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1. INTRODUCTION: 

 In this section review of results on reverse derivations were presented. The reverse derivations 

on semi prime rings have been studied by Samman and Alyamani [9]. The authors obtain some 

characterizations of semi prime rings by using reverse derivations. The commutatively properties 

of a gamma ring with the derivations investigated [9] .The notion of orthogonality for two 

derivations on a semi prime ring initiated by Bresar and Vukman [6]. Some necessary and 

sufficient conditions for two orthogonal derivations to be  are obtained. They also obtained a 

counterpart of a result of Posner [8]. Argac, on orthogonal generalized derivations on a semi 

prime ring and they established some results concerning two generalized derivations on a semi 

prime ring are worked by Nakajima and Albas [1] Ozturk, Jun and Kim [7] worked on prime -

rings by means of derivations. 

This paper extends the results mentioned above to gamma rings case. The notions of 

orthogonality of two reverse derivations and conditions of two reverse derivations to be 

orthogonal are provided. We also obtain some characterizations of a semi prime gamma rings 

with orthogonal reverse derivations. 
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2. PREMILINARIES: 

Let us consider M and Γ be additive abelian groups. If there exists a mapping M×Γ×M → M : (x, 

α, y) → xαy which satisfies the conditions: for all a, b, c ∈ M, and α, β ∈ Γ, then M is called a Γ-

ring 

1.  (aαb)βc = aα(bβc) 

 2. a(α + β)b = aαb + aβb,  

      (a + b)αc = aαc + bαc, 

      aα(b + c) = aαb + aαc, 

The concepts of sub ring and ideal are imitated from the classical case. Throughout the paper, M 

denotes a Γ-ring with center Z(M).  If 2x = 0 for x ∈ M implies x = 0A ring, then  M is said to be 

2-torsion free.We write [x, y]α for xαy − yαx. Recall that a Γ-ring, If aΓMΓb = 0 implies a = 0 or 

b = 0, and it is called semi prime if aΓMΓa = 0 implies a = 0. A prime Γ-ring is obviously semi 

prime. A Γ-ring M is called commutative if [x, y]α = 0 for every x, y ∈ M and α ∈ Γ.  If d (xαy) 

= d(x)αy + xαd(y),for all x, y ∈ M, α ∈ Γ then an additive mapping d from M is called a 

derivation. 

We consider an assumption (*) xαyβz = xβyαz for all x, y, z ∈ M, α, β ∈ Γ. The basic 

commentator identities given by [xβy, z]α = xβ[y, z]α + [x, z]αβy + x[β, α]zy &  [x, yβz]α = 

yβ[x, z]α + [x, y]αβz+ y[β, α]xz, for all x, y, z ∈ M and for all α, β ∈ Γ. Taking the above 

assumption (*) the basic commentator identities reduce to [xβy, z]α = xβ[y, z]α + [x, z]αβy and 

[x, yβz]α = yβ[x, z]α + [x, y]αβz, for x, y, z ∈ M and for all α, β ∈ Γ which are used extensively 

in our results. 

3. REVERSE DERIVATION AND ORTHOGONAL REVERSE DERIVATION: 

An additive mapping d from a Γ-ring M satisfying d (xαy) = d(y)αx+ yαd(x), for all x, y ∈ M, α 

∈ Γ, is called a reverse derivation. Cleary, if M is commutative, then both derivation and reverse 

derivation are the same. An additive mapping d: M → M is called a Jordan derivation if d (aαa) 

= d (a)αa+ aαd(a) for all a ∈ M and α ∈ Γ. It can be easily seen that the reverse derivation is not a 

general derivation in, but it is a Jordan derivation 
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Example 3.1: Let R be an associative ring with 1, d: R → R be a reverse derivation. Consider M 

= M1, 2(R) and Γ = {(
𝑛. 1
0
): n ∈ Z}.It is clear that M is a Γ-ring. Let N = {(x, x): x ∈ R} ⊂ M. 

Then N is a sub ring of M. Define D: N → N by D ((x, x)) = (d(x), d(x)). If a = (x1, x1), b = (x2, 

x2) and α = (
𝑛. 1
0
)∈ Γ. Then we have  

D (aαb) =D ((x1, x1) (
𝑛. 1
0
) (x2, x2)) 

             = D (x1nx2, x1nx2)  

             = (d (x1nx2), d (x1nx2))  

             = (d(x2) nx1 + x2nd(x1), d(x2) nx1 + x2nd(x1))  

             = (d(x2) nx1, d(x2) nx1) + (x2nd(x1), x2nd(x1))  

             = (d(x2), d(x2)) (
𝑛. 1
0
)(x1, x1) + (x2, x2) (

𝑛. 1
0
)(d(x1), d(x1))  

             =D ((x2, x2))αa + bαD((x1, x1))  

            =D (b) αa + bαD (a). 

 Hence D is a reverse derivation on Γ-ring N. Now we give the definition of orthogonality of two 

reverse derivations. 

Definition 3.2:  Let d and g be two reverse derivations on M. If d(x) Γ M Γ g(y) = 0 = g(y) Γ M 

Γ d(x) for all x, y ∈ M. --------------------(1)  

Then d and g are said to be orthogonal. Also note that a non-zero reverse derivation cannot be 

orthogonal on itself. 

Example 3.3: Let M1 be a Γ1-ring and let M2 be a Γ2-ring. Consider M = M1 × M2 and Γ = Γ1 × 

Γ2. The addition and multiplication on M and Γ are defined as follows: 

(a, b) + (c, d) = (a + c, b + d), (a, b) (α, β) (c, d) = (aαc, bβd) for every a, b ∈ M1, c, d ∈ M2, α ∈ 

Γ1 and β ∈ Γ2. 

Under these operations M is a Γ-ring. Let d1 be a reverse derivation on M1. Define a derivation d 

on M by d((a, b)) = (d1(a), 0). Then d is a reverse derivation on M. Let d2 be a reverse derivation 
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on M2. Define a derivation g on M by g((a, b)) = (0, d2(b)). Then g is a reverse derivation on M. 

It is clear that d and g are orthogonal reverse derivation on M. 

4. RESULTS: 

 The following result has been given in [2], 

Lemma 4.1: Let M be a 2-torsion free semi prime Γ-ring and a, b ∈ M. Then the following 

conditions are equivalent: 

 1. aΓxΓb = 0, for all x ∈ M.  

2. bΓxΓa = 0, for all x ∈ M.  

(3) aΓxΓb + bΓxΓa = 0, for all x ∈ M. If one of these conditions is fulfilled then aΓb = 0 = bΓa 

Lemma 4.2: Let M be a semi prime Γ-ring and suppose that additive mappings d and g of M into 

itself satisfy d(x)ΓMΓg(x) = 0 for x ∈ M. Then d(x)ΓMΓg(y) = 0, for all x ∈ M.  

Proof: Suppose that d(x)αmβg(x) = 0, for all x, m ∈ M, α, β ∈ Γ. By Replacing x by x + y in the 

above relation, we get  

0 =d(x + y)αmβg(x + y) 

  = (d(x) + d(y))αmβ(g(x) + g(y)) 

  =d(x)αmβg(x) + d(x)αmβg(y) + d(y)αmβg(x) + d(y)αmβg(y)  

=d(x)αmβg(y) + d(y)αmβg(x).T husd(x)αmβg(y) 

     = −d(y)αmβg(x). 

Now  

(d(x)αmβg(y))γnδ(d(x)αmβg(y)) =(d(x)αmβg(y))γnδ(−d(y)αmβg(x))  

                                                                = − (d(x)αmβg(y)γnδd(y)αmβg(x)  

                                                                = 0, for all x, y, m, n ∈ M, α, β, δ ∈ Γ.  

Thus   d(x)ΓMΓg(y) = 0, for all x, y ∈ M 
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Lemma 4.3: Let M be a 2-torsion free semi prime Γ-ring. Let d and g be reverse derivations of 

M. Then d(x)Γg(y) + g(x)Γd(y) = 0, for all x, y ∈ M. if and only if d and g are orthogonal.       (2)   

Proof:  

Let us Suppose that d(x)αg(y) + g(x)αd(y) = 0, for all x, y ∈ M, α ∈ Γ. Consider the substitution 

y = xβy in (2). Then,            

          0 =d(x)αg(xβy) + g(x)αd(xβy),  

               =d(x)α(g(y)βx + yβg(x)) + g(x)α(d(y)βx + yβd(x),  

               =(d(x)αg(y) + g(x)αd(y))βx + d(x)αyβg(x) + g(x)αyβd(x)      

 By using (2), we have d(x)αyβg(x) + g(x)αyβd(x) = 0. Then due to Lemma 4.2,  

we get d(x)αyβg(x) = 0, which gives the orthogonality of d and g. Conversely, if d and g are 

orthogonal, we get d(x)αmβg(y) = g(x)αmβd(y) = 0 for all m ∈ M, α, β ∈ Γ. Then by Lemma 4.1, 

we obtain d(x)αg(y) = g(x)αd(y) = 0, for all x, y ∈ M, α ∈ Γ. Thus d(x)αg(y)+ g(x)αd(y) = 0, for 

all x, y ∈ M, α ∈ Γ  this completes the proof. Suppose that d and g are reverse derivations of a Γ-

ring M.  

The following identities are  from the definition of reverse derivation.   

 (d g)(xαy) = d (g (xαy))  

                    = d (g(y)αx + yαg(x)) 

                    = (d g) (x)αy + d(x)αg(y) + g(x)αd(y) + xα(dg)(y) for x, y ∈ M, α ∈ Γ. ------       (3)   

   Similarly,  

(g d)(xαy) = g(d(xαy))  

                  = (gd)(x)αy + g(x)αd(y) + d(x)αg(y) + xα(gd)(y) for x, y ∈ M, α ∈ Γ   -------          (4)   

   The following theorem gives criteria on orthogonality of reverse derivations. It is an extension 

of Theorem 2.1 from [2] to the reverse derivations case. 
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  Theorem 4.4: Let M be a 2-torsion free semi prime Γ-ring. Let d and g be reverse derivations 

on M. Then the following conditions are equivalent:  

(i) d and g are orthogonal. (ii) dg = 0. (iii) gd = 0. (iv) dg + gd = 0. (v) dg is a derivation. 

(vi) gd is a derivation.     

Proof: (ii) ⇒ (i). Suppose dg = 0. Then by using the identity (3) above we obtain d(x)αg(y) + 

g(x)αd(y) = 0, for all x, y ∈ M, α ∈ Γ. Therefore by Lemma 4.3, d and g are orthogonal  

1. ⇒ (ii). Consider d(x)αyβg(z) = 0, for all x, y, z ∈ M, α, β ∈ Γ. 

 Then  

0 = d(d(x)αyβg(z))  

= d(yβg(z))αd(x) + yβg(z)αd2 (x)  

= (dg)(z)βyαd(x) + g(z)βd(y)αd(x) + yβg(z)αd(d(x)).      

Owing to (i), the second and third summands are zero. Therefore we obtain (dg)(z)βyαd(x) = 

0 for all x, y, z ∈ M, α, β ∈ Γ. Now take x = g(z) and we obtain (dg)(z)βyα(dg)(z) = 0, for all z 

∈ M, α, β ∈ Γ. 

Since M is semi prime, we get (dg)(z) = 0, for all z ∈ M., that is dg = 0. The proof of the parts 

(iii) ⇒ (i) and (i) ⇒ (iii) are similar. (iv) ⇒ (i). If d and g are any reverse derivations, then by 

(ii) and (iii), dg = 0 and gd = 0. Now using the equation (3), we obtain,   

(dg + gd)(xαy) =(dg)(xαy) + (gd)(xαy)  

                       =(dg)(x)αy + d(x)αg(y) + g(x)αd(y) + xα(dg)(y) + (gd)(x)αy + g(x)αd(x) +   

                          d(x)αg(y) + xα(gd)(y) 

                      =(dg + gd)(x)αy + 2d(x)αg(y) + 2g(x)αd(y) + xα((dg)(y) + (gd)(y))  

                           for all x, y ∈ M, α ∈ Γ.     

Thus, if dg + gd = 0, then the above relation reduces to 2(d(x)αg(y) + g(x)αd(y)) = 0, for all x, 

y ∈ M, α ∈ Γ. Since M is 2-torsion free, we get d(x)αg(y) + g(x)αd(y) = 0, for all x, y ∈ M, α 

∈ Γ.  
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By Lemma 4.3, we get that d and g are orthogonal. (i) ⇒ (iv). From the parts (ii) and (iii) of 

Theorem 4.1, we get dg + gd = 0.  

(v) ⇒ (i). Since dg is a derivation, we have (dg)(xαy) = (dg)(x)αy + xα(dg)(y). Comparing this 

expression with (3) we obtain d(x)αg(y) + g(x)αd(y) = 0. The proof of (vi) ⇒ (i) is the similar 

to that of (v) ⇒ (i). (iii) ⇒ (vi).  This completes the proof. 

Corollary 4.5: Let M be a prime 2-torsion free Γ-ring. Suppose that d and g are orthogonal 

reverse derivations of M. Then either d = 0 or g = 0. The proof is immediate from Theorem 

4.4. 

Theorem 4.6: Let M be a 2-torsion free semi prime Γ-ring such that  xαyβz = xβyαz for all x, 

y, z ∈ M and α, β ∈ Γ. 

Let d and g be reverse derivations on M. Then the conditions are equivalent to: 

     (i)d and g are orthogonal. (ii) d(x)Γg(x) = 0, for all x ∈ M. (iii) g(x)Γd(x) = 0, for all x ∈ M.  

     (iv) d(x)Γg(x) + g(x)Γd(x) = 0, for all x ∈ M. 

Proof:  (ii) ⇒ (i) The linearization of d(x + y)αg(x + y) = 0 gives d(x)αg(y) + d(y)αg(x) = 0, for 

all x, y ∈ M, α ∈                                                                                                                                       

(5) 

Take yβz as yin (5), we obtain d(x)αg(yβz) + d(yβz)αg(x) = 0, for all x, y, z ∈ M, α, β ∈ Γ. 

d(x)αg(z)βy + d(x)αzβg(y) + d(z)βyαg(x) + zβd(y)αg(x) = 0, for all x, y, z ∈ Γ, α, β ∈ Γ. 

Since , d(x)αg(z) = −d(z)αg(x) and d(y)αg(x) = −d(x)αg(y) and so the above relation becomes 

−d(z)αg(x)βy + d(x)αzβg(y) + d(z)βyαg(x) − zβd(x)αg(y) = 0, for all x, y, z ∈ M, α, β ∈ Γ. 

Now we make use the condition (*) then d(z)β[y, g(x)]α + [d(x), z]αβg(y) = 0. 

Replacing z by d(x) in the above identity we obtain d 2 (x)β[y, g(x)]α = 0 for all x, y ∈ M, α, β ∈ 

Γ. 

Letting y = yδw in the last relation and using the condition (*), we get, 
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0 = d 2 (x)β[yδw, g(x)]α  

   = d 2 (x)βyδ[w, g(x)]α + d 2 (x)βyδ[w, g(x)]α  

   = d 2 (x)βyδ[w, g(x)]α for all x, y, w ∈ M, α, β, δ ∈ Γ. 

Then by Lemma 4.2, we obtain d 2 (x)βyδ[w, g(y)]α = 0, for all x, y, w ∈ M, α, β, δ ∈ Γ.   (6)                                    

Replacing x by xλu in  (6) and using (3) yields. 

 0 = d 2 (xλu)βyδ[w, g(y)]α  

= (d 2 (x)λu + 2d(x)λd(u) + xλd2 (u))βyδ[w, g(y)]α for all x ∈ M, α, β, δ, λ ∈ Γ. 

By (6) the above relation reduces to  2d(x)λd(u)βyδ[w, g(y)]α = 0 

Since M is 2-torsion free, we have 

d(x)λd(u)βyδ[w, g(y)]α = 0, for all x,y ∈ M, α, β, δ, λ ∈ Γ                                              (7) 

It is obvious from the definition of K that d leaves K Taking xγz for x in (7), we get  

 0 = d(xγz)λd(u)βyδ[w, g(y)]α  

    = d(z)γxλd(u)βyδ[w, g(y)]α + zγd(x)λd(u)βzδ[w, g(y)]α  and 

d(z)γxλd(u)βyδ[w, g(y)]α = 0.  (By using (7)) 

In particular, d(z)γxλd(x)βyδ[w, g(y)]α = 0. 

The replacement d(z) = d(x)βyδ[w, g(y)]α, gives d(x)βyδ[w, g(y)]αγxλd(x)βyδ[w, g(y)]α = 0. 

Since M is semi prime, we get d(x)βyδ[w, g(y)]α = 0. Using (6) and (7) we obtain by replacing 

d(x) for w, [d(x), g(y)] αγyδ[d(x), g(y)]α = 0, for all x, y ∈ M, α, β, δ, γ ∈ Γ. 

Hence, d(x)αg(y) = g(y)αd(x), for all x, y ∈ M, α ∈ Γ. 

Thus (5) can be written in the form g(y)αd(x) + d(y)αg(x) = 0, for all x, y ∈ M, α ∈ Γ. 

Now use Lemma 4.3 to get the required relation. (i) ⇒ (iii). If d and g are orthogonal then we 

have d(x)ΓMΓg(x) = 0, for all x ∈ M. 
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Then due to Lemma 4.1, we get d(x)αg(x) = 0, for all x ∈ M, α ∈ Γ. 

(ii) ⇒ (ii). Take y = x in (3). Then we see that (dg)(xαx) = (dg)(x)αx + d(x)αg(x) + g(x)αd(x) 

+ xα(dg)(x). 

Thus we obtain (dg)(xαx) = (dg)(x)αx + xα(dg)(x), for all x ∈ M, α ∈ Γ. 

The above relation implies that dg is a Jordan derivation. We know that if M is semi prime Γ-

ring, then every Jordan derivation is a derivation. (i) ⇒ (ii). This follows from Lemma 4.3.  

Corollary 4.7: Let M be a 2-torsion free semi prime Γ-ring and let d be a reverse derivation of M. 

If d 2 is also a derivation, then d = 0. 

The proof follows from part (ii) of Theorem 4.6. 

Theorem 4.8: Let M be a 2-torsion free semi prime Γ-ring. Let d and g be reverse derivations on 

M. Then the following conditions are equivalent: (i) d and g are orthogonal. (ii) There exist 

ideals K1 and K2 of M such that: (a) K1 ∩ K2 = 0 and K = K1 ⊕ K2 is a nonzero ideal of M.  

(b) d maps M into K1 and g maps M into K2. (c) The restriction of d to K = K1 ⊕ K2 is a direct 

sum d1⊕02, where d1: K1 → K1 is a reverse derivation of K1 and 02: K2 → K2 is zero. If d1 = 0 

then d = 0. (d) The restriction of g to K = K1 ⊕ K2 is a direct sum 01 ⊕ g2, where 01: K1 → K1 is 

zero and g2: K2 → K2 is a reverse derivation of K2. If g2 = 0 then g = 0. 

Proof: (ii) ⇒ (i). Obvious. (i) ⇒ (ii). 

Let K1 be an ideal of M generated by all d(x), x ∈ M, and let K2 be Ann(K1), the annihilator of 

K1. From (1) we see that g(x) ∈ K2, for all x ∈ M. Whenever K1 is an ideal in a semi prime Γ-

ring, we have K1 ∩ K2 = 0 and K = K1 ⊕ K2 is a nonzero ideal. Thus (a) and (b) are proved. 

To show that d is zero on K2. Take k2 ∈ K2. 

Then k1αk2 = 0, for all k1 ∈ K1, α ∈ Γ. Hence 0 = d(k1αk2) = d(k2)αk1+ k2αd(k1). It is obvious 

from the definition of K that d leaves K1 invariant and hence k2αd(k1) = 0. Then the above 

relation reduces to d(k2)αk1 = 0. Since in a semi prime Γ-ring the left, right and two-sided 

annihilators of an ideal coincide, we then have d(k2) ∈Ann(K1) = K2. But on the other hand d(k2) 

belongs to the set of generating elements of K1. Thus d(k2) ∈ K1 ∩ K2 = 0, which means that d is 
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zero on K2. As we have mentioned above d leaves K1 invariant. Therefore we may define a 

mapping d1: K1 → K1 as a restriction of d to K1. 

Suppose that d1 = 0. Then d is zero on K = K1 ⊕ K2. Take k ∈ K and y ∈ M, we have d(yαk) = 

d(k)αy + kαd(y) But d(yαk ) = d(k) = 0 since kαy, k ∈ K, α ∈ Γ. Consequently kαd(y) = 0, for all 

y ∈ M, α ∈ Γ. Thus d(y) ∈Ann(K). But ideal K is nonzero and therefore Ann(K) = 0. Hence d(y) 

= 0, for all y ∈ M. Then (c) is thereby proved. 

It remains to prove (d). First we show that g is zero on K1. Take x, y, z ∈ M, α, β ∈ Γ and set k1 = 

zαd(y)βx. Then,   

g(k1) = g(x)β(zαd(y)) + xβg(zαd(y)) = g(x)βzαd(y) + xβ(gd)(y)αz + xβd(y)αg(z). 

Since d and g are orthogonal we have g(x)αzβd(y) = 0, d(y)αg(z) = 0 and gd = 0. Hence g(k1) = 0. 

Similarly g(zαd(y)) = 0, g(d(y)αx) = 0 and g(d(y))= 0. Then h is zero on K1. Recall that g maps 

M into K2. In particular, it leaves K2 invariant. Thus we may define g2: K2 → K2 as a restriction 

of g to K2. The proof that g2 = 0 implies g = 0 is the same as the proof that d1 = 0 implies d = 0. 

This completes the proof. 

Corollary 4.9: Let M be a 2-torsion free semi prime Γ-ring and let d be a reverse derivation of 

M. If d(x)αd(x) = 0 for all x ∈ M, α ∈ Γ, then d = 0. If d 2 = g 2 or if d(x)αd(x) = g(x)αg(x), for 

every x ∈ M, α ∈ Γ, then we obtain the relation between the reverse derivations d and g of a Γ-

ring. 

Theorem 4.10: Let M be a 2-torsion free semi prime Γ-ring. Let d and g be reverse derivations 

of M. Suppose that d 2 = g 2 , then d + g and d – g are orthogonal. Thus, there exist ideals K1 and 

K2 of M such that K = K1 ⊕ K2 is a nonzero ideal which is direct sum in M, d = g on K1 and d = 

– g on K2 . 

Proof:  From d 2 = g 2 it follows immediately that (d + g)(d – g)+ (d – g)(d+g) = 0. Hence d+g 

and d – g are orthogonal by the part (iii) of Theorem 4.4. Another part of Theorem 4.10, follows 

from (iii) of  Theorem 4.8. 

From Theorem 4.10 we get the following; 

Corollary 4.11: Let M be a prime 2-tosion free Γ-ring. Let d and g be derivations of M.  



ORTHOGONAL REVERSE DERIVATIONS- SEMIPRIME GAMMA RINGS                           11 

If d2 = g2 then either d = –g or d = g.                                                                                                       

Theorem 4.12: Let M be a 2-torsion free semi prime Γ-ring. Let d and g be reverse derivations 

of M. If d(x)αd(x) = g(x)αg(x), for all x ∈ M, α ∈ Γ, then d + g and d – g are orthogonal. Thus, 

there exist ideals K1 and K2 of M such that K = K1 ⊕ K2 is an essential direct sum in M, d = g on 

K1 and d = – g on K2. 

Proof: Note that (d + g)(x)α(d – g)(x)+ (d – g)(x)α(d + g)(x) = 0, for all x ∈ M, α ∈ Γ. Now 

applying parts (ii) and (iii) of Theorem 4.6, we obtain the required result. 

Corollary 4.13: Let M be a prime 2-torsion free Γ-ring. Let d and g be reverse derivations of M. 

If d(x)αd(x) = g(x)αg(x), for all x ∈ M, α ∈ Γ, then either d = g or d = −g.  

The proof is immediate from Theorem 4.12. 

 

Conflict of Interests 

The author declares that there is no conflict of interests. 

 

REFERENCES 
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