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Abstract. It is proved that if (S, ) is a proper *-semigroup and if D is O-characteristic integral
domain then (D[S], %) is nil-semisimple provided that S is finite or i € D.Let (S, ) be a finite
proper *-semigroup and F be a finite field of characteristic p such that (F[S],*) is a proper

*-ring. Then F[S] is a direct product of fields and 2 x 2 matrix rings over fields. Furthermore,
p#2,p#1mod4.
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1. Introduction

A semigroup with involution (S, *) is called a *-semigroup. It is called a p*-semigroup if the
involution * is proper. Thus Va,b € S,aa* = ab* = bb* = a = b . A ring with involution (R, *)
is called a *-ring. Itis called a p*-ring if the involution * is proper. Thus aa* =0 =- a =0 for all
a € R. Let (S,%),(T,*) be two *-semigroups. An injective mapping f : (S,%) — — > (R, *) from
a *-semigroup (S, *) into a *-ring (R, *) such that for all a,b € (S,%), f(ab) = f(a) f(b), f(a*) =
(f(a))* is called a *-embedding. Let (S,*) be a *-semigroup and consider the semigroup ring
Z[S] of S over Z. If (S,%) is a p*-semigroup then (Z[S],*) need not be a p*-ring as in ( [6]).
Let (S,*) be a *-semigroup. The involution * is called a maximal proper involution if for

every distinct elements sy, ...,s, € S, there exists an element s; such that s;s7 # sl-sjf, j # 1, and
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sis; = Sks] = Sisp = sis;;k,l = 1,...,n. Such a *-semigroup is called an mp-semigroup. For
example any inverse semigroup is an mp-semigroup under its inverse involution as in ([6]). If
(S,*) is an mp-semigroup then (Z[S], ) is a p*-ring and (S, *) is *-embeddable in (Z[S], %),
([6]). Let (R,*) be a *-ring and let n be a fixed positive integer. If for every distinct elements
r1,....,Ty € R it holds that ) r;7; = 0 implies that r, = 0,i = 1, ..., n then we say that (R, ) is n-
formally complex. Let F be a field, let o be an automorphism of order 1 or 2 and let D € M,,(F)
be a diagonal matrix. Then F' is D(a)—formally complex if and only if ¥ d;a;ct(a;) = 0 implies
all a; = 0. If D is the identity matrix we say that F' is n—formally complex and if this true for all
n we say that F' is formally-complex. On the other hand, if « is the identity then we say that F
is D(ot)— real and if D is the identity we say that F' is n—formally real and if this is the case for
all n we say that F' is formally real. If (S, *) is an mp-semigroup and (R, *) is formally complex
*_ring then (R[S], %) is a p*-ring and (S, *) is *-embeddable in (R[S],*), as in [6]) where it is
shown there is a finite p*-semigroup that cannot be *-embedded in any p*-ring. Let (R,*) be a
*-ring. Anideal I in R is called a *-ideal if I = I. In this case the ring R/I is a *-ring under
the involution (r+1)* = r*+1.

Let F be a field and let o be an automorphism on F' of order 1 or 2. Let R = M,,(R) and let
A € R. If we apply to every entry in A the automorphism o we get A%*. An involution * on R is
called o.—inner if there is an invertible matrix P such that for all A in R we have A* = P~ 1A%’ P
and if « is the identity mapping then * is called inner.

Let F be a field and let o be an automorphism on F and let two matrices A, B € M,(F).We
say that the matrices A, B are a—congruent if there is a matrix C such that A = CBC*. Also
we say that a matrix A € M,,(F) is oo—symmetric if A = A% and it is called a—antisymmertric if
A% = —A. Here A% is got from the matrix A by applying « to its entries. It is known that if A
is a symmetric matrix in M,,(F), F is a field then it is congruent to a diagonal matrix and if A is

anti-symmetric invertible matrix then A is congruent to a direct sum of 2 by 2 matrices each of

0 1
which is of the form o ,a € F. See [3] pp. 365-372.

-1 0
Let (S,*) be a proper *-semigroup of order 5 or less. It was noticed (through a computer

program ) that once the involution * in the *-semigroup ring (Z[S],*) is not proper then the
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p*-semigroup (S, ) is not *-embeddable in any ring p*-ring. Up to now there is no proof or
disproof for this claim.

In the first part of this note we find a necessary and sufficient condition for a certain class of
involutions on R = M,,(F), F is a field, to be proper involutions. In the second part we give a
plan to decide if a given proper *-semigroup is *-embeddable in a p*-ring and if so we seek to
find a p*-algebra of matrices that *-embeds (5,*) and we look for all involutions ** on S that
makes (S,*") *-isomorphic with (S, *). Incase (S, *) is not *-embeddable in a p*-ring we locate

the *-subsemigroup (7', *) such that (S/7T,x) is *-embeddable in a p*-ring.
2. Preliminaries

We cite the following known facts.

Theorem 1. (A) Let (S,%) be an mp semigroup and let (R,*) be a formally complex ring. Then

(R[S], %) is a proper *-ring and hence it has a zero nil radical, ([6]).
We cite the following version of Wedderburn Theorem from [2] p. 435

Theorem 2. (B) If R is a non zero left Artinean nil-semisimple ring then it isomorphic with a

finite direct sum of finite matrix rings over a division ring.
We Also cite the following from [5], p.63.

Theorem 3. (B): If A is a left Noetherian ring, then every nil ideal is nilpotent.
We also cite the following version of Skolem-Noether theorem; see[2], p.460.

Theorem 4. (C): Let R be a simple left-Artinian ring and let K be the center of R ( so that R
is a K-algebra). Let A and B be finite dimensional simple K-algebras of R that contain K. If
o : A — B is a K-algebra isomorphism that leaves K fixed elementwise, then o extends to an

inner automorphism of R.
We cite the following theorem from [1], p136.

Theorem 5. (D): Let (R, *) be a semi-simple *-ring with involution * such that Vx € R, 3n(x), (x+

x*)”(") = x+x*. Then R is a subdirect product of fields and 2 X 2 matrix rings over fields.
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Proposition 6. Let F be a field and let P € M,(F) be a symmetric matrix then there is a

diagonal matrix D congruent to P ; i.e.,

3C € M,,(F),CPC" = D, see [4], for example. If P is antisymmetric then P is congruent to a

1
direct sum of matrices of the form o and O-matrices where o € F.

-1 0
As a generalization we state a similar proposition whose proof is similar to that of proposition

[6] and its proof is omitted.

Proposition 7. Let F be a field and let o be an automorphism of order 2 on F. Let P € M, (F)

be an inverteble matrix such that P* = P. Then there is a matrix C and a diagonal matrix D

such that CPC% = D.

3. Main results

Given a semigroup S we can ask how to find all proper involutions on S.For example if S is
an inverse semigroup then the inverse operator is one of the proper involutions on S. Similarly
given a ring R there is a problem of finding all proper involutions on R. For example if we
take a field F and its corresponding matrix ring R = M,,(F) the problem is to find all proper
involutions on R. The transpose operator is an involution which need not be proper unless F is
n-real. For example the transpose involution is not proper on R = M»(Z;).

Let F be a field and let R = M,(F) be the matrix ring over F and let Z(R) = {cI : c € F}
be the center of R. Let * be an involution on R. Let A € Z(R). Then for all X € R,AX = XA
implies that A*X* = X*A* and so A* € Z. Thus for all ¢ € F,(cI)* = ¢*I and so * induces an
automorphism (called the corresponding automorphism) of order at most 2 on F. Conversely
we will show that any automorphism o of order at most 2 on F induces an involution * on

R = M,(F) given by A* = P~1A%P for all A € R as shown in the following proposition.

Proposition 8. (1) Let x be an involution on R = My, (F) whose corresponding automorphism is
the identity on F. Then there is an invertible matrix P such that A* = P~1A'P for every matrix

A in My(F).
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(2) Let * be an involution on M,,(F) whose corresponding automorphism o, on F has order

2. Then there is an invertible matrix P such that A* = P~'A% P for every matrix A € My, (F).

Proof. (1) The operator h: A — — > A* is an automorphism that fixes the center of M, (F)
elementwise. From Noether-Skolem Theorem it follows that there is an invertible matrix P
such that for all A € R, h(A) = A = PAP~!. Thus A* = Q~'A’Q,Q = P' for every A € M,,(F).

(2)The operator k : A — — > A** is an automorphism on M, (F) that fixes the center Z(R) =
{cl : ¢ € F} elementwise. From Noether-Skolem Theorem there is an invertible matrix P such
that for every matrix A we have k(A) = A** = P~!AP. Thus for every matrix A € R we have
A* = poigaip-lar _ g-lpaig o — p-lot

Corollary 9. Let * be an involution on R = M,,(F) whose corresponding automorphism ais of
order 1 or 2 on F. Then there is an inverteble matrix P such that A* = P~ A% P for every matrix

Ain M,(F).

We can generalize the preceding propositions to division rings. The proof of the following

proposition is similar to the proof of proposition 8 and it is omitted.

Proposition 10. Let R = M, (D) be a matrix ring on a division ring D. Let * be an involution
on R. Let Z(R) be the center of D. Then there is an automorphism o on the ring Z(R) of order

1 or 2 and there is an invertible matrix P such that for all A € R, A* = P"1A%P.
We prove the following.

Proposition 11. Let o be an automorphism of order 1 or 2 on the field F. Let P € R be an
invertible matrix on F. Define x on R as A* = P"'A%P for all A € R. Then * is an involution if

and only if P* =cI ,c = +1,c" = 1.

Proof. We have forall A,B € R,(A+B)* =A*+B*,(AB)"* = B*A*. To make * as an involution
we need A** = A to hold on R.Thus P~'P¥AP~1%'P — A for all A € R. Thus P~'P¥ = ¢I or
P% = cP for some nonzero scalar c..Also we notice that P** = P and from P* = P~1P¥P =
P~ '¢PP = cP we get P = P** = (cP)* = ¢?P and so ¢> = 1 and so ¢ = +1. From P’ = cP and
upon taking determinants we get we get ¢ = 1. If n is odd we must have ¢ = 1 and if n is even

we still have ¢ = £1. 1
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Remark 1. If one of the diagonal elements of P in proposition (11) is nonzero then ¢ = 1 and
P' = P. Otherwise and if all diagonal elements are 0 we have only the condition ¢ = +1 and n

is even.
Next we discuss conditions on P that guarantees that the involution * is proper

Proposition 12. Let F be a field and let let R = M, (F).

(1) Let * be an involution on R defined by A* = P~ 'A'P forallA€R. Let P' = P. If P~ = QQ'
for some matrix Q and if F' is formally real then * is a proper involution.

(2) Let * be an involution on R defined by A* = P~'A%P for all A € R with P' = P and let
the corresponding automorphism oon F be of order 2 . If P~' = QQ* for some matrix Q and

if F is formally a—complex then is a proper involution.

Proof. (1) For * to be proper we need the condition AA* = 0 to hold if and only if A = 0 for
all A € R. This is equivalent to require that AP~'A’P = 0 implies that A = 0. Or AP~'A’ =0
implies that A = 0. Or, AQQ'A" = 0 implies that A = 0. If F is formally real this is equivalent to
AQ = 0 implies that A = 0 which is the case since Q is invertible.

(2) For * to be proper we need the condition AA* = 0 to hold if and only if A = 0 for all
A € R. This is equivalent to AP~!A% P = 0 if and only if A = 0. Or AP~!A% = 0 if and only
if A=0.But P! = Q0% and so AP~'A% = AQQ* A% = 0 implies that AQ and hence A =0

since F' is a—formally complex. i

Proposition 13. Let R = M, (F),F being a field. Let * be an involution on R with a corre-
sponding automorphism o and a corresponding matrix P,P* = P. Let D be the corresponding
diagonal matrix that is congruent to P as was mentioned in proposition 7. If Qs the identity
mapping then * is proper if and only if F is D-real. If o is of order 2 then * is proper if and
only if F' is D-complex.

Proof. We need to show, for * to be proper, that AP~'A% = 0 if and only if A = 0. Since
P! =CDC%, we see that we need
ACDC*A%" = () if and only if A = 0 if and only If AC = 0 if and only if A = 0.1t is clear that

we need F' to be D(ot)—complex. B



REGULAR PROPER *-SEMIGROUP EMBEDDINGS AND INVOLUTIONS 7

Proposition 14. Let F be p-characteristic field and let * be a proper involution on R = M,,(F)
such that its corresponding automorphism is the identity. Let P be the corresponding matrix for
the involution * as in the proof of proposition (11) and let D be a diagonal matrix congruent
to P with diagonal entries set D =1{ dy,...,d,}.Then p #2,P*=P' =P, and F is D—real .

Conversely if F is D—real then the involution is proper.

Proof. We have seen in the proof of proposition (11) that P' = +P. Assume, to get a contradic-
tion, that P* = —P. Let Q = P'. Define f : F" x F" — F" by f(u,v) = u'Qv. Then f is a bilinear
form on F”. In fact, f is alternating because f(u,v) = (f(u,v)) = u'Qv =V Q'u=—V'Qu =
—f(v,u),Yu,v € F". Thus Vv # 0, f(v,v) = 0. Let us pick one such v and let us form the matrix
A whose first row is V' and whose all other rows are zero rows. Straightforward calculations
show that A’QA = 0. Thus A’PA = 0. Thus A # 0,A*A = P"'A’PA = 0, a contradiction with
properness of * on R. It follows that p # 2.for otherwise P = — P and we saw that this contradicts
properness of *. To complete the proof let C be an invertible matrix such that CP~'C' = D, a di-
agonal invertible matrix. Now VA € R,3B € R,A = BC,AA* =0 < BC(P~'C'B'P) = BDB'P =
0 < BDB' =0. Thus * is proper if and only if the only solution in B € M,,(F) for the equation
BDB' = 0is B = 0. If we take for B a matrix which is every where 0 except possibly on its first
row {xi,...,x,} we see that the condition implies the equation Zd,-xi2 = 0 has only the trivial

solution . Thus F is D-real. §

Let * be an involution on R = M,,(F),n is even, with a corresponding matrix P with P' =

—P.We give an example that * is not proper.

Example 1. Let F be any field and let R = M,(F) and we take the invertible anti-symmetric

0
matrix matrix P = Let o be an automorphism on F of degree 1 or 2. We define

-1 0
an involution * on R defined by A* = P~YA¥P for all A € R. This involution is not proper for

1
if we take A = then a simple calculation reveals that AA* = 0-matrix although A is

00

not zero.

Proposition 15. Let F be a field and let * be a proper involution on M,,(F ) with a corresponding

matrix P. Then P' = P and ch(F) # 2.
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Proof. If P' = —P then from the fact in the introduction and from the preceding example * is
not proper. If the characteristic of the field is 2 then P' = —P and again the involution is not
proper. i

Proposition 16. Let (S, x) be a finite proper *-semigroup and F be a finite field of characteristic
p # 0 such that (R,x) = (F[S],*) is a proper *-ring. Then R is a direct product of fields and

2 X 2 matrix rings over fields. Furthermore, p # 2, p # 1 mod 4. The converse is also true.

Proof. x € R,y = x+ x*. Then not all positive powers of y are distinct owing to the finiteness
of R. Let m > 1 be a positive power of y such that Idn > m,y"™ = y" such that m = 2k,n = 2I.
Then, since y = y*, y" = (yy*)¥ = y* = (yy*)". Using *-cancellation, we get y* =y, k > 1. Thus
Vx € R, 3n(x), (x4 x*)"™) = x+x* and Theorem D applies. The last part follows from the fact
that any involution on M, (Z),) is transpose-inner and the transpose involution is proper if and

onlyif p#2,p# 1 mod4. &

Proposition 17. Let (R, *) = (M,,,(Z,),*) be a proper *-ring. Thenm=2, n=pi...px, pi#
pili#Jj), pi#2,pi#1moddNi=1,.. k.

Proof. That m = 2 follows from Theorem D. That p; # p;(i # j) follows from * being proper:

pr=pr= +(*

> (5 F=0# pil‘ The proof of the other parts is similar to the proof in proposition
16 . 1

Proposition 18. Let (R,*) = (My(Z,),*) be a proper *-ring. Then * is inner.

01 1 0 0 -1 )
Proof. LetC = ,D= L,G= . Then C,D generate the ring
1 0 0 -1 1 0
. . . . Xy
R. This is easily seen. Let C* = A, D* = B. We are looking for a matrix u = such that
z t
a b e f
C'=A=u'Cu=u"'Clu= ., D*=B=u"'"Du=u"'D'u= . Thus
c d g h
Z t
uA = Cu,uB = Du = uA = CD'uB = GuB = A = B. The last matrix equation

gives rise to solutions in x,y,z and ¢ since A and B are invertible. Furthermore the resulting
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Z t
matrix ,which has the same determinant as that of u, is invertible since A and B

are. Thus u is invertible. Thus * is inner at least for the matrices C and D. But C and D generate

the whole matrix ring and, for example, (CD)* = D*C* = u~'D'uu='C'u = u='(CD)*u. Thus

* is inner in general. §

3.1. *-Semigroup Embedding in a Proper *-Ring. We start this subsection with the follow-
ing remarks:
Although the following remarks are almost routine we present them here for the sake of

completeness.

Remark 2. Let (R, *)be an m-characteristic proper *-ring without 1. Then either m =0 or m is

square-free. Also (R, x) can be *-embedded in an m-characteristic proper *-ring (Ry,*) with 1.

Hlustration 1. Let r be a nonzero element of R such that there is a smallest positive integer
m with mr =0 and m = kp?*,k is not a unit and p is a prime. then kp is not zero. But then
(kpr)(kpr)* = 0. From properness of * it follows that kpr = 0 which is a contradiction with

kpr not zero. To prove the other part we have two cases to consider.
Illustration 2.

Case 1. : m = 0. In this case we take the Cartesian product Z® R and define addition and
multiplication as follows. (m,r)+ (m',r') = (m+m',r+v'),(m,r).(m",r') = (mm';mr’ +m'r +
rr’) for every m,m' € Z,r,r’ € R. This makes of Z®@ R a ring Ry. We define an operator * on R’
by (m,r)* = (m,r*). Then it is straightforward to see that * is an involution. In fact, it is proper.

For, (m,r)(m,r)* = (0,0) = (m?>,mr+mr* +rr*) =m=0,rr* =0=r=0,(m,r) = (0,0).
Illustration 3.

Case 2. :m # 0. In this case m is square-free. For if m = p*k,p is prime, then there exists
0 # r € R,mr = 0,nr # 0 for all positive integers n < m. But then 0 # pkr, (pkr)(pkr)* =0, a
contradiction with the properness of the involution *. Now we form Z,, ® R. We define addition
and multiplication as in Case 1. It is straightforward to see that these operations are well-

defined making of Z,, ® R. a ring denoted by R,. We define * on Ry as in Case 1. Then * is an
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involution and it is proper. For, (0,0) = (k,r)(k,r)* = (K>,kr* +kr+r*) =k =0=k=0
forall k € Z,,,r € R. The last implication follows since m is square-free forcing Z,, to have a

O-radical. It follows that rr* =0 and so r =0, (m,r) = (0,0).

Remark 3. Let (R,*) be an O-characteristic proper *-ring. Then (R,*) can be *-embedded in

a O-characteristic proper *-algebra (Ry,*) over Q.

Ilustration 4. : We may assume that R contains 1. Then R contains a copy of Z. Now we
localize R at the multiplicatively closed set Z\{0}.(See [2] for definition of localization ). The
resulting *-ring denoted by (Ry,*) contains a copy of Q and it is a proper *-ring. For if

[(r,m)][(r,m)]* =[(0,1)] then rr* =0 and so r = 0,[(r,m)] = [(0,0)].
Now we prove the following.

Proposition 19. Let (R,*) be a *-ring. Let I, be the ideal generated by all A in (R, *)such that
AA* or A*A is 0 and, for k > 1, let I} be the ideal generated by all A € (R,*) such that AA* or
A*Aisin I_y. Then I is a *-ideal , I C I} 1, and if I is the union of all I ,k > 0O, then I is a

*-ideal and (R/I,*) is a p*-ring.

Proof. That I} is a *-ideal and that [; C I;, | are trivial to verify. Also [ is a *-ideal. If AA* is in

[ then it is in some I; and so A is in I, | and hence A is in I. Thus (R/I) is a p*-ring. §

Corollary 20. Let (S, %) be a *-semigroup, not necessarily a p*-semigroup, and let (Z[S],*) be
the corresponding *-semigroup ring of (S,%) over Z.Let Ii,k > 0, and I be the ideals as in the
preceding proposition. Then (Z[S]/1,%) is a p*-ring. If (S,*) is a finite p*-semigroup then it is
*-embeddable in a p*-ring if and only if there are no distinct elements s,t in S such that s —t
in any Ii.In this case if S is commutative then (S, %) is *-embeddable in a subdirect product of
fields. Also in this case if Z[S]/1 is finite then (S, ) is *-embeddable in a finite direct product of

matrix rings each over a finite field.

Proof. The proof is a direct consequence of the proposition (19), remarks 3 and 2 and Wed-
derburn’s Theorem since (S,*) in case of S is finite and hence the corresponding algebra is

Artinean. For then (S,x) is a finite p*-semigroup such that (R,*) = (Z[S]/I,«) is infinite and
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there are no distinct elements s,7 in S such that s —7 is in any ;. Then (Q[S]/I,*) is isomor-
phic to a finite direct product of matrices over division ring and hence (S, x) is represented as

a p*-semigroup of matrices over a division ring. Qi

Proposition 21. :Let (S,*)be an mp semigroup and let (D,*) be a O-characteristic integral
domain with proper involution *. If S is finite, or if i € D then D|S] is nil-semisimple while
(D[S],*) need not be a proper *ring and the extended involution need not be a proper ring

involution.

Proof. : We can assume that D is contained in the complex number field C. Assume first that
i € D. Then D is closed under complex conjugation which is a proper involution. Since (S, *)
is an mp-semigroup it follows from Theorem A that (D[S], ) is proper * and nil-semisimple.
Now assume that i ¢ D and assume that S is finite. Let J be a nil ideal in DI[S]. Since S is
finite and the D-module D[S] is isomorphic to the direct sum of |S| copies of the Noetherian left
D-modules (each is isomorphic to D), then D[S] is a Noetherian left D-module. Hence it is also
a Noetherian left D[S]-module and thus it is a left-Noetherian ring. By theorem B, J is nilpotent
and there is a positive integer n such that J” = 0. Then I = J +iJ is a nilpotent ideal in D[i][S]

which is nil-semisimple. Thus / is 0 and hence J is a 0 ideal. 1

Proposition 22. Let (S, %) be a finite mp-semigroup and let F be a O-chacteristic field. Then
F[S] is a finite direct product of matrices over a skew field and (S, %) is *-embeddablle in the
*-ring (F[S],*) where * is the natural involution inherited from the involution * in (S,*). If the

field F has a non zero characteristic then F|[Slis a finite direct product of matrices over a field .

Proof. We can assume without loss of generality that S has an identity element 1 (This easy to
prove). Since F[S] is a nil- semisimple ring by proposition 21 and since it is a finite dimensional
F-vector space, it follows that it is a finite direct product of matrix rings over a skew field. Let
(S,%) be a finite mp-semigroup and let F be a field of O-characteristic. Then the involution on
S gets extended to an involution on F[S] in a natural way: (Y a;s;)* = Y a;s?.(But there is no
guarantee that this involution is proper on R[S], unless R is formally complex). If ch(F) # 0 the
prime field is Z,, and the subring generated by Z, and S is finite and has a proper involution and

so it is a finite direct sum of matrix rings over a finite skew field ( a field then). i
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Proposition 23. Let (R,x*) be a finite proper *-ring. Then (R,x*) is *-isomorphic with a finite

direct product of matrix rings over a field.

Proof. We show that R has a O-radical /. For let A be in /. Then AA* is in /. But then there is
a natural number n such that (AA*)" = 0. By properness of * it follows that AA* = 0 and hence
A = 0. Thus I is the zero ideal. From Wedderburn Theorem it follows that R is isomorphic

with a finite direct product of matrix rings over a skew field. Since R is finite the skew fields are

fields. &

Proposition 24. : Let (S,*) be a proper *-semigroup *-embeddable in a proper *-ring (R, x).
Then
(1) There is a *-ideal I in (Z[S], *) such that (Z[S]/I,*) is a p*-ring which *-embeds (S,*).
(2) If ch(R) = 0 and S is finite then (S,*) is *-embeddable in a finite direct sum of matrix
rings over a division ring with proper involution.
(3) If ch(R) =m # 0 and S is finite then (S,%) is *-embeddable in a finite direct sum of

matrix rings over a finite prime- characteristic field with proper involution.

Proof. (1) There is a natural *-mapping f : (Z[S],*)— > (R,*) given by f(YXm;s;) = Y m;g(si),
where g is the *-embedding of (S,x) into (R,x*). If (Z[S],*) is p* then we can take [ = 0. If
there is A not 0 in Z[S] such that AA* or A*A = 0 then we take the ideal /; generated by all such
A and we consider the *-ring Z[S/I;.We notice that there can be no two different elements s,7 in
S such that s —¢ is in [ lest s —¢ = 0 in R which would imply non *-embeddability of (S, *) in
(R,*). If this *-ring is p* then we are done with getting the required p*-ring Z[S]/I. Otherwise
there is A not in /; such that AA* is in ;. We take all such A and all B such that B*B is in I} and
form the ideal I,. These are O in R of course. Now we form the *-ring R/I,. There can be no
two different elements 5,7 in .S such that s —¢ is in I, lest that would contradict *- embeddability
of (8,%) into (R, ). If this *- ring is p* then we are finished by getting a p*—ring R/I, which
*-embeds (S,*). We continue this way. The union of these *-ideals is clearly a *-ideal I and
(R/I,%) is a p*—ring which *-embeds (S, ).

(2) If ch(R) = 0 and S is finite we can assume that R contains a copy of Q. Let R’ = (Q,S) be

the set of all rational linear combinations of elements of S in R. Then R’ is a proper *-ring which
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*-embeds (S, x). Being a homomorphic image of the Artinian ring Q[S], R" is Artinian. Since
a proper *-ring has 0 nil-radical, by Wedderburn’s Theorem R’ is isomorphic to a finite direct
sum R, of matrix rings over a skew field. We define an involution * on R’ as follows. Let f be
the isomorphism of R’ onto R;. Take b in R'. Then b = f(a) for a unique element a € R'. Define
b* = f(a*). We show that * is a proper involution. Let b,c € R, and let b = f(a;),c = f(a2).
Then (b+¢)* = (f(a1) + f(a2))* = (f(a1 +@2))* = fla} +a5) = f(a]) + f(a3) = (f(ar))* +
(fla2))* = b*+¢*, (be)* = (f(araz))* = f(a3)f(a})

= (fla))*(f(ar))* =c"b*,b™ = (f(a}))* = £(ai") = f(ar) = b. Andif bb* =0 then f(ay)(f (a}) =
f(a1a}) = 0 and so aja; = 0 which implies that a; and hence b = 0.

(3) If ch(R) = m # 0 and S is finite we can argue similarly that there is a copy of Z,, in R
and R" = (Z,,,S) is proper *. Since R” is finite it is isomorphic to a finite direct sum of matrix
rings over a prime characteristic finite field. This is because a finite skew field is a field. The
same argument as above applies to show that the involution inherited from S on the finite sum

of matrix rings is proper. This completes the proof. I

Proposition 25. Let (S,*) be a simple *-semigroup. Then it is a p*-semigroup and it is *-

embeddable in a p*-ring.

Proof. There is a natural *-homomorphism f : (S,*)— > (Z[S]/I,*) of (S,*) into the proper
*-ring (Z[S]/1,*). Now the kernel of f gives rise to a *-ideal in (S, *) which is *-simple. This
ideal must be zero and so f is a *-embedding and (S, *) is a p*-semigroup which is *-embedded

in a p*-ring. 1

Strategy 1. Assume we have a finite proper *-semigroup (S, *) with 1 and assume that we would
like to know if (S,x*) is *-embeddable in a proper *-ring (R, *) of matrices of characteristic 0.
Then we form the algebra (R,*) = (QIS],*) where * is the natural involution. If (R,*) is p*
then we are done. If not then we form the ideal I, generated by all A € R such that AA* or
A*A = 0.Then I, is closed under the involution * and so (Ry,*) = (R/I,*) is an algebra with
involution and with dimension ny < n=| S | . If there are elements s #t in S such thats—t €1
then (S,%) is not *-embeddable in a p*-ring of characteristic 0. If there is no such pair we

check if (Ry,%) is p*. If it is p* then we are done and If not then we look for all A € R such
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that A ¢ I; such that AA* or A*A ¢ I} and we form the ideal I, generated by all such A and its
involution A*.This ideal I, is closed under involution. Then we form (Ry,*) = (R/ L, *) and with
dimension ny < ny.If there are distinct s,t € S such that s—t € I then (S, *) is not *-embeddable
in a p*-ring of characteristic 0. If there is no such pair we check is (Ry,*) is p*. If so then we
are done and If not we look for all A # 0 in R such that AA* or A*A is in I and form the ideal
Iy generated by these A. This is closed under taking * and we form (R3,+) = (R/I3,%). This
has dimension n3 < np < ny < n. etc. In a finite number of steps either we come up with a
p*-algebra of O-characteristic which *-embeds (S,*) or we conclude that there is no such p*-
ring. The same procedure we can use to check if there is a p*- ring of any prescribed nonzero

characteristic or not.

Strategy 2. Assume we have a finite proper *-semigroup (S, *) with 1 which is not *-embeddable
in a p*-ring with characteristic 0. It is desired to reform (S,*) to a p*-semigroup that is *-
embeddable in a p*-ring of characteristic 0. We form as before the p*-ring (Q[S]/I,*). Then
there is a p*-image (T,*) of (S,%) in (Q[S]/I,*). Then there is a *-congruence ~ in S such that

the p*-semigroup (S/”,*) is isomorphic with the (T, x) inside the p*-ring (Q[S]/I,*)..
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