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Abstract. A flexible Euler-Bernoulli beam formulated by partial differential equations subject to the boundary

shear force feedback is investigated in this paper. First, an abstract evolution equation corresponding to the beam

system is established in an appropriate Hilbert space. Then, a spectral analysis and semigroup generation of

the operator of the beam system are discussed. Finally, a sliding model control is proposed associated with an

equivalent control equation, and a significant result that the solution of the beam system can be approximated by

the ideal sliding mode under a sliding model control is proposed and proved.
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1. Introduction

Let us consider the following Euler-Bernoulli beam with the boundary shear force feedback

control [1]−[6]
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ytt(x, t)+ yxxxx(x, t) = 0, 0 < x < 1, t > 0,

y(0, t) = yx(0, t) = yxx(1, t) = 0,

yxxx(1, t) = kyt(1, t) = 0, k > 0,

y(x,0) = y0 =,yt(x,0) = y1(x),0≤ x≤ 1,

(1.1)

where y(x, t) is the displacement of the beam at the locatin x and the time t, yt(x, t) is the

instantaneous velocity, yx(x, t) is the rotation of the beam at the location x and the time t, yxt(x, t)

is the angular velocity of the beam, yxx(x, t) is the bending moment, and yxxx(x, t) is the shear

force.

For the sake of simplicity, let z(x, t) = yx(x, t), and it is easy to see that z(x, t) satisfies

ztt(x, t)+ zxxxx(x, t) = 0, 0 < x < 1, t > 0,

z(0, t) = zxxx(0, t) = zx(1, t) = 0,

zxxt(1, t) =−kzxxx(1, t), k > 0,

z(x,0) = z0(x) =,zt(x,0) = z1(x),0≤ x≤ 1.

(1.2)

It should be noted that the boundary conditions specified in (1.2) are different from any one

of the five kind beams: clamped, embeded, simply supported, roller suported and two end free.

In present paper, we are going to investigate a sliding model control problem for the Euler-

Bernoulli bean systen (1.1)-(1,2) above in an appropriate Hilbert space. First, let us establish an

abstract equation corresponding to the system (1.1)-(1.2) in next section.

2. An abstract evolution equation of the system and its properties

Now, we can rewrite (1.1) and (1.2) in terms of a system operator.

First, let us define a system operator A0 : D(A0)(⊂H0)→H0 as follows:

A0( f ,g) = (g,− f (4)),∀( f ,g) ∈ D(A0),

D(A0) = {( f ,g) ∈ (H4∩H2
c ×H(

c2)|,

f ′′′(1) = kg(1), f ′′(1) = 0},

H0 = H2
c (0,1)×L2(0,1),

H2
C = { f ∈ H2(0,1)| f (0) = 0, f ′(0) = 0}.

(2.1)
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It has been shown in [6] that A0 is a dissipative discrete operator:A −1
0 exists and it is compact

on H0.Hence the spectrum σ(A0) consists of isolated eigenvalues only and Re λ < 0 for all

λ ∈ σ(A0). Moreover, λ ∈ (A0) if and only if there exists an f 6= 0 such that ( f ,λ ) satisfies

the differential equation of the following :

λ
2 f (x)+ f (4)(x) = 0, 0 < x < 1,

f (0) = f ′(0) = f ′′(1) = 0 f ′′′(1) = kλ (1). (2.2)

Define the underlying state space for (1.2) as the natural energy space H =H2
E(0,1)×L2(0,1)×

C, where H2
E(0,1) = { f ∈ H2(0,1)| f (0) = 0 f ′(1) = 0}.The space H is a Hilbert space with

inner product induced norm of the following:

‖( f ,g,α)‖2 =
∫ 1

0
[| f ′′(x)|2 + |(g(x)|2]dx+

1
k
|α|2

for all ( f ,g,α) ∈H .

The system operator A : D(A )(⊂H )→ is defined as follows


A ( f ,g,α) = (g,− f (4),−k f ′′′(1)),

DA = {( f ,g,α) ∈ (H4
⋂

H2
E ×H2

E ×C|,

α = f ′′(1), f ′′′(0) = 0}.

(2.3)

In terms of the setting above, system (1.2) can be formulated as

dZ(t)
dt = A Z(t), Z(0) = Z0 ∈H , (2.4)

where Z(t) = (z(·, t),zt(·, t),z′′(1, t)) and Z0 is the initial value.

Next, we are going to discuss the spectral properties of the system operator A . Some results

can be found in the reference [3].

Recall that a nonzero Y ∈H is called a eigenvalues of A , corresponding to eigenvalues λ ,

if there is a positive integer n such that(λ −A )nY = 0. Let Sp(A ) denote the root subspace of

A , that is a closed linear span of all generalized eigenfunctions of A . A sequence in H is said

to be complete in H if its linear span is dense in H .

Theorem 2.1. The root subspaces of both A and A ∗ are complete in H :Sp(A ) =Sp(A ∗) =

H .
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Proof. We only show the completeness for the root subspace of A because the proof for that

of A ∗ is almost the same. It follows from [4, lemma 5, p.2355] that the following orthogonal

decomposition holds:

H = σ∞(A
∗)⊕Sp(A ),

where σ∞(A ∗) consists of those Z ∈ A so that R(λ ,A ∗)Z is an analytic function of λ in the

whole complex plane. Hence, Sp(A ) = H , if and only σ∞(A ∗) = {0}. Now suppose that

Z ∈ σ∞(A ∗). Since R(λ ,A ∗)Z is an analytic function in λ , it is also analytic in ρ . By means of

the maximum modulus principle (or the Phragemé-Lindelöf theorem), [5,Lemma 2.5] and the

fact that ‖R(λ ,A ∗)‖= ‖R(λ̄ ,A )‖, it can seen that

R(‖λ ,A ∗)‖ ≤C(1+ |λ |)‖Z‖), ∀λ ∈C

for some constant C > 0. By [7,Th.1,P.3], we conclude that R(λ ,A ∗Z) is a polynomial in λ of

degree ≤ 1, that is R(λ ,A ∗)Z = Z2+λZ1 for some Z2,Z1 ∈H Therefore,Z = (λ −A ∗)(Z2+

λZ1), or

−A ∗Z2 +λ (Z2−A ∗Z1)+λ
2Z1 = Z, ∀λ ∈ c.

Thus, Z1 = Z2 = Z = 0. The proof is complete.

We now study peroperty of basis of Hilber space. A sequence in a Hilbert space H is called

minimal if each element of this sequence lies outside the closed linear span of the remaining

elements.Two sequences{ei} and {e∗i }in H are said to be biorthogonal if

〈ei,e∗j〉= δi j =
1,i= j
0,i 6= j

for every i and j. It is well know that for a given sequence {ei} a biorthogonal sequence {e∗i }

exists if and only if {ei} is minimal,and that {e∗i } is uniquely determined if and only if {ei}

is complete.A sequence {ei}i =∞
1 is called a Bessel sequence in H if for any x ∈ H, the series

{〈x,ei〉}∞
i=1 ∈ l2. A sequence {ei}∞

i=1 is called a basis for H if any element x ∈ H has a unique

representation

x =
∞

∑
i=1

aiei . (2.5)

and the convergence of the series is in the norm of H.A sequence {ei}∞
i=1

with birorthogo-

nal sequence {e∗i }∞
i=1 is called a Riesz basis for H if {e∗i }∞

i=1 is an approximately normalized
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basis for H and the series in (2.5) converges unconditionally in the norm of H. Equivalently,

{ei}∞
i=1(or{e∗i }∞

i=1 is a Riesz basis for H if and only if the following two conditions are satisfied

[16,p.27]:

a) both {ei}∞
i=1 and {e∗i }∞

i=1 are complete in H;

b) both {ei}∞
i=1 and {e∗i }∞

i=1 are Bessel sequence in H.

Theorem 2.2. The generalized eigenfunctions of A form a Riesz basis for H .

Proof. In view of the [5, Lemma 2.2] ,we may assume without loss of generality that σ(A ) =

σ(A ∗) = {λn, λ̄n}∞
n=1. Corollary 2.1 tells us that there exists an integer N > 0 such that all

λn, λ̄n,n ≥ N are algebraically simple.Assume that the algebraic multiplicity of each λn is mn

for n≤ N.We say that Φn,1 is the highest-order generalized eigenvector of A if

(A −λn)
mnΦn,1 = 0 but (A −λn)

mn−1
Φn,1 6= 0.

Then, the other lower order linearly independent generalized eigenvectors associated with λ

can be found through

Φn, j = (A −λn)
j−1

Φn,1, j = 2,3, · · ·mn.

Assume Φn is an eigenfunction of A corresponding to λn with n≥ N. Then {{Φn, j}mn
j=1}n<N ∪

{Φn}n≥N ∪ {their conjugates} are all linearly independent generalized eigenfunctions of A .

Let {{Φ∗n, j}
mn
j=1}n<N ∪{Φ∗n}n≥N be the biorthogonal sequence of {{Φn, j}mn

j=1}n<N ∪{Φn}n≥N .

Then, {{Φn, j}mn
j=1}n<N ∪{Φ∗n}n≥N ∪{their conjugates} are all linearly independent generalized

eigenfunctions of A ∗. It is well-known that these two sequences are minimal in H and from

Theorem 2.1, they are also complete in A .

According to the definite of a Riesz basis,it suffices to show that both {Φn}n≥N and {Φ∗n}n≥N

are Bessel sequences in H Since 1 ≤ ‖Φn‖|Φ∗n‖ ≤ M for some constant M independent of

n [8,p.19],we may assume without loss of generality that Φn = (φn,λnφn,αn) [5, (2.10)] and

Φ∗n = ( fn,gnβn)[5, (2.13)] for all n≥ N. Then,it follows from [5,Lemma 2.6] that all sequences

{φ ′′n }∞
n=N ,{λnφn}∞

n=N and { f ′′n }∞
n=N ,{g′′n}∞

n=N are Bessel sequences in L2(0,1) and {αn}∞
n=N and

{βn}∞
n=N are Bessel sequences in C ,so are {φn}n≥N and {φ∗n }n≥N in H . The result follows.

The following theorem is immediately a corollary of the theorem 2.2 above, which provides

important semigroup generation by the system operator.
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Theorem 2.3. The operator A generates a C0-semigroup eA on H .

The next theorem shows that the beam system (2.4) is exponential stable.

Theorem 2.4. The beam trajectories system (2.4) converges exponentially to the zero eigenspace.

Precisely, there exist constants M,ω > 0, such that any mild solution Z(t) [13]to the (2.4) with

initial value Z0 = ( f ,g,α) ∈H satisfies

‖Z(t)−〈Z0,Ψ
∗
0〉Φ0‖ ≤Me−ωt‖Z0‖,

where

〈Z0,Ψ
∗
0〉Φ0 = (x2−2x,0,2)

∫ 1

0
g(τ)dτ. (2.6)

Proof. From the Theorem 2.2 and the [5,Corollary 2.1], the eigenvalue λn for n large enough is

simple and we can choose a sequence

{Φ0}∪{(Φn, j,Φ̄n, j) : 1≤ j ≤ mn, n = 1,2, · · ·}

of generalized eigenfunctions of A to form a Riesz basis for H , Where mn denotes the alge-

braic multiplicity of eigenvalue λn.Denote by

{Ψ∗0}∪{(Ψ∗n, j,Ψ̄∗n, j) : 1≤ j ≤ mn, n = 1,2, · · ·}

its corresponding biorthogonal system. Without loss of generality, we may assume that all λn

for n≥ 1 are simple. Then for any initial state Z0 = ( f ,g,α) ∈H , we have

Z0〈Z0,Φ
∗
0〉Φ0 +

∞

∑
n=1
〈Z0,Φ

∗
n〉Φn +

∞

∑
n=1
〈Z0,Φ̄

∗
n〉Φ̄n.

Let eA t be the semigroup generated by A .Then,we get

Z(t) = eA tZ0 = 〈Z0,Φ
∗
0〉eA tΦ0 +

∞

∑
n=1
〈Z0,Φ

∗
n〉eA t

Φn

+
∞

∑
n=1
〈Z0,Φ̄

∗
n〉eA t

Φ̄n = 〈Z0,Φ
∗
0〉Φ0

+
∞

∑
n=1

eλnt〈Z0,Φ
∗
n〉+

∞

∑
n=1
〈Z0,Φ̄

∗
n〉eλ̄nt

Φ̄n.
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Since all nonzero eigenvalues satisfy Re λn < 0,it follows that there exists a constant δ > 0 such

that

‖Z(t)−〈Z0,Φ
∗
0〉Φ0‖= O(e−δ t)→ 0, t→ ∞.

Furthermore,we conclude from Φ0 = (x2−2x,0,2) in [5, Lemma 2.1] and Ψ∗0 = (0,1,0) in [5,

Lemma 2.4] that

〈Z0,Ψ
∗
0〉Φ0 = Φ0

∫ 1

0
g(τ)dτ.

This is (2.6). The proof is complete.

3. Sliding model control

Let us establish a sliding model control for the Euler-Bernoulli beam system (2.4):


dZ(t)

dt = A Z(t)+Bw(Z, t),

Z(0) = Z0,
(3.1)

where B is a bounded linear operator from H to H , w(Z, t) is the control of the beam system

(2.4) that is not continuous on the manifold S =CZ = 0, and C is a bounded linear operator with

S = S(Z) =CZ ∈ Rn.

Now, we consider the δ -neighborhood of sliding mode S =CZ = 0, where δ > 0 is an arbi-

trary given positive number. Using a continuous control w̃(z, t) to replace w(Z, t) in the system

(3.1) yields 
Ż = A Z +Bw̃(Z, t),

Z(0) = Z0,
(3.2)

where Ż = ∂Z/∂ t, and the solution of (3.2) belongs to the boundary layer ‖S(Z)‖ ≤ δ .

Let Ṡ(Z) = cŻ = 0. Applying C to the first equation of (3.2) leads to the following the

equivalent control:

weq(Z, t) =−(CB)−1C(A Z)

with assumption that (CB)−1 exists. Substitute weq(Z, t) into (3.1) to find

Ż = [I−B(CB)−1C]A Z . (3.3)
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Denote P = B(CB)−1C and A1 = (I−P)A , then (3.1) becomes

ż = A1z, z(0) = z0. (3.4)

In the rest part of this paper, we are going to show that the actual sliding mode Z(t) will

approach uniformly to the ideal sliding mode Z̄(t) under certain conditions.

Lemma 3.1 If (CB)−1 is a compact operator and PA = A P, then A1 = (I−P)A generates a

C0-semigroup T2(t) in H and T2(t) = (I−P)T1(t), where T1(t) is the C0-semigroup generated

by A .

Proof. Since (CB)−1 is a compact operator, B and C are bounded linear operators, we see from

the definition of P that P is compact, and therefor the range of I−P is a closed subspace of H .

Since P2 = P and (1−P)2 = I−P, I−P can be viewed as the identity operator on (I−P)H .

It can be easily seen that T2(t) = (I−P)T1(t) is a C0-semigroup in (I−P)H .

Next, we shall prove that the infinitesimal generator of T2(t) is (I−P)A and D((I−P)A ) =

(I−P)D(A ).

In fact, for every x ∈ (I−P)D(A ), there is a x1 ∈ D(A ) such that x = (I−P)x1. It should

be noted that T1(t) and I−P are commutative because A and P are commutative. We see that

lim
t→0+

T2(t)x− x = lim
t→0+

(I−P)T1(t)(I−P)x1− (I−P)x1

= lim
t→0+

(I−P)2T1(t)x1− (I−P)x1

= lim
t→0+

(I−P)T1(t)x1− (I−P)x1

= (I−P) lim
t→0+

T1(t)x1− x1

= (I−P)A x1.

Let ˜A be the infinitesimal generator of T2(t). Since the limit on the left exists, we can assert

that x ∈D( ˜A ) and (I−P)D(A )⊆D( ˜A ).
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On the other hand, for any x ∈ D( ˜A ), since D( ˜A ) ⊆ (I−P)H , there exists x̃ ∈H , such

that x = (I−P)x̃, and

lim
t→0+

T2(t)x− x = lim
t→0+

T2(t)(I−P)x̃− (I−P)x̃

= lim
t→0+

(I−P)T1(t)x̃− (I−P)x̃

= (I−P) lim
t→0+

T1(t)x̃− x̃

= (I−P)A x̃.

Since the limit of the left hand side exists, and so the limit of the right hand side exists, and

x̃ ∈ D(A ) which implies that D( ˜A ) ⊆ (I−P)D(A ). Thus, D( ˜A ) = (I−P)D(A ) and ˜A ,

the infinitesimal generator of T2(t), is (I−P)A . The proof of the lemma is complete.

Theorem 3.2 Suppose that in the beam system (3.1),

(1) (CB)−1 exists and it is compact,

(2) PA = A P, where P = B(CB)−1C.

Then for any solution Z(t) of the system (3.4) satisfying S(Z̄0) = 0, Z̄0 ∈D(A1) and ‖Z0− Z̄0‖≤

δ , Z0 ∈D(A ), we have

lim
δ→0
‖Z(t)− Z̄(t)‖= 0

uniformly on [0,T ] for any positive number T .

Proof. We see from the Theorem 2.3 and Lemma 3.1 that A and A0 = (I−P)A are infin-

itesimal generators of C0-semigroups T1(t) and T2(t) respectively. It follows from theory of

semigroup of linear operators that there are positive constants M1, M2, ω1 and ω2 such that

‖T1(t)‖ ≤M1eω1t , ‖T2(t)‖ ≤M2eω2t . (0≤ t ≤ T ) (3.5)

In the boundary layer ‖T1(t)‖ ≤ δ , the equivalent control is

weq(Z, t) =−(CB)−1CA Z +(CB)−1CŻ. (3.6)

Substitute (3.6) into (3,1) to find

Ż = (I−P)A Z +PŻ. (3.7)
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Hence, the solution of (3.7) can be expressed as follows:

Z(t) = T2(t)Z0 +
∫ t

0
T2(t− s)PŻ(s)ds, (3.8)

and therefore, the solution of (3.4) can be written as

Z(t) = T2(t)Z0. (3.9)

Substracting (3.9) into (3.8) yields

Z(t)−Z(t)

= T2(t)(Z0−Z0)+
∫ t

0
T2(t− s)PŻ(s)ds.

(3.10)

Since PA = A P, we see that PT1(t) = PT1(t). It should be emphasized that (I−P)P = 0 and

T2(t) = (I−P)T1(t), and consequently,

∫ t

0
T2(t− s)PŻ(s)ds =

∫ t

0
(I−P)T1(t− s)PŻ(s)ds

=
∫ t

0
T1(t− s)(I−P)PŻ(s)ds

= 0.

It can be obtained from (3.10) and (3.5) that

‖Z(t)− Z̄(t)‖ ≤ ‖T2(t)‖‖Z0− Z̄0‖ ≤M2eω2T‖Z0− Z̄‖.

Since ‖Z0− Z̄0‖ ≤ δ , we have

‖Z(t)− Z̄(t)‖ ≤M2eω2T
δ .

Thus,

lim
δ→0
‖Z(t)− Z̄0‖= 0.

The proof of the theorem is complete.

We see from the Theorem 3.2 that the solution of the beam system can be approximated by

ideal sliding mode in any accuracy.
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4. Conclusion

In this paper, the sliding model control problem for a flexible Euler-Bernoulli beam formulat-

ed by partial differential equations subject to the boundary shear force feedback is investigated.

An evolution equation corresponding to the beam system is established in an appropriate Hilbert

space. A spectral analysis and semigroup generation of the system operator of the beam sys-

tem are discussed. Finally, a sliding model control is proposed, and a significant result that the

solution of the beam system can be approximated by ideal sliding model under the control is

obtained.
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