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Abstract. This paper is for one part a generalization of some results obtained by Miyuki Yamada [20] in the case

of binary semigroups to ternary semigroups. We prove analogous of almost all the results previously cited. We

prove in particular that the set of the idempotents in regular ternary semigroup is a band (that is, a semigroup).

In a second part we continue our investigations started in [13; 14] on these semigroups, as on the structure of the

set E(S) of idempotents of the ternary semigroup S. The particular case of ternary inverse semigroup has been

studied and a relationship between the existence of idempotents and the inverse elements has been caracterized.

The documents [5]; [9] and [10] have been intensively used. We asked two questions and the answer for the second

one will be the subject of a forcoming paper. We use many references in our work the most important are those

used as bibliography.
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1. Preliminaries

Definition 1.1. A nonempty set S is called a ternary semigroup if there exists a ternary oper-

ation; ◦ : S×S×S −→ S, written as ◦(a,b,c) 7−→ a◦b◦ c satisfying the following identity for

any a,b,c,d,e ∈ S,(a◦b◦ c)◦d ◦ e = a◦ (b◦ c◦d)◦ e = a◦b(c◦d ◦ e)◦ c.
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In all the paper, when no ambiguity can be made; the element ◦(a,b,c) will be simply denoted

by abc.

Definition 1.2. An element 1 ∈ S is called a unity if ∀x,y ∈ S,1◦ x◦ y = x◦1◦ y = x◦ y◦1 and

1◦1◦ x = x.

In the sequel our ternary semigroups are supposed to have a unity which we always denote

by 1.

Definition 1.3. An element a ∈ S is an inverse of an element b ∈ S if aba = a and bab = b.

An element is then said to be regular if it has at least one inverse. An element b ∈ S is a weak

inverse of an element a if aba = a.

Definition 1.4.

(1) A ternary semigroup S is called regular ternary semigroup if every element of S has at

least an inverse.

(2) A ternary semigroup S is called inversive ternary semigroup if every element of S has a

unique inverse.

Definition 1.5. Let S be a ternary semigroup. An element a of S is said to be Von Neumann

regular if it has at least one weak inverse or equivalently, a = axa for some x ∈ S, and S is called

a Von Neumann regular semigroup if every element of S is Von Neumann regular.

Definition 1.6. Let S be a ternary semigroup. An element a of S is said to be an idempotent if

a.a.a = a.

Remark 1.1. It is clear that an idempotent element is invertible and has itself as an inverse.

Definition 1.8. A ternary semigroup S is said to be

(1) commutative if a.b.c = τ(a.b.c) for any transposition τ ∈ S3.

(2) cyclicly commutative if abc =C(abc) for the two cycles of order 3 in S3.

Remark 1.2. If S is commutative, then S is cyclicly commutative. The converse is false.



RUNNING TITLE 3

Remark 1.3. Any associative binary operation ”.” on a set S defines a ternary operation γ by

γ(a,b,c) = (a.b).c.

Definition 1.11. Let S be a ternary semigroup. If there exists an element 0 ∈ S such that

0.x.y = x.0.y = x.y.0 = 0 for all x,y ∈ S,S is said to have a zero element and 0 is called the zero

of the ternary semigroup S.

Let A,B,C be three subsets of S. Then by A.B.C or simply ABC, we mean the set:

ABC = {ai.bi.ci with ai ∈ A,bi ∈ B,ci ∈C}.

Definition 1.12. A subset H of S is called a ternary subsemigroup if

a.b.c ∈ H, ∀a,b,c,∈ Hand1 ∈ H.

The following definitions in the case of ternary operations analogous to the definitions in the

case of binary semigroups.

Definition 1.13.

(1) A Von Neumann regular ternary semigroup is called strictly regular if the set of its

idempotents is a subsemigroup.

(2) An orthodox ternary semigroup is a strictly regular ternary semigroup such that there

exists an element a ∈ S with x.a.x = x ∀x ∈ S.

(3) A band is a ternary semigroup where any element is an idempotent.

Definition 1.14.

(1) A semilattice is a commutative band.

(2) A left (resp. right) zero band S is a band satisfying the equation x.x.y = x (resp◦ yxx =

x) ∀x,y ∈ S.

(3) A rectangular band S is a band which satisfies x.y.x = x ∀x,y ∈ S.

(4) A normal band S is a band satisfying x.(y.z.t).x = x.(σ(yzt))x ∀x,y,z, t ∈ S and σ ∈ S3.

(5) A regular band S is a band satisfying x.(y.x.z).x = x.y.z ∀x,y,z ∈ S.
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Example 1.1. Let I,J be any two non-empty sets, the cartesian product endowed with the

following ternary operation:

∀(a,b),(c,d),(e, f ) ∈ I× J;(a,b).(c,d).(e, f ) = (a,b)

is a rectangular band because

(1) (a) (a,b).(c,d).[(e, f ).(i, j).(k, l)] = (a,b).(c,d).(e, l) = (a, l),

(b) (a,b).[(c,d).(e, f ).(i, j)].(k, l) = (a,b).(c, i).(k, l) = (a, l),

(c) [(a,b).(c,d).(e, f )].(i, j)].(k, l) = (a, f ).(c, i).(k, l) = (a, l)

(2) (a,b).(a,b).(a,b) = (a,b),

(3) (a,b).(c,d).(a,b) = (a,b).

2. Regular, inverse semigroups and idempotents

Proposition 2.1. Let e be an idempotent of a strictly regular ternary semigroup S. Then, every

inverse of e is an idempotent.

Proof. Let x be an inverse of e then x.e.x = x and e.x.e = e so

x = x.e.x = x.(e.e.e).x = x.e.(e.e.x) = x.(e.e.e).(e.e.x) = (x.e.e).e.(e.e.x).

But

(x.e.e).(x.e.e).(x.e.e) = x.e.[e.(x.e.e).(x.e.e)] = x.e.[(e.x.e).e.(x.e.e)] = x.e.[e.e.(x.e.e)] =

x.e.[e.(e.x.e).e] = x.e.[e.e.e] = x.e.e

and

(e.e.x).(e.e.x).(e.e.x) = e.[e.x.(e.e.x)].(e.e.x) = e.[(e.x.e).e.x](e.e.x) = e.[e.e.x].(e.e.x) =

e.e.[(e.x.e).e.x] = e.e.[e.e.x] = (e.e.e).e.x = e.e.x

so e.e.x and x.e.e are idempotents. The set E(S) is a subsemigroup then (x.e.e).e.(e.e.x) is an

element of E(S) and so is x.

Definition 2 .1. An element a of a ternary semigroup S commutes with b ∈ S if a.b.x = b.a.x

and x.a.b = x.b.a for any x ∈ S.
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Lemma 2 .1. If a∗ is an inverse of an element a ∈ S and an idempotent e commutes with a then

a∗.a.e and e.a∗ are idempotent.

Proof. (a∗.a.e).(a∗.a.e).(a∗.a.e) = (a∗.e.a).(a∗.a.e).(a∗.a.e) = a∗.e.[a.(a∗.a.e).(a∗.a.e)] =

a∗.[(a.a∗.a).e.(a∗.a.e)] = a∗.e.[a.e.(a∗.a.e)] = a∗.e.[e.(a.a∗.a).e] = a∗.e.[e.a.e] =

a∗.a.(e.e.e) = a∗.a.e since e is an idempotent.

In other hand, (e.a.a∗).(e.a.a∗).(e.a.a∗)= (e.a.a∗).(a.e.a∗).(e.a.a∗)= e.(a.a∗a)[e.a∗.(e.a.a∗)]=

e.a.[e.a∗.(e.a.a∗)] = e.e.[a.a∗(a.e.a∗)] = e.e.[(a.a∗a).e.a∗] = e.e.(a.e.a∗)= (e.e.e)a.a∗= e.a.a∗.

In the sequel a.b.c will be just denoted abc.

Theorem 2.3. Let S be a strictly regular ternary semigroup. Let e, f ∈ E(S) such that e f e = e

and f e f = f . Then, if a,c ∈ S commute with any idempotent; any inverse x of aec is also an

inverse of a f c.

Proof. Let a∗,c∗ be two inverses of a,c respectively.

aec = (aec)x(aec) = [ae(cc∗c)]x[(a.a∗a)ec] =⇒

a∗(aec)c∗ = a∗[[ae(cc∗c)]x[(a.a∗a)ec]]c∗ = a∗[ae(cc∗c)][x[(a.a∗a)ec]c∗] =

(a∗ae)(cc∗c)[x[(a.a∗a)ec]c∗] = [(a∗ae)cc∗]c[x[(a.a∗a)ec]c∗] = [(a∗ae)cc∗](cx[(a.a∗a)ec])c∗=

[(a∗ae)cc∗][(cx(a.a∗a))ec]cc∗= [(a∗ae)cc∗][((cxa)a∗a)ec]c∗= [(a∗ae)ccc∗][(cxa)(a∗ae)c]c∗=

[(a∗ae)ccc∗](cxa)[(a∗ae)cc∗] = [a∗(aec)cc∗](cxa)[(a∗(aec)c∗].

In the other hand

(cxa)[a∗(aec)c∗](cxa) = c[xa(a∗(aec)c∗)](cxa) = c[(xaa∗)(aec)c∗)](cxa) =

c[x(a.a∗(aec)c∗)](cxa) = c[x((a.a∗a)ec)c∗](cxa) = c[x(aec)c∗](cxa) =

c[xa(ecc∗)](cxa) = c[(xa(ecc∗))cx]a = c[((xae)cc∗)cx]a = c[((xae)(cc∗c)x]a =

c[(xae)cx]a = c[x(aec)x]a = cxa

and then cxa is an inverse of a∗(aec)c∗ = (a∗ae)cc∗.

From the lemma 2.1,(a∗ae) is an idempotent so it commutes with c and the element (a∗ae)cc∗

is an idempotent by the same lemma. Now by proposition 2.1, cxa is also an idempotent and

then by taking f instead e we get that cxa is also an inverse of (a∗a f )cc∗ and then (a∗a f )cc∗ is

an idempotent. So

[(a∗a f )cc∗](cxa)[(a∗a f )cc∗] = (a∗a f )cc∗ =⇒ a[[(a∗a f )cc∗](cxa)[(a∗a f )cc∗]]c =
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a[(a∗a f )cc∗]c ⇐⇒ a[[(a∗a f )cc∗](cxa)[(a∗a f )cc∗]]c =

a[(a∗a f )cc∗]c = (a.a∗a) f (cc∗c) = a f c.

But

a[[(a∗a f )cc∗](cxa)[(a∗a f )cc∗]]c = a[(a∗a f )cc∗]c = a[(a∗a f )cc∗][(cxa)[(a∗a f )cc∗]c] =

a(a∗a f )[cc∗[(cxa)[(a∗a f )cc∗]c]] = (a.a∗a) f [cc∗[(cxa)[(a∗a f )cc∗]c]] = a f [cc∗[(cxa)[(a∗a f )cc∗]c]] =

a f [(cc∗(cxa))[(a∗a f )cc∗]c] = a f [(cc∗c)xa))[(a∗a f )cc∗]c] = a f [(cxa))[(a∗a f )cc∗]c] =

a f [(cxa)(a∗a f )(cc∗c)] = a f [(cxa)(a∗a f )c] = a f [cx[(a.a∗a) f c]] = a f [cx[a f c]] = (a f c)x(a f c).

So

(a f c)x(a f c) = a f c(a).

In the other hand

(a f c)[x(a f c)x](a f c) = [(a f c)x(a f c)]x(a f c) = (a f c)x(a f c) = a f c

and

[x(a f c)x](a f c)[x(a f c)x] = x[(a f c)x(a f c)][x(a f c)x] = x(a f c)[x(a f c)x] =

x[(a f c)x(a f c)]x = x(a f c)x,

so x(a f c)x is an inverse of a f c. By using the same methods we can get

(aec)[x(a f c)x](aec) = aec.

Hence,

x(aec)[(x(a f c)x)(aec)x] = x[(aec)[x(a f c)x](aec)]x = x(aec)x = x

since x is an inverse of aec. But

x(aec)[(x(a f c)x)(aec)x] = [x(aec)(x(a f c)x)](aec)x = [(x(aec)x)(a f c)x](aec)x =

[x(a f c)x](aec)x = x(a f c)(x(aec)x) = x(a f c)x,

so x(a f c)x = x. Therefore, it follows that x is an inverse of a f c.
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Definition 2.2. Let S be a ternary regular semigroup. If a mapping Φ : S−→ S is such that

∀x ∈ S;xΦ(x)x = Φ(x)xΦ(x),

the mapping Φ is called an inverse operator. It is obvious that S has at least one inverse operator,

the mapping in which the image of x is its inverse.

Proposition 2.4. Let S be a regular ternary semigroup. The inverse operator Φ is unique if and

only if S is inversive semigroup.

Proof. The proof is trivial.

Definition 2.3.Let S,S′ be two ternary semigroups. A mapping Φ : S −→ S′ is a ternary semi-

group morphism if for all a,b,c ∈ S,Φ(abc) = Φ(a)Φ(b)Φ(c) and Φ(1S) = 1S′ . We can see

that if a is an idempotent then Φ(a) is also an idempotent.

Proposition 2.5. Let S be a ternary commutative inversive semigroup. Any inverse operator Φ

is a ternary semigroup morphism.

Proof. Let Φ be an inverse operator and let a,b,c∈ S. We will prove that Φ(abc)=Φ(a)Φ(b)Φ(c).

To get this assertion it suffices to prove that Φ(a)Φ(b)Φ(c) is an inverse of abc and by unique-

ness of inverse of abc we get Φ(abc) = Φ(a)Φ(b)Φ(c). The commutativity implies that

(Φ(a)Φ(b)Φ(c))(abc)(Φ(a)Φ(b)Φ(c)) = (Φ(c)Φ(b)Φ(a))(abc)(Φ(a)Φ(b)Φ(c)) =

Φ(c)Φ(b)[Φ(a)(abc)(Φ(a)Φ(b)Φ(c))] = Φ(c)Φ(b)[Φ(a)a(bc(Φ(a)Φ(b)Φ(c)))] =

Φ(c)Φ(b)[Φ(a)a[(bcΦ(a))Φ(b)Φ(c)]] = Φ(c)Φ(b)[Φ(a)a[(Φ(a)cb)Φ(b)Φ(c)]] =

Φ(c)Φ(b)[(Φ(a)aΦ(a))(cbΦ(b))Φ(c)] = Φ(c)Φ(b)[a(cbΦ(b))Φ(c)] =

Φ(c)Φ(b)[a(Φ(b)bc)Φ(c)] = Φ(c)Φ(b)[(Φ(b)bc)aΦ(c)] = Φ(c)[Φ(b)(Φ(b)bc)a]Φ(c) =

Φ(c)[(Φ(b)Φ(b)b)ca]Φ(c) = Φ(c)[(Φ(b)bΦ(b))ca]Φ(c) = Φ(c)[bca]Φ(c) =

Φ(c)Φ(c)[cba] = (Φ(c)Φ(c)c)ba = (Φ(c)cΦ(c))ba = cba = abc.

Using the same arguments we can prove that

(abc)(Φ(a)Φ(b)Φ(c))(abc) = abc.
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So (Φ(a)Φ(b)Φ(c)) is an inverse of abc and by uniqueness of the inverse we deduce that

(Φ(a)Φ(b)Φ(c)) = Φ(abc). In the other hand and from 111 = 1 then 1 and Φ(1) are two

inverses of 1 so they are equal and Φ(1) = 1.

Definition 2.4. A subset T of a ternary semigroup is said to be characteristic if Φ(T ) = T for

any automorphism of Φ of S.

Proposition 2.6. The set E(S) of idempotents of a ternary semigroup S is characteristic. Let

Φ : S−→ S be an automorphism of S.

As we have remarked previously, if Φ is any endomorphism of S then Φ((E(S))⊂ E(S).

Now let a ∈ S and as Φ is onto then there exists b ∈ S such that Φ(b) = a. So a3 = (Φ(b))3 =

Φ(b3) but a3 = a = Φ(b) so Φ(b3) = Φ(b) and by injectivity b3 = b and E(S)⊂Φ(E(S)) which

means that E(S) is characteristic.

Proposition 2.7. If Φ : S −→ S is both an inverse operator and a morphism of an inversive

ternary semigroup S, then it is bijective.

Proof. For any a∈ S, a and Φ(Φ(a)) are both inverses of Φ(a) (that is, Φ(Φ(a))Φ(a)Φ(Φ(a))=

Φ(Φ(a)aΦ(a)) = Φ(Φ(a)) and Φ(a)Φ(Φ(a))Φ(a) = Φ(aΦ(a)a) = Φ(a)), so they are equal,

by the uniqueness of inverse. Then there exists b = Φ(a) ∈ S such that Φ(b) = a and Φ is onto.

Suppose that Φ(a) = Φ(b) so a is is the inverse of Φ(b) and b is also the inverse of Φ(b) then

a = b by the uniqueness.

Now let S be a regular ternary semigroup and Ω be the set of all inverse operators in S. On S

we define the relation Ras follows:

aRb ⇐⇒ {ϕ(cad),ϕ ∈Ω}= {ϕ(cbd),ϕ ∈Ω}∀ c,d ∈ S.

Proposition 2.8. Let S be a regular ternary semigroup. The relation R defined previously is a

congruence relation in the following meaning:

aRb =⇒ cdaRcdb

and

aRb =⇒ acdRbcd.
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Proof. Let aRb,c,d ∈ S and x ∈ {ϕ(α(cda)β ),ϕ ∈Ω}, where al pha,β ∈ S. As aRb, we have

the equality {ϕ(α(cda)β ),ϕ ∈ Ω} = {ϕ((αcd)aβ ),ϕ ∈ Ω} = {ϕ((αcd)bβ ),ϕ ∈ Ω}. But

{ϕ((αcd)bβ ),ϕ ∈Ω}= {ϕ(α(cdb)β ),ϕ ∈Ω} and then {ϕ(α(cda)β ),ϕ ∈Ω}⊂{ϕ(α(cdb)β ),ϕ ∈

Ω} It is easy to prove the converse inclusion.

The same method can be used to prove the second implication.

Finally we can deduce the following,

aRb =⇒ (cda)e f R(cdb)e f∀c,d,e, f ∈ S.

Proposition 2.9. If R is as in proposition 2.8 on a regular ternary semigroup S. The quotient

set S/R induced the quotient ternary operation is a regular ternary semigroup.

Proof. Let a ∈ x,b ∈ y and c ∈ z. We have to prove that abc ∈ xyz = xyz and then the ternary

product of classes is a well defined.

Let α,β ∈ S;

{ϕ(α(abc)β )}= {ϕ(αa(bcβ ))}= {ϕ(αx(bcβ ))}= {ϕ((αxb)cβ )}= {ϕ((αxb)zβ )}.

As bRy, by the previous proposition, one has (αxb)zβR(αxy)zβ so {ϕ((αxb)zβ ))}= {ϕ((αxy)zβ )}=

{ϕ(α(xyz)β )}. We can then conclude that abc ∈ xyz.

It is easy to see that a∗ is an inverse of a where a∗ is an inverse of a.

Definition 2.5. A semigroup S is left (resp. right) singular if a2b = b (resp. ba2 = b), for all

a,b ∈ S. These semigroups are bands.

Question 1. Is any band S a direct product A×B×C where A,C are left singular semigroups

and B right singular semigroups? If yes is this decomposition unique?

Proposition 2.10. If S is a commutative rectangular semigroup then |S| 6= 3.

Proof. Suppose that S has exactly 3 distinct elements a,b,c and suppose that abc = a, then

abc = ab(cac) = c2(aba) = c2a = cac = c so a = c which is a contradiction. We get the same

contradiction if we suppose that abc = b or abc = c.

Proposition 2.11. If S is commutative, then S is rectangular if and only if abc = a for all

a,b,c ∈ S.
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Proof. Sufficiency. Set c = a in the above identity. Necessity. Assume that S is a rectangular

band, then a(bcc)a = a. Therefore abc = ab(cac) = ab(cca) = a(bcc)a = a.

Proposition 2.12. If S is left (resp. right) singular,rectangular semigroup and |S| ≥ 2, then S is

not commutative.

Proof. Suppose that S is a commutative left singular semigroup and |S| ≥ 2. Let a 6= b in S,

then a2b = b but a2b = aba = a since S is also rectangular. Contradiction.

Definition 2.7. A ternary semigroup is total if any element of S can be written as the product of

three elements of S, that is S3 = S.

Proposition 2.13.. A total semigroup S is rectangular if and only if it satisfies the identity

abc = c, ∀ a,b,c ∈ S.

Proof. Sufficiency. If abc = c, ∀ a,b,c ∈ S, then this relation remains true for c = a and then S

is rectangular.

Necessity. Let x ∈ S, as S is total then there exist a,b,c ∈ S such that x = abc. For any

y ∈ S,xyx = (abc)y(abc) = ab[c(yab)c] = abc = x since c(yab)c = c by the hypothesis and then

S is rectangular.

Remark 2.1. If S satisfies abc = c ∀ a,b,c ∈ S, then S is a band (hint: take b = c = a in the

equality).

Proposition 2.18. Let S be a ternary semigroup which satisfies the identity abc = a2b ∀ a,b,c∈

S. The mapping f : S−→ S defined by f (x) = x3 is a endomorphism of S.

Proof. We remark that abc = aab = a2a = a3 so if x,y,z ∈ S, then f (xyz) = (xyz)(xyz)(xyz) =

(x3)(x3)(x3) = (x3)3. In the other hand

f (x) f (y) f (z) = (x3)(y3)(z3) = (x3)3 So f (xyz) = f (x) f (y) f (z).

Theorem 2.19. Let S be an inversive ternary semigroup. The set of all idempotents of S; E(S)

is a subsemigroup. Moreover if e, f ,g ∈ E(S), then

e f g = f ge = ge f .
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Proof. Let x be the only inverse of e f g. Now,

e f g = (e f g)x(e f g) =
{ (e f g)(xee)(e f g)

(e f g)(ggx)(e f g)

and

(xee)(e f g)(xee) = x(e f g)(xee) = [x(e f g)x]ee = xee,

(ggx)(e f g)(ggx) = gg[x(e f g)(ggx)] = gg[(xe f )(ggg)x] = gg[(xe f )gx] = gg[x(e f g)x] = ggx.

So x = xee = ggx. But x3 = (xee)(ggx)(xee) = x[ee(ggx)](xee) = [x(ee(ggx))x]ee = xee = x.

Then (e f g)∗ is in E(S) but as the inverse of any idempotent is itself so e f g ∈ E(S) and E(S) is

a subsemigroup of S.

In the other hand as

(e f g)( f ge)(e f g) = e[ f g( f ge)](e f g) = e[( f g f )ge](e f g) = e[ f ge](e f g) = (e f g)e(e f g) = e f g

and

( f ge)(e f g)( f ge) = [( f ge)(e f g) f ]ge = [ f (ge(e f g)) f ]ge = f ge

then f ge is also an inverse of e f g and by the uniqueness of the inverse element

f ge = e f g.

The consequence is that e f g is closed by the cycle (132) of S3, so is f ge and finally f ge = ge f .

Lemma 2.2. Let S be a regulary ternary semigroup and α : S −→ P be an onto semigroup

homomorphism. If e ∈ E(P),x,y ∈ S are such that α(x) = e and y is an inverse of x3,then

f = (xxy)xx ∈ E(S), f 3 = f x f and x? = x f x.

Proof. Let x ∈ S be such α(x) = e and let y be an inverse of x3. Then we have x? = x3yx3 and

y = yx3y. If f = (xxy)xx then:

α( f ) = (α(x)α(x)α(y))α(x)α(x) = (α(x)(α(x)3)α(y))(α(x)3)α(x) =

(α(x)(α(x3))α(y))(α(x3))α(x) = α(x)[(α(x3))α(y)(α(x3))]α(x) =

α(x)[(α(x3))α(y)(α(x3))]α(x) = α(x)[α((x3)y(x3))]α(x) =

α(x)[α(x3)]α(x) = e(e3)e = eee = e and

f 3 = [(xxy)xx][(xxy)xx][(xxy)xx] = (xxy)x[x[(xxy)xx]][(xxy)xx] =
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(xxy)x[x(xxy)[xx[(xxy)xx]]] = (xxy)x[(x3)y[xx[(xxy)xx]]] =

(xxy)x[(x3)y[(xx(xxy))xx]] = (xxy)x[(x3)y[[(x3)xy]xx]] =

(xxy)x[((x3)y[(x3)xy])xx] = (xxy)x[(((x3)y(x?))xy)xx] =

(xxy)x[((x3)xy)xx] = [(xxy)x((x3)xy)]xx = [((xxy)x(x3))xy]xx =

[((xxy)x(x3))xy]xx = [(((xxy)xx)xx)xy]xx = [( f xx)xy]xx = [ f x(xxy)]xx =

f x[(xxy)xx] = f x f .

A simple calculus can show that; x3 = x f x.

Theorem 2.20.. Let S be a regulary ternary semigroup and α : S −→ P be a semigroup homo-

morphism. α(S) is a regular subsemigroup and in particular, if α is an epimorphism then P is

also regular.

Proof. The proof is trivial.

3. Greens relations in ternary semigroups

Definition 3.1.. Let S be a ternary semigroup. We define on S the following preorder relations:

a≤L b ⇐⇒ a = xyb for some x,y ∈ S.

a≤R b ⇐⇒ a = bxy for some x,y ∈ S.

a≤I b ⇐⇒ a = xby for some x,y ∈ S.

a≤H b ⇐⇒ a≤L b and a≤R b.

Proposition 3.1. [13, 14]. Let S be a ternary semigroup.

(1) Let a ∈ S be an idempotent and b be an element of S. Then

b≤R a ⇐⇒ b = aab.

b≤L a ⇐⇒ b = baa.

(2) If a≤R axy , then aRaxy.

(3) If a≤L axy, then aL xya.
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Where aRb ⇐⇒ a≤R b and b≤R a and L is defined in same sense.

Definition 3.2.Let T be a subset of a ternary semigroup. We say that T is left (resp. right,

twosided) (S,S)-invariant or ideal if

∀x,y ∈ S, ∀ a ∈ T,xya ∈ T (resp.axy ∈ T,(xya ∈ T and axy ∈ T )).

Theorem 3.2. Let T be a Von Neumann regular subset of S.

(1) If T is left (S,S)−invariant, then L T = L S∩ (T ×T ).

(2) If T is right (S,S)−invariant, then RT = RS∩ (T ×T ).

(3) If T is left (S,S)−invariant, then H T = H S∩ (T ×T ).

Greens relations on ternary semigroups are invariant under morphisms.

Proposition 3.3. [13, 14] Let ϕ : S −→ T be a ternary semigroup morphism and R be one of

the relations L ,R,H ,D ,I . If aRSb then ϕ(a)RT
ϕ(b).

Proposition 3.4. [13, 14]. If a,b are two idempotent elements, the following conditions are

equivalent.

(1) a≤H b,

(2) aab = a = baa,

(3) bab = a.

Proposition 3.5. [13, 14]. If α is an inverse of a, then

(1) a = (aαa)(αaα)(aαa),

(2) α = (αaα)(aαa)(αaα).

From the previous equalities we can deduce that (aαa) is an inverse of (αaα).

Proposition 3.6. [13, 14]. If E(S) denotes the set of all idempotent elements of S the restriction

of the preorder ≤H to E(S) is an order, called the naturel order on E(S) and denoted ”≤ ”.

Definition 3.3. Let S be a ternary semigroup and T be a subsemigroup of S. T is called a

G−subsemigroup if

L T = L S∩ (T ×T ),RT = RS∩ (T ×T ),H T = H S∩ (T ×T ),

DT = DS∩ (T ×T ),I T = I S∩ (T ×T ).



14 RABAH KELLIL

Lemma 3.1. The relation L is right (S,S)−invariant and the relation R is left (S,S)−invariant.

Proof. The proof is trivial.

Proposition 3.7.(Green’s lemma). Let a,b be two R−equivalent elements of a ternary semi-

group S. If a= buv and b= acd for some u,v,c,d ∈ S1, then the map ϕ : x 7−→ xuv is a bijection

from L(b) onto L(a) and the map ψ : x 7−→ xcd is a bijection from L(a) onto L(b). Further,

these bijections are inverse each other and are such, for α,β ∈ S :

αL β ⇐⇒ ϕ(α)L ϕ(β ) and αL β ⇐⇒ ψ(α)L ψ(β ).

Proof. Let n ∈ L(a). Since L is right (S,S)−invariant then ncd ∈ L(acd). But n = xya so

(ncd)uv = [(xya)cd]uv = [xy(acd)]uv = [xyb]uv = xy(buv) = xya = n. In the other hand if m ∈

L(b) using the same argument we can prove that (muv)cd = m so the maps x 7−→ xuv and

x 7−→ xcd are inverse of each other then they are bijections between the given sets.

Let αL β then α = xyβ and β = x′y′α. So ϕ(α) = αuv = (xyβ )uv = xy(βuv) = xyϕ(β ) and

ψ(α) = αuv = (xyβ )uv = xy(βuv) = xyψ(β ), so

αL β =⇒ ϕ(α)mathcalLϕ(β ) and ψ(α)L ψ(β ).

Conversely, suppose that ϕ(α)L ϕ(β ). Then ψ(ϕ(α))L ψ(ϕ(β )) and so αL β . By using the

same argument, we prove the other implication.

The next dual version of the proposition is proved similarly.

Proposition 3.8.(Green’s lemma). Let a,b be two L−equivalent elements of a ternary semi-

group S. If a= uvb and b= cda for some u,v,c,d ∈ S1, then the map ϕ : x 7−→ uvx is a bijection

from R(b) onto R(a) and the map ψ : x 7−→ cdx is a bijection from R(a) onto R(b). Further,

these bijections preserve the R−classes and are inverse each other, that is, for α,β ∈ S,

αRβ ⇐⇒ ϕ(α)Rϕ(β ) and αRβ ⇐⇒ ψ(α)Rψ(β ).

Proof. The proof is exactly the same as in proposition 3.7, whith an adaptation to the right

classes.

Corollary 3.9. If a,b are H −equivalent then, ∀ α,β ∈ S, we have

αH β ⇐⇒ ϕ(α)H ϕ(β ) and αH β ⇐⇒ ψ(α)H ψ(β ).
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Proposition 3.10. Let x,y ∈ S. If R(y)∩L(x) contains an idempotent e then xey ∈ R(x)∩L(y).

Proof. If e ∈ R(y)∩L(x) then eey = y and xee = x (Hint: e ∈ R(y) =⇒ y = eab =⇒ eey =

ee(eab) = (eee)ab = eab = y). So;

eRy =⇒ xeeRxey and then xRxey.

eL x =⇒ eeyL xey and then yL xey.

Finally xey ∈ L(y)∩R(x).

Proposition 3.11. Let e, f ∈ E(S) the set of all idempotents of S. For all x ∈ R(e)∩L( f ) there

exists y ∈ R( f )∩L(e) such x f y = e and yex = f .

Proof. If x ∈ R(e)∩L( f ) then x = eex and x = x f f . There also are u,v,a,b ∈ S1 such e = xuv

and f = abx. Let y = f uv then;

f = abx = ab(eex) = ab((xuv)ex) = ((abx)uv)ex = ( f uv)ex = yex

and

e = xuv = (x f f )uv = x f ( f uv) = x f y.

In the other hand;

y = f uv and y = yex imply that y ∈ R( f ). So

e = x f y and y = f uv = (abx)uv = ab(xuv) = abe imply y ∈ L(e). Consequently y ∈ R( f )∩

L(e).

Corollary 3.12. Let e be an idempotent. For all x ∈ H(e) there exists y ∈ H(e) such xey = e =

yex. Then xe f and yex are in E(S).

Proof. take e = f in the previous proposition.

The following question, if it has a positive answer, will be equivalent to Lallemant s theorem

in the ternary semigroup case.

Question 2. Let S be a regulary ternary semigroup and α : S −→ P be an onto semigroup

homomorphism. If e ∈ E(P), is α
−1(e)∩E(S) 6= /0?
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