alpha t}P$. We prove the following. **Proposition 11.** Let α be an automorphism of order 1 or 2 on the field F. Let $P \in R$ be an invertible matrix on F. Define * on R as $A^* = P^{-1}A^{\alpha t}P$ for all $A \in R$. Then * is an involution if and only if $P^{\alpha t} = cI$, $c = \pm 1$, $c^n = 1$. *Proof.* We have for all $A, B \in R$, $(A+B)^* = A^* + B^*$, $(AB)^* = B^*A^*$. To make * as an involution we need $A^{**} = A$ to hold on R. Thus $P^{-1}P^{\alpha t}AP^{-1\alpha t}P = A$ for all $A \in R$. Thus $P^{-1}P^{\alpha t} = cI$ or $P^{\alpha t} = cP$ for some nonzero scalar c.. Also we notice that $P^{**} = P$ and from $P^* = P^{-1}P^{\alpha t}P = P^{-1}CPP = CP$ we get $P = P^{**} = (CP)^* = C^2P$ and so $C^2 = 1$ and so $C^2 = 1$. From $C^2 = 1$ and if $C^2 = 1$ is even we still have $C^2 = 1$. **Remark 1.** If one of the diagonal elements of P in proposition (11) is nonzero then c = 1 and $P^t = P$. Otherwise and if all diagonal elements are 0 we have only the condition $c = \pm 1$ and n is even. Next we discuss conditions on P that guarantees that the involution * is proper # **Proposition 12.** Let F be a field and let let $R = M_n(F)$. - (1) Let * be an involution on R defined by $A^* = P^{-1}A^tP$ for all $A \in R$. Let $P^t = P$. If $P^{-1} = QQ^t$ for some matrix Q and if F is formally real then * is a proper involution. - (2) Let * be an involution on R defined by $A^* = P^{-1}A^{\alpha t}P$ for all $A \in R$ with $P^t = P$ and let the corresponding automorphism α on F be of order 2. If $P^{-1} = QQ^{\alpha t}$ for some matrix Q and if F is formally α -complex then is a proper involution. - *Proof.* (1) For * to be proper we need the condition $AA^* = 0$ to hold if and only if A = 0 for all $A \in R$. This is equivalent to require that $AP^{-1}A^tP = 0$ implies that A = 0. Or $AP^{-1}A^t = 0$ implies that A = 0. Or, $AQQ^tA^t = 0$ implies that A = 0. If F is formally real this is equivalent to AQ = 0 implies that A = 0 which is the case since Q is invertible. - (2) For * to be proper we need the condition $AA^* = 0$ to hold if and only if A = 0 for all $A \in R$. This is equivalent to $AP^{-1}A^{\alpha t}P = 0$ if and only if A = 0. Or $AP^{-1}A^{\alpha t} = 0$ if and only if A = 0. But A = 0 but A = 0 and so $AP^{-1}A^{\alpha t} = AQQ^{\alpha t}A^{\alpha t} = 0$ implies that AQ and hence A = 0 since A = 0 implies. **Proposition 13.** Let $R = M_n(F)$, F being a field. Let * be an involution on R with a corresponding automorphism α and a corresponding matrix P, $P^{\alpha t} = P$. Let D be the corresponding diagonal matrix that is congruent to P as was mentioned in proposition 7. If α is the identity mapping then * is proper if and only if F is D-real. If α is of order 2 then * is proper if and only if F is D-complex. *Proof.* We need to show, for * to be proper, that $AP^{-1}A^{\alpha t}=0$ if and only if A=0. Since $P^{-1}=CDC^{\alpha t}$, we see that we need $ACDC^{\alpha t}A^{\alpha t}=0$ if and only if A=0 if and only If AC=0 if and only if A=0. It is clear that we need F to be $D(\alpha)$ —complex. **Proposition 14.** Let F be p-characteristic field and let * be a proper involution on $R = M_n(F)$ such that its corresponding automorphism is the identity. Let P be the corresponding matrix for the involution * as in the proof of proposition (11) and let D be a diagonal matrix congruent to P with diagonal entries set $D = \{d_1, ..., d_n\}$. Then $p \neq 2, P^* = P^t = P$, and F is D-real. Conversely if F is D-real then the involution is proper. *Proof.* We have seen in the proof of proposition (11) that $P^t = \pm P$. Assume, to get a contradiction, that $P^* = -P$. Let $Q = P^t$. Define $f: F^n \times F^n \to F^n$ by $f(u,v) = u^t Qv$. Then f is a bilinear form on F^n . In fact, f is alternating because $f(u,v) = (f(u,v))^t \Rightarrow u^t Qv = v^t Q^t u = -v^t Qu = -f(v,u), \forall u,v \in F^n$. Thus $\forall v \neq 0, f(v,v) = 0$. Let us pick one such v and let us form the matrix A whose first row is v^t and whose all other rows are zero rows. Straightforward calculations show that $A^t QA = 0$. Thus $A^t PA = 0$. Thus $A \neq 0, A^*A = P^{-1}A^t PA = 0$, a contradiction with properness of * on R. It follows that $p \neq 2$, for otherwise P = -P and we saw that this contradicts properness of *. To complete the proof let C be an invertible matrix such that $CP^{-1}C^t = D$, a diagonal invertible matrix. Now $\forall A \in R, \exists B \in R, A = BC, AA^* = 0 \Leftrightarrow BC(P^{-1}C^t B^t P) = BDB^t P = 0 \Leftrightarrow BDB^t = 0$. Thus * is proper if and only if the only solution in $B \in M_n(F)$ for the equation $BDB^t = 0$ is B = 0. If we take for B a matrix which is every where 0 except possibly on its first row $\{x_1, ..., x_n\}$ we see that the condition implies the equation $\sum d_i x_i^2 = 0$ has only the trivial solution . Thus F is D-real. ■ Let * be an involution on $R = M_n(F)$, n is even, with a corresponding matrix P with $P^t = -P$. We give an example that * is not proper. **Example 1.** Let F be any field and let $R = M_2(F)$ and we take the invertible anti-symmetric matrix matrix $P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Let α be an automorphism on F of degree I or A. We define an involution A on A defined by $A^* = P^{-1}A^{\alpha t}P$ for all $A \in R$. This involution is not proper for if we take $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ then a simple calculation reveals that $AA^* = 0$ -matrix although A is not zero. **Proposition 15.** Let F be a field and let * be a proper involution on $M_n(F)$ with a corresponding matrix P. Then $P^t = P$ and $ch(F) \neq 2$. *Proof.* If $P^t = -P$ then from the fact in the introduction and from the preceding example * is not proper. If the characteristic of the field is 2 then $P^t = -P$ and again the involution is not proper. **Proposition 16.** Let (S,*) be a finite proper *-semigroup and F be a finite field of characteristic $p \neq 0$ such that (R,*) = (F[S],*) is a proper *-ring. Then R is a direct product of fields and 2×2 matrix rings over fields. Furthermore, $p \neq 2, p \neq 1 \mod 4$. The converse is also true. *Proof.* $x \in R, y = x + x^*$. Then not all positive powers of y are distinct owing to the finiteness of R. Let m > 1 be a positive power of y such that $\exists n > m, y^m = y^n$ such that m = 2k, n = 2l. Then, since $y = y^*, y^m = (yy^*)^k = y^n = (yy^*)^l$. Using *-cancellation, we get $y^k = y, k > 1$. Thus $\forall x \in R, \exists n(x), (x+x^*)^{n(x)} = x+x^*$ and *Theorem D* applies. The last part follows from the fact that any involution on $M_2(Z_p)$ is transpose-inner and the transpose involution is proper if and only if $p \neq 2, p \neq 1 \mod 4$. **Proposition 17.** *Let* $(R,*) = (M_m(Z_n),*)$ *be a proper *-ring. Then* m = 2, $n = p_1...p_k$, $p_i \neq p_i (i \neq j)$, $p_i \neq 2$, $p_i \neq 1 \mod 4$, $\forall i = 1,...,k$. *Proof.* That m=2 follows from *Theorem D. That* $p_i \neq p_j (i \neq j)$ follows from * being proper: $p_1 = p_2 \Rightarrow \frac{n}{p_1} (\frac{n}{p_1})^* = 0 \neq \frac{n}{p_1}$. The proof of the other parts is similar to the proof in proposition 16. **Proposition 18.** Let $(R,*) = (M_2(Z_p),*)$ be a proper *-ring. Then * is inner. *Proof.* Let $$C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$, $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. $G = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Then C, D generate the ring R. This is easily seen. Let $C^* = A, D^* = B$. We are looking for a matrix $u = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$ such that $$C^* = A = u^{-1}Cu = u^{-1}C^tu = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad D^* = B = u^{-1}Du = u^{-1}D^tu = \begin{pmatrix} e & f \\ g & h \end{pmatrix}. \text{ Thus}$$ $uA = Cu, uB = Du \Rightarrow uA = CD^{-1}uB = GuB \Rightarrow \begin{pmatrix} z & t \\ -x & -y \end{pmatrix}$. A = B. The last matrix equation gives rise to solutions in x, y, z and t since A and B are invertible. Furthermore the resulting matrix $\begin{pmatrix} z & t \\ -x & -y \end{pmatrix}$, which has the same determinant as that of u, is invertible since A and B are. Thus u is invertible. Thus * is inner at least for the matrices C and D. But C and D generate the whole matrix ring and, for example, $(CD)^* = D^*C^* = u^{-1}D^tuu^{-1}C^tu = u^{-1}(CD)^*u$. Thus * is inner in general. \blacksquare 3.1. *-Semigroup Embedding in a Proper *-Ring. We start this subsection with the following remarks: Although the following remarks are almost routine we present them here for the sake of completeness. **Remark 2.** Let (R,*) be an m-characteristic proper *-ring without 1. Then either m=0 or m is square-free. Also (R,*) can be *-embedded in an m-characteristic proper *-ring $(R_1,*)$ with 1. **Illustration 1.** Let r be a nonzero element of R such that there is a smallest positive integer m with mr = 0 and $m = kp^2$, k is not a unit and p is a prime. then kp is not zero. But then $(kpr)(kpr)^* = 0$. From properness of * it follows that kpr = 0 which is a contradiction with kpr not zero. To prove the other part we have two cases to consider. ### Illustration 2. **Case 1.** : m = 0. In this case we take the Cartesian product $Z \otimes R$ and define addition and multiplication as follows. (m,r) + (m',r') = (m+m',r+r'), (m,r).(m',r') = (mm',mr'+m'r+r') for every $m,m' \in Z, r,r' \in R$. This makes of $Z \otimes R$ a ring R_1 . We define an operator * on R' by $(m,r)^* = (m,r^*)$. Then it is straightforward to see that * is an involution. In fact, it is proper. For, $(m,r)(m,r)^* = (0,0) = (m^2,mr+mr^*+rr^*) \Rightarrow m = 0,rr^* = 0 \Rightarrow r = 0,(m,r) = (0,0)$. ## Illustration 3. Case 2. $: m \neq 0$. In this case m is square-free. For if $m = p^2k$, p is prime, then there exists $0 \neq r \in R, mr = 0, nr \neq 0$ for all positive integers n < m. But then $0 \neq pkr, (pkr)(pkr)^* = 0$, a contradiction with the properness of the involution *. Now we form $Z_m \otimes R$. We define addition and multiplication as in Case 1. It is straightforward to see that these operations are well-defined making of $Z_m \otimes R$. a ring denoted by R_2 . We define * on R_1 as in Case 1. Then * is an involution and it is proper. For, $(0,0) = (k,r)(k,r)^* = (k^2,kr^*+kr+rr^*) \Rightarrow k^2 = 0 \Rightarrow k = 0$ for all $k \in \mathbb{Z}_m$, $r \in \mathbb{R}$. The last implication follows since m is square-free forcing \mathbb{Z}_m to have a 0-radical. It follows that $rr^* = 0$ and so r = 0, (m,r) = (0,0). **Remark 3.** Let (R,*) be an 0-characteristic proper *-ring. Then (R,*) can be *-embedded in a 0-characteristic proper *-algebra $(R_1,*)$ over Q. **Illustration 4.** : We may assume that R contains 1. Then R contains a copy of Z. Now we localize R at the multiplicatively closed set $Z\setminus\{0\}$. (See [2] for definition of localization). The resulting *-ring denoted by $(R_1,*)$ contains a copy of Q and it is a proper *-ring. For if $[(r,m)][(r,m)]^* = [(0,1)]$ then $rr^* = 0$ and so r = 0, [(r,m)] = [(0,0)]. Now we prove the following. **Proposition 19.** Let (R,*) be a *-ring. Let I_1 be the ideal generated by all A in (R,*) such that AA^* or A^*A is 0 and, for k > 1, let I_k be the ideal generated by all $A \in (R,*)$ such that AA^* or A^*A is in I_{k-1} . Then I_k is a *-ideal, $I_k \subseteq I_{k+1}$, and if I is the union of all I_k , $I_k > 0$, then I is a *-ideal and $I_k = I_k$ is a p*-ring. *Proof.* That I_k is a *-ideal and that $I_k \subseteq I_{k+1}$ are trivial to verify. Also I is a *-ideal. If AA^* is in I then it is in some I_k and so A is in I_{k+1} and hence A is in I. Thus (R/I) is a p*-ring. \blacksquare **Corollary 20.** Let (S,*) be a *-semigroup, not necessarily a p*-semigroup, and let (Z[S],*) be the corresponding *-semigroup ring of (S,*) over Z.Let $I_k, k > 0$, and I be the ideals as in the preceding proposition. Then (Z[S]/I,*) is a p*-ring. If (S,*) is a finite p*-semigroup then it is *-embeddable in a p*-ring if and only if there are no distinct elements s,t in S such that s-t in any $I_k.$ In this case if S is commutative then (S,*) is *-embeddable in a subdirect product of fields. Also in this case if Z[S]/I is finite then (S,*) is *-embeddable in a finite direct product of matrix rings each over a finite field. *Proof.* The proof is a direct consequence of the proposition (19), remarks 3 and 2 and Wedderburn's Theorem since (S,*) in case of S is finite and hence the corresponding algebra is Artinean. For then (S,*) is a finite p*-semigroup such that (R,*) = (Z[S]/I,*) is infinite and there are no distinct elements s,t in S such that s-t is in any I_k . Then (Q[S]/I,*) is isomorphic to a finite direct product of matrices over division ring and hence (S,*) is represented as a p^* -semigroup of matrices over a division ring. **Proposition 21.** :Let (S,*) be an mp semigroup and let (D,*) be a 0-characteristic integral domain with proper involution *. If S is finite, or if $i \in D$ then D[S] is nil-semisimple while (D[S],*) need not be a proper *ring and the extended involution need not be a proper ring involution. *Proof.*: We can assume that D is contained in the complex number field \mathbb{C} . Assume first that $i \in D$. Then D is closed under complex conjugation which is a proper involution. Since (S,*) is an mp-semigroup it follows from Theorem A that (D[S],*) is proper * and nil-semisimple. Now assume that $i \notin D$ and assume that S is finite. Let S be a nil ideal in S. Since S is finite and the S-module S is is isomorphic to the direct sum of S copies of the Noetherian left S-modules (each is isomorphic to S), then S is a Noetherian left S-module. Hence it is also a Noetherian left S-module and thus it is a left-Noetherian ring. By theorem S, S is nilpotent and there is a positive integer S such that S is a nilpotent ideal in S is a nilpotent ideal in S is a nilpotent ideal in S. Then S is a nilpotent ideal in S is a nilpotent ideal in S is nilpotent ideal. ■ **Proposition 22.** Let (S,*) be a finite mp-semigroup and let F be a 0-chacteristic field. Then F[S] is a finite direct product of matrices over a skew field and (S,*) is *-embeddablle in the *-ring (F[S],*) where * is the natural involution inherited from the involution * in (S,*). If the field F has a non zero characteristic then F[S] is a finite direct product of matrices over a field. *Proof.* We can assume without loss of generality that S has an identity element 1 (This easy to prove). Since F[S] is a nil- semisimple ring by proposition 21 and since it is a finite dimensional F-vector space, it follows that it is a finite direct product of matrix rings over a skew field. Let (S,*) be a finite mp-semigroup and let F be a field of 0-characteristic. Then the involution on S gets extended to an involution on F[S] in a natural way: $(\sum a_i s_i)^* = \sum a_i s_i^*$. (But there is no guarantee that this involution is proper on R[S], unless R is formally complex). If $ch(F) \neq 0$ the prime field is Z_p and the subring generated by Z_p and S is finite and has a proper involution and so it is a finite direct sum of matrix rings over a finite skew field (a field then). **Proposition 23.** Let (R,*) be a finite proper *-ring. Then (R,*) is *-isomorphic with a finite direct product of matrix rings over a field. *Proof.* We show that R has a 0-radical I. For let A be in I. Then AA^* is in I. But then there is a natural number n such that $(AA^*)^n = 0$. By properness of * it follows that $AA^* = 0$ and hence A = 0. Thus I is the zero ideal. From Wedderburn Theorem it follows that R is isomorphic with a finite direct product of matrix rings over a skew field. Since R is finite the skew fields are fields. \blacksquare **Proposition 24.** : Let (S,*) be a proper *-semigroup *-embeddable in a proper *-ring (R,*). Then - (1) There is a *-ideal I in (Z[S],*) such that (Z[S]/I,*) is a p*-ring which *-embeds (S,*). - (2) If ch(R) = 0 and S is finite then (S,*) is *-embeddable in a finite direct sum of matrix rings over a division ring with proper involution. - (3) If $ch(R) = m \neq 0$ and S is finite then (S,*) is *-embeddable in a finite direct sum of matrix rings over a finite prime- characteristic field with proper involution. *Proof.* (1) There is a natural *-mapping f:(Z[S],*)->(R,*) given by $f(\sum m_i s_i)=\sum m_i g(s_i)$, where g is the *-embedding of (S,*) into (R,*). If (Z[S],*) is p* then we can take I=0. If there is A not 0 in Z[S] such that AA^* or $A^*A=0$ then we take the ideal I_1 generated by all such A and we consider the *-ring $Z[S/I_1$. We notice that there can be no two different elements s,t in S such that s-t is in I_1 lest s-t=0 in R which would imply non *-embeddability of (S,*) in (R,*). If this *-ring is p^* then we are done with getting the required p*-ring Z[S]/I. Otherwise there is A not in I_1 such that AA^* is in I_1 . We take all such A and all B such that B^*B is in I_1 and form the ideal I_2 . These are 0 in R of course. Now we form the *-ring R/I_2 . There can be no two different elements s,t in S such that s-t is in I_2 lest that would contradict *- embeddability of (S,*) into (R,*). If this *- ring is p^* then we are finished by getting a p^* -ring R/I_2 which *-embeds (S,*). We continue this way. The union of these *-ideals is clearly a *-ideal I and (R/I,*) is a p^* -ring which *-embeds (S,*). (2) If ch(R) = 0 and S is finite we can assume that R contains a copy of Q. Let $R' = \langle Q, S \rangle$ be the set of all rational linear combinations of elements of S in R. Then R' is a proper *-ring which *-embeds (S,*). Being a homomorphic image of the Artinian ring Q[S], R' is Artinian. Since a proper *-ring has 0 nil-radical, by Wedderburn's Theorem R' is isomorphic to a finite direct sum R_2 of matrix rings over a skew field. We define an involution * on R' as follows. Let f be the isomorphism of R' onto R_2 . Take b in R'. Then b = f(a) for a unique element $a \in R'$. Define $b^* = f(a^*)$. We show that * is a proper involution. Let $b, c \in R_2$ and let $b = f(a_1), c = f(a_2)$. Then $(b+c)^* = (f(a_1)+f(a_2))^* = (f(a_1+a_2))^* = f(a_1^*+a_2^*) = f(a_1^*)+f(a_2^*) = (f(a_1))^*+(f(a_2))^* = b^*+c^*, (bc)^* = (f(a_1a_2))^* = f(a_2^*)f(a_1^*)$ $= (f(a_2))^*(f(a_1))^* = c^*b^*, b^{**} = (f(a_1^*))^* = f(a_1^{**}) = f(a_1) = b$. And if $bb^* = 0$ then $f(a_1)(f(a_1^*)) = f(a_1a_1^*) = 0$ and so $a_1a_1^* = 0$ which implies that a_1 and hence b = 0. (3) If $ch(R) = m \neq 0$ and S is finite we can argue similarly that there is a copy of Z_m in R and $R'' = \langle Z_m, S \rangle$ is proper *. Since R'' is finite it is isomorphic to a finite direct sum of matrix rings over a prime characteristic finite field. This is because a finite skew field is a field. The same argument as above applies to show that the involution inherited from S on the finite sum of matrix rings is proper. This completes the proof. **Proposition 25.** Let (S,*) be a simple *-semigroup. Then it is a p*-semigroup and it is *-embeddable in a p*-ring. *Proof.* There is a natural *-homomorphism f:(S,*)->(Z[S]/I,*) of (S,*) into the proper *-ring (Z[S]/I,*). Now the kernel of f gives rise to a *-ideal in (S,*) which is *-simple. This ideal must be zero and so f is a *-embedding and (S,*) is a p*-semigroup which is *-embedded in a p*-ring. \blacksquare **Strategy 1.** Assume we have a finite proper *-semigroup (S,*) with 1 and assume that we would like to know if (S,*) is *-embeddable in a proper *-ring (R,*) of matrices of characteristic 0. Then we form the algebra (R,*) = (Q[S],*) where * is the natural involution. If (R,*) is p^* then we are done. If not then we form the ideal I_1 generated by all $A \in R$ such that AA^* or $A^*A = 0$. Then I_1 is closed under the involution * and so $(R_1,*) = (R/I,*)$ is an algebra with involution and with dimension $n_1 < n = |S|$. If there are elements $s \ne t$ in S such that $s - t \in I$ then (S,*) is not *-embeddable in a p^* -ring of characteristic 0. If there is no such pair we check if $(R_1,*)$ is p^* . If it is p^* then we are done and If not then we look for all $A \in R$ such that $A \notin I_1$ such that AA^* or $A^*A \notin I_1$ and we form the ideal I_2 generated by all such A and its involution A^* . This ideal I_2 is closed under involution. Then we form $(R_2,*) = (R/I_2,*)$ and with dimension $n_2 < n_1$. If there are distinct $s,t \in S$ such that $s-t \in I_2$ then (S,*) is not *-embeddable in a p^* -ring of characteristic 0. If there is no such pair we check is $(R_2,*)$ is p^* . If so then we are done and If not we look for all $A \neq 0$ in R such that AA^* or A^*A is in I_2 and form the ideal I_3 generated by these A. This is closed under taking * and we form $(R_3,*) = (R/I_3,*)$. This has dimension $n_3 < n_2 < n_1 < n$. etc. In a finite number of steps either we come up with a p^* -algebra of 0-characteristic which *-embeds (S,*) or we conclude that there is no such p^* -ring. The same procedure we can use to check if there is a p^* -ring of any prescribed nonzero characteristic or not. **Strategy 2.** Assume we have a finite proper *-semigroup (S,*) with I which is not *-embeddable in a p*-ring with characteristic 0. It is desired to reform (S,*) to a p*-semigroup that is *-embeddable in a p*-ring of characteristic 0. We form as before the p*-ring (Q[S]/I,*). Then there is a p*-image (T,*) of (S,*) in (Q[S]/I,*). Then there is a *-congruence $\tilde{}$ in S such that the p*-semigroup $(S/\tilde{},*)$ is isomorphic with the (T,*) inside the p*-ring (Q[S]/I,*).. ### **Conflict of Interests** The author declares that there is no conflict of interests. #### REFERENCES - [1] I. Herstein, Rings with Involution, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago and London, 1976. - [2] T. Hungerford, Algebra, Holt, Rinhart and Winston, Inc., New York, 1974. - [3] S. Lang, Algebra, Addison-Wesley Publishing Company, 1971. - [4] S. Lipschutz, Linear Algebra, Schaum's Outline Series, McGraw-Hill Book Company, 1968. - [5] P. Ribenboim, Rings and Modules, Interscience Publishers, New York, 1969. - [6] A. Shehadah, Semisimplicity of Some Semigroup Rings, Math. Japonica 38 (1993), 991-993.