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Abstract: In this paper, we characterized the Green’s relation on 𝐶𝐼𝑛; the contraction mapping injective partial 

transformation semigroup on n-objects. Using two parameters 𝐹(𝑛, 𝑝). We found that the order of L-classes and 𝑅 −

𝑐𝑙𝑎𝑠𝑠 are the same but 𝐷 − 𝑐𝑙𝑎𝑠𝑠 is different.  
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1. Introduction and Preliminaries  

A Semigroup is an algebraic structure consisting of a nonempty set S together with an 

associative binary operation. A transformation on X is a function from X to itself. 

Transformation semigroups are one of the most fundamental mathematical objects. They occur 

in theoretical computer science, where properties of language depend on algebraic properties of 

various transformation semigroups related to them. 

Let 𝐼𝑛 be the symmetric inverse semigroup on 𝑋𝑛 = {1,2, … 𝑛}  .  Let  nX n ,...,2,1 , then a 

(partial) transformation  Im:  nXDom is said to be full or total, if nXDom  . 

Otherwise it is called strictly partial. 

The set of all partial transformations on n-objects form a semigroup under the usual composition 

of transformation, which is denoted by nP when it is partial, nT  when it is full or total and nI  

when it is partial one-one. The elements nI  are usually called chart. All these are the three 

fundamental transformation semigroups which were introduced by [1]. The semigroup nI form 
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the basis of our study in this research. A transformation   for which |𝑥𝛼 − 𝑦𝛼| ≤ |𝑥 −

𝑦| ∀ 𝑥, 𝑦 ∈ 𝐶𝐼𝑛 is said to be a contraction mapping.
 

The combinatorial and algebraic properties of transformation semigroup have been studied and 

interesting results have emerged. Many researchers have studied combinatorial and algebraic 

properties of different classes of transformation semigroup. 

[4] studied some semigroups of full contraction mapping on a finite chain and [3] studied 

identity difference transformation semigroups. 

 

Green's relations. 

The notation of ideals natural [1] to the consideration of certain equivalence relations on a 

semigroup, these equivalences have played a fundamental role in the development of semigroup 

theory. Each 𝐷-class in a semigroup S is a union of 𝐿-classes and R-classes. The intersection of 

𝐿-classes and R-classes is either empty or is an 𝐻-class. Hence it is convenient to visualize a 𝐷-

class as egg box, in which each row represents an R-class, each column represent an 𝐿-class and 

each cell represents an 𝐻-class (it is possible for the egg box to contain a single row or a single 

column of cells, or even to contains only cell). 

 

2. Method and Procedure 

If 𝛼 ∈ 𝐶𝐼𝑛, using 𝑘𝑒𝑟𝛼 (i.e the partition of domain 𝛼) and I𝑚𝑎𝑔𝑒 𝛼 , we classify the elements of 

𝐶𝐼𝑛. 

Example 2.1 

For𝑛 = 3, 𝐶𝐼3 has 27 elements, element were arranged as follow: Each row represent an R-class 

and each column represent and L-class: 

 

|𝐼𝑚𝛼| = 3 

 

 

 

 

 

 

 ImKer   3,2,1  

321  









123

123









321

123
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2Im   

 ImKer   2,1   3,1   3,2  

21  










12

12









21

12
 

 










23

12









32

12
 

31  










12

13









21

13
 









13

13









31

13
 









23

13









32

13
 

32  










12

23









21

23
 

 










23

23









32

23
 

 

|𝐼𝑚𝛼| = 1 

 ImKer  1   2   3  

1 










1

1
 









2

1
 









3

1
 

2  










1

2
 









2

2
 









3

2
 

3  










1

3
 









2

3
 









3

3
 

 

|𝐼𝑚𝛼| = 0 

 ImKer   0  

  










321
 

 

From the above example the following result we obtained. We have 8 rows and 8 columns which 

implies that aa RL ,  and aH has 8 elements each classes. 

 

3. Main Result 

Based on our observation in the procedure used in section 2 above and ideals in [15], we propose 

the following results: 
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Lemma: 2.1   Let𝛼, 𝛽 ∈ 𝐶𝐼𝑛. Then 

(i)        𝛼𝑅𝛽 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑚(𝛼) = 𝑖𝑚(𝛼); 

(ii) 𝛼𝐿𝛽 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐷𝑜𝑚(𝛼) = 𝐷𝑜𝑚(𝛽); 

(iii) 𝛼𝐻𝛽 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑖𝑚(𝛼) = 𝑖𝑚(𝛽)𝑎𝑛𝑑 𝐷𝑜𝑚(𝛼) = 𝐷𝑜𝑚(𝛽); 

(iv) 𝛼𝐷𝛽 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟𝑎𝑛𝑘(𝛼) = 𝑟𝑎𝑛𝑘(𝛽);  

(v) 𝛼𝐽𝛽 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟𝑎𝑛𝑘(𝛼) = 𝑟𝑎𝑛𝑘(𝛽) 

Theorem 2.2 Let , 𝛽 ∈ nCI . Then the following result were obtained 

 (I)    
n

aL 2  for all 1n  

 (II)   
n

aR 2 For all 𝑛 ≥ 1  

 (III)    1 nDa For all 𝑛 ≥ 1  

 (IV)   1 nJ a For all 𝑛 ≥ 1 

Proof: It follows directly from Ganyushkin & Mazorechuk [15]. 

 

Remark 2.3: It has being observed that the cardinality of 𝐿-classes, 𝑅-classes, 𝐷- classes and 𝐻-

classes in contraction mapping injective partial transformation semigroup are the same as in 

partial one-to-one transformations semigroup for all 𝑛 ≥ 1. 

For some computed values of  pnF ;  for aa RandL see table 1 and for |𝐷𝑎| see table 2. 

 

Table 1. Number of elements of aa RandL in contraction mapping injective partial 

transformation semigroup. 

 

pn  0  1 2  3  4  5    aa RLpnF  ;  

0 1      1 

1 1 1     2 

2 1 2 1    4 

3 1 3 3 1   8 

4 1 4 6 4 1  16 

5 1 5 10 10 5 1 32 
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Table 2. Number of elements of |𝐷𝑎| in contraction mapping injective partial transformation 

semigroup  

  

pn  0  1 2  3  4  5  ∑ 𝐹(𝑛, 𝑝) = |𝐷𝑎| = |𝐽𝑎| 

0 1      1 

1 1 1     2 

2 1 1 1    3 

3 1 1 1 1   4 

4 1 1 1 1 1  5 

5 1 1 1 1 1 1 6 

   

 

Conclusion 

In this paper, combinatorial results of Green’s relation on semigroup of class of transformation 

called contraction mapping of injective partial transformation semigroup were studied using two 

parameters 𝐹(𝑛, 𝑝),  through the height and kernel of  𝛼  we classify elements of 𝐶𝐼𝑛 into 𝑅 −

𝑐𝑙𝑎𝑠𝑠, 𝐿 − 𝑐𝑙𝑎𝑠𝑠, 𝑎𝑛𝑑 𝐷 − 𝑐𝑙𝑎𝑠𝑠 .We found that the Semigroup 𝐶𝐼𝑛 contains 2𝑛 different 𝐿 −

𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 2𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑅 − 𝑐𝑙𝑎𝑠𝑠𝑒𝑠, 𝑎𝑛𝑑 𝑛 + 1 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝐷 − 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜  𝐽 −

𝑐𝑙𝑎𝑠𝑠𝑒𝑠. 
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