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Abstract. In this paper we consider the semigroups of quasi-open transformations. A map f between topological

spaces X and Y is quasi-open if for any non-empty open set U ⊂ X , the interior of f (U) in Y is non-empty. We

give abstract characterizations of semigroups of continuous quasi-open transformations defined on an open set of

Euclidean n-space and semigroups of quasi-open mappings defined on a certain class of topological spaces.
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1. Introduction

Investigation of topological spaces by algebraic methods plays an important role in modern

mathematics. The basic method is to investigate topological spaces via groups, rings, semi-

groups and other structures of mappings. This allows one to recast statements about topological

spaces into statements about algebraic structures. Many researchers have focused their efforts

on the characterization of topological spaces by semigroups of continuous, open, closed, quasi-

open mappings defined on these spaces [2], [3],[5], [6], and [7].

In this paper we investigate semigroups of quasi-open mappings. A map f between topolog-

ical spaces X and Y is quasi-open if for any non-empty open set U ⊂ X , the interior of f (U) in
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Y is non-empty. If f and g are both continuous and quasi-open, then the function composition

is also continuous and quasi-open. Let CQ(X) denote the semigroup of continuous quasi-open

mappings from a topological space X into itself with composition of functions as the semi-

group operation. It is obvious that if X and Y are homeomorphic then the semigroups CQ(X)

and CQ(Y ) are isomorphic. We wonder if X and Y are homeomorphic whenever CQ(X) and

CQ(Y ) are isomorphic. In general, the answer is no. Let X denote any set with more than one

element and ξ ∈ X . Consider the topological spaces Y = (X ,τ1) and Z = (X ,τ2) where τ1 is the

trivial topology and τ2 = { /0,{ξ} ,X}. Evidently CQ(Y ) and CQ(Z) are isomorphic but Y and

Z are not homeomorphic.

In this paper we also investigate semigroups of quasi-open mappings in light of lattice-

equivalence. Let Q(X) denote the semigroup of quasi-open maps of a topological space X .

If Q(X) and Q(Y ) are isomorphic, must X and Y be homeomorphic. Let X denote any set

with more than two elements containing the elements η ,ξ . Consider the topological spaces

Y = (X ,τ1) and Z = (X ,τ2) with τ1 = {�,{η} ,X} and τ2 = {�,{η} ,X 8{ξ} ,X}. Evidently

Q(Y ) and Q(Z) are isomorphic but Y and Z are not homeomorphic.

The purpose of this paper is to give abstract characterizations of semigroups of continuous

quasi-open transformations defined on an open set of Euclidean n-space and semigroups of

quasi-open mappings defined on a certain class of topological spaces.

2. A characterization of semigroups of continuous quasi-open mappings

We denote by Rn the n-dimensional Euclidean space with standard topology.

Theorem 2.1. Let X and Y be open subsets of Rn and Rm respectively, (n,m > 1). The semi-

groups CQ(X) and CQ(Y ) are isomorphic if and only if the spaces X and Y are homeomorphic.

Proof. It is obvious that if X and Y are homeomorphic then CQ(X) and CQ(Y ) are isomorphic.

Specifically, if h : X → Y is a homeomorphism between X and Y , then f → h f h−1 is an iso-

morphism between CQ(X) and CQ(Y ). The necessity of the condition follows from Lemmas

2.2-2.7.
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Throughout this paper, ϕ denotes an isomorphism between semigroups CQ(X) and CQ(Y ).

Without loss of generality we can assume that X and Y are bounded open sets.

We denote by CQ0 (X) a subset of CQ(X) consisting of all f ∈CQ(X) for which f (X)⊂ K f

for some compact subset of X . The set CQ0 (X) is an ideal of CQ(X).

Lemma 2.2. Let f ,g ∈CQ(X). Then, from g(X) ⊆ f (X) it follows that ϕg(Y ) ⊆ ϕ f (Y ). In

addition, if ϕ f ∈CQ0(Y ) then ϕg(Y )⊂ ϕ f (Y ).

Proof. Let κ′(ϕ f ) = τ ′(ϕ f ) for some κ′,τ ′ ∈CQ(Y ). Since ϕ is an isomorphism, there exist

κ,τ ∈CQ(X) such that κ́=ϕκ and τ́ =ϕτ . Then (ϕκ)(ϕ f )= (ϕτ)(ϕ f ) and ϕ(κ f )=ϕ(τ f ).

Again, because ϕ is an isomorphism we get κ f = τ f . From g(X) ⊆ f (X) it follows that for

any point x1 ∈ X there is a point x2 ∈ X such that g(x1) = f (x2). Then

κg(x1) = κ(g(x1)) = κ( f (x2)) = κ f (x2) = τ f (x2) = τ( f (x2)) = τ(g(x1)) = τg(x1),

which shows that κg = τg. But since ϕ is an isomorphism we have ϕ(κg) = ϕ(τg) and

ϕ(κ)ϕ(g) = ϕ(τ)ϕ(g). Hence κ′ϕ(g) = τ ′ϕ(g).

Now suppose that the condition ϕg(Y )⊆ ϕ f (Y ) does not hold, i.e. the set ϕg(Y )\ϕ f (Y ) is

not empty. Let y′= (ϕg)y be an arbitrary point of ϕg(Y )\ϕ f (Y ). Since the set ϕg(Y )\ϕ f (Y )

is open there exists a closed n-ball E ⊂ ϕg(Y ) \ϕ f (Y ) centered at y′. Let φ be any homeo-

morphism of E, which is constant on the boundary and φ(y′) 6= y′. Then the transformation

γ : Y → Y defined by

γ(y) =

 y, if y ∈ Y \E,

φ(y), if y ∈ E,

is continuous and quasi-open.

Now let κ′ be a homeomorphism of Y . Then for the transformation τ ′ = κ′γ and for every

y ∈ Y we have

τ
′(ϕ f )y = τ

′((ϕ f )y) = κ′γ((ϕ f )y) = κ′((ϕ f )y) = (κ′(ϕ f ))y.

But for the point y′ = (ϕg)y ∈ ϕg(Y )\ϕ f (Y ) we have κ′(y′) 6= τ ′(y′). Consequently,

(κ′(ϕg))y = κ′((ϕg)y) = κ′(y′) 6= τ
′(y′) = τ

′((ϕg)y) = (τ ′(ϕg))y.

This contradiction proves the first assertion.
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Now let ϕ f ∈CQ0(Y ). For the second assertion notice that ϕ f (Y ) is a closed and bounded

set but ϕg(Y ) is an open set.

Lemma 2.3. Let f ,g be arbitrary elements of CQ0(X) such that f (X)∩g(X) 6= /0 and ϕ f ,ϕg ∈

CQ0(Y ). Then

Int
[
(ϕ f )Y ∩ (ϕg)Y

]
6= /0.

Proof. Let E be a closed n-ball in f (X)∩ g(X), let E1 be a closed n-ball containing X and

let τ̃ denote the homeomorphism from E1 onto E. Now let τ denote the restriction of this

homeomorphism to X . Clearly, τ ∈CQ0(X) and we have τ(X)⊂ E ⊂ f (X), τ(X)⊂ E ⊂ g(X).

By Lemma we must have (ϕτ)(Y ) ⊆ (ϕ f ) f (Y ) and (ϕτ)(Y ) ⊆ (ϕg) f (Y ), i.e., (ϕτ)(Y ) ⊆

(ϕ f ) f (Y )∩ (ϕg) f (Y ). Therefore Int
[
(ϕ f )Y ∩ (ϕg)Y

]
6= /0.

Let x ∈ X and fk ∈ CQ(X) for k = 1,2, .... We say that the sequence { fk}∞

k=1 of mappings

converges to x if the following three conditions are satisfied

(1) fk ∈CQ0(X), (ϕ fk) ∈CQ0(Y ) for k = 1,2, ...,

(2) fk+1(X)⊂ fk(X) and (ϕ fk+1)(Y )⊂ (ϕ fk)(Y ) for k = 1,2, ...,

(3) ∩∞
k=1 fk(X) = {x}.

Lemma 2.4. Let x ∈ X. There exists a sequence { fk}∞

k=1 converging to x.

Proof. Let x ∈ X . Note that the set CQ0 (Y ) is an ideal of CQ(Y ). Then the set ϕ−1(CQ0 (Y ))

is an ideal of CQ(X) and hence

(1)

 CQ0(X) ·ϕ−1(CQ0 (Y ))⊆CQ0(X),

CQ0(X) ·ϕ−1(CQ0 (Y ))⊆ ϕ−1(CQ0 (Y )).

First, let us show that there exists h ∈ CQ0(X) such that x ∈ h(X) and ϕh ∈ CQ0 (Y ). Let

d ∈ ϕ−1(CQ0 (Y )), let E1 be a closed n-ball containing X and let E2 be a closed n-ball such

that E2 ⊂ d(X). Further, let Ẽ1 and Ẽ2 be two closed n-balls in X centered at x such that

Ẽ2 ⊂ Ẽ1. There exists a homeomorphism κ̃ from E1 onto Ẽ1 such that κ̃(E2) = Ẽ2. Let κ be the

restriction of this homeomorphism to X and let h=κd. From (1) it follows that h∈CQ0(X) and

h ∈ ϕ−1(CQ0 (Y )). Hence ϕh ∈CQ0 (Y ). Since E2 ⊂ d(X) and κ̃(E2) = Ẽ2 we have x ∈ h(X).
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Now, let E3,E4 be closed n-balls in h(X) centered at x such that x ∈ E4 ⊂ E3. There exists

a homeomorphism κ̃1 from E1 onto E3 such that κ̃1(E2) = E4. Let f1 be the restriction of this

homeomorphism to X and let x1 = f−1
1 (x). Clearly f1 ∈CQ0(X), x1 ∈ E2 and x ∈ f1(X). Since

f1(X)⊂ E3 ⊂ h(X), it follows from Lemma that ϕ f1 (Y )⊆ ϕh(Y ) and from ϕh ∈CQ0 (Y ) we

get ϕ f1 ∈CQ0(Y ).

To the point x1 there corresponds a mapping h1 ∈ CQ0(X) such that ϕh1 ∈ CQ0 (Y ) and

x1 ∈ h1(X). Let Ẽ3 be a closed n-ball in h1(X) centered at x1. Clearly x ∈ f1

(
Ẽ3

)
. Then let us

choose closed n-balls E5,E6 in f1

(
Ẽ3

)
∩E4 centered at x such that x ∈ E6 ⊂ E5. There exists

a homeomorphism κ̃2 from E1 onto E5 such that κ̃2(E2) = E6. Let f2 denote the restriction of

this homeomorphism to X and let x2 = f−1
2 (x). Clearly f2 ∈CQ0(X), x2 ∈ E2 and x ∈ f2(X).

By the definition, we have f2(X) ⊂ E5 ⊂ f1(X) but then f2(X) ⊂ E5 ⊂ f1(X) and by Lemma

ϕ f2 ∈CQ0(Y ). Let c1 denote the element f−1
1 f2 ∈CQ0(X). Clearly f1c1 = f2. Since c1(X)⊂

f−1
1 f2(X)⊂ Ẽ3 ⊂ h1(X), it follows from Lemma that ϕc1 (Y )⊆ ϕh1 (Y ). From ϕh1 ∈CQ0 (Y )

we get ϕc1 ∈CQ0 (Y ). Then there exists a compact subset Kϕc1 in Y such that ϕc1(Y )⊂ Kϕc1 .

Since ϕ is an isomorphism, we have (ϕ f1)(ϕc1) = ϕ f2. Thus ϕ f2(Y ) = (ϕ f1)(ϕc1)(Y ) ⊆

(ϕ f1)((ϕc1)(Y ))⊆ (ϕ f1)
(
Kϕc1

)
= (ϕ f1)

(
Kϕc1

)
⊂ ϕ f1 (Y ) and hence condition 2 holds.

This process yeilds the sequence { fk}∞

k=1converging to x. Indeed, the constructed sequence

{ fk}∞

k=1 satisfies the conditions 1 and 2. This sequence satisfies the condition 3 if the sequence

{rk}∞

k=1 converges to 0, where rk is the radius of the corresponding closed n-ball Ek.

Lemma 2.5. Let x ∈ X and let { fk}∞

k=1 be the sequence converging to x. There exists a unique

point θx∈Y such that the sequence {ϕ fk}∞

k=1 converges to θx and the point θx does not depend

on the choice of the sequence { fk}∞

k=1.

Proof. The sequence {ϕ fk}∞

k=1 satisfies the conditions 1 and 2. Indeed if (ϕ fk) ∈CQ0(Y ) then

ϕ−1(ϕ fk)= fk and therefore ϕ−1(ϕ fk)∈CQ0(X). If (ϕ fk+1)Y ⊂ (ϕ fk)Y then (ϕ−1(ϕ fk+1))X ⊂

(ϕ−1(ϕ fk))X . Let us show that

(2) ∩∞
k=1(ϕ fk)(Y ) = ∩∞

k=1(ϕ fk)(Y ).

For sake of contradiction, suppose that there exists a point y such that y ∈ ∩∞
k=1(ϕ fk)Y but

y /∈ ∩∞
k=1(ϕ fk)Y . Then there exists a natural number m such that y ∈ (ϕ fm)Y \ (ϕ fm)Y . Since
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(ϕ fm+1)Y ⊂ (ϕ fm)Y and y /∈ (ϕ fm)Y we must have y /∈ (ϕ fm+1)Y and hence y /∈ ∩∞
k=1(ϕ fk)Y

contradicting the assumption that y ∈ ∩∞
k=1(ϕ fk)Y . The set ∩∞

k=1(ϕ fk)Y is not empty as the

intersection of nested closed sets and therefore the set ∩∞
k=1(ϕ fk)Y is not empty.

Now let y ∈ ∩∞
k=1(ϕ fk)Y . Suppose that the set ∩∞

k=1(ϕ fk)(Y ) contains another point y′. Let{
h′k
}∞

k=1 be a sequence which converges to y. Since y ∈ (ϕ fi)Y and y ∈ h′j(Y ) for any i, j, it

follows that

(3) y ∈ (ϕ fi)(Y )∩h′j(Y )

for all naturals i, j and ∩∞
k=1h′k(Y ) = ∩

∞
k=1h′k(Y ) = {y}. Then there exists a natural number m

such that y′ /∈ h′k(Y ) whenever k > m. Let h j denote the mapping ϕ−1(h′j). Then (ϕ−1h′j+1)X ⊂

(ϕ−1h′j)X and hence h j+1(X) ⊂ h j(X). Now suppose that x /∈ h jX for some natural j. Then

x /∈ h j+1X and hence there exists a natural number i such that

(4) fi(X)∩h j+1(X) = /0.

From (3) it follows that y ∈ (ϕ fi)(Y )∩ h′j+1(Y ) and by Lemma we get fi(X)∩ h j+1(X) 6= /0

which contradicts (4). Thus for any natural number j the point x belongs to h j(X). Since the

sequence { fk}∞

k=1converges to x we must have fk(X)⊆ h j(X) for every natural number k > k j,

for some k j. By Lemma we get (ϕ fk)(Y ) ⊂ h′j(Y ) for k > k j and therefore y′ /∈ (ϕ fk)(Y ) for

k > k j, j > m. This contradiction proves that the set ∩∞
k=1(ϕ fk)(Y ) consists of one point and

∩∞
k=1(ϕ fk)(Y ) = ∩∞

k=1(ϕ fk)(Y ) = {y}.

Let us denote the point y by θ(x) and prove that the point θ(x) does not depend on the

choice of the sequence { fk}∞

k=1. Let {gk}∞

k=1 be another sequence converging to x. Then for

any natural number k there exists a natural number ik such that fi(X)⊂ gk(X) whenever i > ik.

By Lemma we have (ϕ fi)(Y ) ⊂ (ϕgk)(Y ). Since the set ∩∞
i=1(ϕ fi)(Y ) consists of one point y,

then y ∈ (ϕ fi)(Y ) for any natural number i, and y ∈ (ϕgk)(Y ) for any natural number k as well.

We can similarly show that

∩∞
k=1(ϕgk)(Y ) = ∩∞

k=1(ϕgk)(Y ).

Hence ∩∞
i=1(ϕ fi)(Y ) = ∩∞

k=1(ϕgk)(Y ) = ∩∞
k=1(ϕgk)(Y ) = {y}, i.e. the point y = θ(x) does not

depend on the choice of the sequence { fk}∞

k=1.
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Let θ : X → Y denote the function which maps a point x ∈ X to the point y = θ(x) ∈ Y .

Lemma 2.6. Let f be an element of CQ0(X) such that ϕ f ∈CQ0 (Y ). If x ∈ f (X) then θ(x) ∈

ϕ f (Y ) .

Proof. Let x ∈ f (X) and { fk}∞

k=1 be a sequence converging to x. Then there exists a natural

number i, such that fk(X) ⊂ f (X) for all k > i. The sequence { fk}∞

k=i also converges to x and

by Lemma it follows that the sequence {ϕ fk}∞

k=iconverges to y, where y = θ(x) ∈ (ϕ fi)(Y ).

Since fi(X) ⊂ f (X), by Lemma it follows that (ϕ fi)(Y ) ⊂ (ϕ f )(Y ) and therefore y = θ(x) ∈

ϕ f (Y ) .

Lemma 2.7. The function θ : X → Y is a homeomorphism.

Proof. The map θ : X → Y is surjective. Indeed, let y be any point in Y and
{

f ′k
}∞

k=1 be a

sequence converging to y. Then the sequence
{

ϕ−1 f ′k
}∞

k=1converges to some point x in X such

that θx = y.

Let us show that θ is injective. Suppose that θx1 = θx2 = y′ for some x1,x2 ∈ X , x1 6= x2. Let

{ fk}∞

k=1 and {gk}∞

k=1 be the sequences converging to x1 and x2, respectively. Then the sequences

{ϕ fk}∞

k=1 and {ϕgk}∞

k=1converge to y′, but then the sequences
{

ϕ−1(ϕ fk)
}∞

k=1 = { fk}∞

k=1 and{
ϕ−1(ϕgk)

}∞

k=1 = {gk}∞

k=1 must converge to a unique point. Hence x1 = x2 contradicting the

assumption that x1 6= x2.

Let us now show that θ and θ−1 are continuous. Let U be any open neighborhood of

θx, E be a closed n-ball in Y centered at θ(x) such that E ⊂ U , and { fk}∞

k=1 be a sequence

converging to some point x. Then it follows from Lemma that ∩∞
k=1(ϕ fk)(Y ) = {θx} and

(ϕ fk+1)(Y )⊂ (ϕ fk)(Y ). Therefore (ϕ fk)(Y )⊂ E for some natural k. Since x ∈ fk(X) and the

set fk(X) is an open set, there exists an open neighborhood V of x, such that V ⊂ fk(X). Then

it follows from Lemma that θ(V ) ⊂ θ( fkX) ⊂ (ϕ fk)(Y ) ⊂ E ⊂ U . Thus the function θ is

continuous. A similar proof shows that θ−1 is continuous and thus θ is a homeomorphism.

3. An abstract characterization of semigroups of quasi-open maps
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A topological space X is said to be a TD-space if for every point ξ in X the set
{

ξ

}
r {ξ}

is closed [4]. We denote the set
{

ξ

}
r{ξ} by {ξ}′. Obviously, each TD-space is T0-space and

each T1-space is TD-space.

Lemma 3.1. Let X be a TD-space with no isolated points and let ξ ∈ X and let a,b be arbitrary

elements of Q(X). The condition

(5) ∀ f ,g ∈ Q(X), f a = ga→ f b = gb

is necessary and sufficient for b(X)⊆ a(X).

Proof. If the condition b(X)⊆ a(X) is satisfied, then for every x ∈ X there exists a point ξ ∈ X

such that b(x) = a(ξ ). Then

f b(x) = f (b(x)) = f (a(ξ )) = f a(ξ ) = ga(ξ ) = g(a(ξ )) = g(b(x)) = gb(x).

So, condition (5) holds.

Now let condition (5) hold for some a,b ∈ Q(X). Suppose that the set b(X)8a(X) is not

empty. For any point ξ = b(x) in b(X)8a(X) there exist f ,g ∈ Q(x), such that f (ξ ) 6= g(ξ ) but

f (x) = g(x) for all x ∈ X\{ξ}. Indeed, select a point ξ in X and consider the map f : X → X

defined by

f (x) =

 η1 if x = ξ ,

x if x 6= ξ ,

and the map g : X → X defined by

g(x) =

 η2 if x = ξ ,

x if x 6= ξ ,

where η1 6= η2 are any fixed points in X \{ξ}. The maps f and g are quasi-open and we have

f (ξ ) 6= g(ξ ) but f (x) = g(x) for all x ∈ X\{ξ}. Then for every x ∈ X the point a(x) is in

X\{ξ} and therefore f a(x) = f (a(x)) = g(a(x)) = ga(x). But for ξ = b(x) ∈ b(X)8a(X) we

have f b(x) = f (b(x)) = f (ξ ) 6= g(ξ ) = g(b(x)) = gb(x) which contradicts to (5).

Lemma 3.2. Let X and Y be TD-spaces with no isolated points and let ϕ : Q(X)→ Q(Y ) be an

isomorphism between semigroups Q(X) and Q(Y ). If a(X) ⊆ b(X) for some a,b ∈ Q(X) then

(ϕa)(Y )⊆ (ϕb)(Y ). Hence if a(X) = b(X) for some a,b ∈ Q(X) then (ϕa)(Y ) = (ϕb)(Y ).
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Proof. Suppose that b(X) ⊆ a(X). If f (́ϕa) = ǵ(ϕa) for some elements f ,́ ǵ ∈ Q(Y ) then

there exist f ,g ∈ Q(X) such that f´= ϕ f and ǵ = ϕg. Then (ϕ f )(ϕa) = (ϕg)(ϕa) and since

ϕ is an isomorphism, ϕ( f a) = ϕ(ga) and f a = ga. We have f b = gb, by Lemma . Again,

since ϕ is an isomorphism, then (ϕ f )(ϕb) = (ϕg)(ϕb) and therefore f (́ϕb) = ǵ(ϕb). Because

f (́ϕb) = ǵ(ϕb) is true for every f ,́ ǵ ∈ Q(Y ) satisfying the condition f (́ϕa) = ǵ(ϕa) it follows

from Lemma that (ϕb)(Y ) ⊆ (ϕa)(Y ). In the same way, we could show that if a(X) ⊆ b(X)

then (ϕa)(Y )⊆ (ϕb)(Y ).

Let X be a TD-space with no isolated points that has an open base, each element of which is

an image of X under a quasi-open mapping and let Λ be a class of all such spaces. For instance,

the open subsets of the α-cube Iα , α > 1, the set R of real numbers with Zariski topology and

any topological space X , |X |> ℵ0, with cofinite topology belong to the class Λ.

Lemma 3.3. Let X ∈ Λ and let U be any open subset of X. Then there exists a quasi-open

mapping a ∈ Q(X) such that a(X) =U.

Proof. Let X ∈ Λ and ℑ is an open base of X . Suppose that U is an open subset of X and

i : U → X is the inclusion map, which is open map. Let V1 ∈ ℑ and V1 ⊂U , then there exists a

quasi-open mapping f from X onto V1. Consider the restriction of f to X \U . Since restriction

of a quasi-open map to an open set is quasi-open, this map is quasi-open. Denote by g the

extension of this mapping to X \U obtained by assigning all boundary points of U to any fixed

point in U . The mapping a : X →U defined by

a(x) =

 i(x), if x ∈U,

g(x), if x ∈ X \U,

is a quasi-open map and a(X) =U .

Let X be a topological space. The family O(X) of all open sets of X is a complete distribu-

tive lattice if set inclusion is taken as the ordering. By the duality principle for ordered sets,

two topological spaces X and Y are homeomorphic if and only if lattices O(X) and O(Y ) are

isomorphic [4].

Lemma 3.4. Let X ,Y ∈ Λ. If the semigroups Q(X) and Q(Y ) are isomorphic then the lattices

O(X) and O(Y ) are lattice-isomorphic.
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Proof. Let U be any open subset of X . By Lemma there exists a quasi-open function a ∈Q(X)

such that a(X) =U . Since the semigroups Q(X) and Q(Y ) are isomorphic there exists a quasi-

open function a′ ∈ Q(Y ) such that ϕa = a′. Let a′(Y ) = U ′. We define a map θ from O(X)

to O(Y ) by assinging to each open set U ⊂ X the set U ′ ⊂ Y . The map θ does not depend on

the choice of a ∈ Q(X). Indeed , if a(X) =U and b(X) =V then Lemma says that (ϕa)(Y ) =

(ϕb)(Y ) = U ′. Let U and V be any two different open subsets of X . By Lemma there exist

two quasi-open functions a,b ∈Q(X) such that a(X) =U and b(X) =U . Since the semigroups

Q(X) and Q(Y ) are isomorphic it follows from Lemma that (ϕa)Y 6= (ϕb)Y . Hence θ is

bijective. Now suppose that U ′ is an arbitrary open set in Y . Since the semigroups Q(X) and

Q(Y ) are isomorphic it follows from Lemma that there exists an open set U ⊂ X such that

θ(U) = U ′. Again it follows from Lemma that if U ⊆ V then θ(U) ⊆ θ(V ). From Theorem

2.1 of [4] it follows that the topological spaces X and Y are homeomorphic.

Theorem 3.5. Let X ,Y ∈ Λ. The semigroups Q(X) and Q(Y ) are isomorphic if and only if the

spaces X and Y are homeomorphic.

Proof. It is obvious that if X and Y are homeomorphic then Q(X) and Q(Y ) are isomorphic.

Specifically, if h is a homeomorphism from X onto Y , then f → h f h−1 is an isomorphism from

Q(X) onto Q(Y ). The proof of the necessary condition follows from Lemmas -.
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