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Abstract. In this study, we obtain an Arf semigroup by means of a sequence. We also establish some results on

the Arf semigroup.
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1. Introduction

A numerical semigroup S is a subset of the non-negative integers N, closed under addition,that
contains 0 and has finite complement in N. The condition #(N\S) < oo is equivalent to impose
that gcd(A) = 1 for every system of generators A of S,where £(A) denotes the cardinality of A
any set. Every numerical semigroup S is finitely generated and has a unique minimal system of

generators ay, ..., dy; that is

S= <a1,...,ak> = {rlal + ...t ragr € N}
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with a) < ... < ay and q; ¢ (ay,...,d;,...,a;). Then will say that S is minimally generated by
{ai,...,ar} [2].

An important invariant of S is the largest integer not belonging to S, known as the Frobenius
number of S and denoted by F(S). We define n(S) = ({0, 1,...,F(S)} NS) [5]. It is also well
known that S = (ay,...,ax) = {0,s1,52,53,...,50, F(S) + 1,— ...} where ” — ” means that every
integer greater than F(S) 4 1 belongs to S, n = n(S) and s; < s;4 for i = 1,2,...n. The integer
F(S)+ 1 is conductor of S.

The elements of N\ S are called gaps of S. Set of gaps of S is denoted by H(S). Its cardinality
is the genus of S, g(S),which is sometimes referred to as the degree of singularity of S. A gap
x of numerical semigroup S is said to be fundamental if {2x,3x} C S. We denote by FH(S) the
set of all fundamental gaps of S [4].

Let S be a numerical semigroup. It is denoted by N(S) = {s € S: s < F(S)}. This set fully
determines S . Clearly, n(S) = (N(S)) [5].

A numerical semigroup S is Arf numerical semigroup if for every x,y,z € S such thatx >y > z,
one has that x+y—z € S [1, 3]. However, Barucci and his colleagues determine that an Arf
numerical semigroup has maximal embedding dimension [2].But the reverse is not true. For
example, the numerical semigroup S = (3,7,11) = {0,3,6,7,9,— ...} has maximal embedding
dimension, while it is not Arf, because 7+7—6 =8 ¢ S.

The main goal of this paper is to prove Theorem 2.2 which gives a class of Arf semigroup
by means of a sequence. We also find some special invariants of this class such as gaps, funda-

mental gaps, genus, Frobenius number and n(S).

2. Main results

Proposition 2.1. Let S be a proper subset of N. Then S is an Arf numerical semigroup if and

only if there exist positive integers X1, ..., X, such that

S={0,x1,x1 +x2,.c0, X1 + oo F X1, X1 + oo F X, — o}

and x; € {Xi41,Xi41+Xis2, s Xit1 + oo+ X, — Y foralli € {1,...,n} [3].
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Theorem 2.2. Leta € 7" and a > 2. If (ay) is a sequence with general term

I, ifn=1
av %, ifn#1

an:

then (a,) = {1,a°,a",....,a"2,...). When t positive integer multiples of its first n elements are
selected as x, =t,x,_1 = a’t,x,_» = a't, ey X1 = a2, respectively. S ={0,x1,x1 +x2,...,x] +
Xy = =10, (@2 a3 (@4 a1, — LY s an Arf numerical

semigroup.

Proof. Let a € Z* and a > 2. Then

X, = t
_ 0
Xpo1 = ate{t,— ..}
x1 = dte{d @ +ad N (@ D L)
because
A3+ 4+d = 4+ +d
(a— D@2 +..4+d) > > +..+d (a>2)
a2—1 > a3+ +ad
a7 > d 3+ +ad+1

A7 > (@4 +d 1), (rezt)

and x; € {Xj41,Xi+1 +Xi12, ey Xit1 + .. + x5 — ...} foralli € {1,...,n}. Thus xy, ..., x, fulfill the
conditions of Proposition 2.1. Then S = {0,x,X1 +X2,...,x1 +... +x, = ...} = {0,a"%t, (a" %+

a3t (@24 ... +a® 4+ 1)t,— ...} is numerical semigroup with Arf property.

Example 2.3. Take a=3,n=5andt =7 . Then xs =7,x4 = T,x3 =21,xp = 63 and x; = 189
so S =1{0,189,252,273,280,287,— ...} is obtained by means of this sequence. The numerical

semigroup S is Arf property.
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Proposition 2.4. Letac ZF, a>2 and t,n > 1. If S = {0,a"%t, (a" > +a"3)t,...,(d" > +
o a® + 1)t,— ...}, then the set of gaps of S is
HS) ={1,...a" 2% —1,d" 2t +1,a" 2 +2,....(a" 2 +d"3)) -1,
(@2 4+ad" )+ 1, (@ 24+ a" ) +2,.., (@ 2+ .. +d -1,
(@24 . 4+d" D+ 1,(d" o+ d ) +2,
(@ 4. a1, (@ 4 a4,

(@24 +ad 42, (@A D — 1)

foralli=4,5,...n— 1 and genus of S is g(S) = (a" > +a" > +..+a’ + 1)t —n.

Proof. Leta € Z",a>2and t,n > 1. Let

A = {1,...d"%—1,d" 2+ 1,d""2+2,..,(d" 2 +a" ) -1,
(@2 4+a" )+ 1, (a2 +a" ) +2,.., (@ 2+ .. +d -1,
(@ 24 . 4d" D+ 1,d" 2+ . 4 d" 42, ..,
(@ 24 +d =1, (@ a1,

@ 2+ . +d" 7 Ye+2, (@ P+ L+ )= 1)

If x € A, then

n—2

O<x<d™t = x¢8§

A <x< (@ 4d" ) = x¢S

fori=4,5,....n—1
(@ 2 4+d" P+ . +d" N <x< (@ *+d" 4+ +a"" ) = x¢S

@2 4+ad" 3+ ) <x< (@ 4d 3+ +d+ 1) = x¢S.

andx ¢ S. Sox € H(S) and A C H(S).
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Lety € H(S). Thus y ¢ S.

y¢S = (a)ycA ={1,2,...d" *t—1}or

(b)y€eAy={d"2t+1,a"*t42,...(d" > +d" -1} or

fori=4,5,..n—1

()yeAi={(@ > +a" >+ .. +a" N +1,@ > +d" >+ ... +d" N +2,...,
(@ 24+ad" 3+ .. 4+d" =1} or

fori=4,5,..n—1

(d)ycA,={(@ > +d" 3+ ..+ +1,(d" > +d" 3 +.. +d)r+2,..,
(@2 4+d" 3+ .. +d+ 1) —1}

= YEAIUAU...UAU...UA, =A

So, H(S) C A. Therefore, since A C H(S) and H(S) C A, it follows that H(S) = A. Using the

definition of the genus, we get

g(8)=4(H(S) = (@ Hr=D+[(@" 2 +a" -]
(@24 +d = (@ P d T = 1]
(@ 4. +d+ 1) —(a" 2+ .. +a")t 1]
@ D) @ ) b @ )
(@t —1)+(—1)
= (@ 24a" 4. +d+ D +n(—1)

= (@ *+d" 3+, +d+ 1) —n.

Remark 2.5. Leta € Z" and a > 2. Let S be a Arf numerical semigroup in the form S =

{0,a"2t, (a2 +a" ), ..., (@ 2+ ... +d+ 1)t,— ...} Fort =1,
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n(§) = n-2
F(S) = (@ +d" 3 +..+d")—1

glS) = (@ *+d" P +.. +a)—(n-2).

Theorem 2.6. Leta,t,n € Z™", a,n > 2 andt be positive even integer, and let S = {O,a"_zt, (a”_z—f—
a3ty (@24 a1t — L} ={0,51,82, 00,80 1,80 — ... }. The set of Fundamental
gaps of numerical semigroup S is FH(S) = {3,%,.... 3,3 + 1,3 +2,...,51 — Ls; + 1,51 +
2,0 —1,nsi+ 1oy sipr— Lsip + 1,5y — 1} fori=2,3,....n—1.

+ 111 1 — n Sn
Proof. Let a,t,n € Z", a,n > 2 and t be positive even integer, and let K = {3, F,..., %, % +
L3422, 51— Lsi+1s1+2,.,00— 1,54+ 1,501 — Lsigr +1,...,5, — 1}. Firstly, we
show K C FH(S).

If x € K and x > s, then

A3+ 4+d = 3+ +d
(a—1)@ 3 +..4+d) > > +.+d (a>2)
d"?—1 > d" 4. +a
a7 > a4 +d 1

n—2

a4+ a"?

> " 24d" 3+ 44 +1
27" 2% > a2+ +d+1
28" > (@ P4 +d+ 1), (rezt)

251 > Sp

and we can also obtain that 3s; > s,. Since 2x,3x > s, and 2x,3x € S, we get that x € FH(S).

IfxcKand 3 <x<%, thenx= %forj: 1,...,r.
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(@24 ... 4+d" T

= (@ 4. +d" T D+

2
; =2 adm Iy
> (an—2+_"+an—j—l)t+(a +..+a ) ’ (a>2)
a
Y @ et @ sy

a*=i=1>g"=i=2 4 +a0+1

> (@ Pt 4d T 4 d T L+ Dtk =5yt k>, (keZT)
5

3x=3% € S. This implies x € FH(S).

If x€ Kand 3 <x <s;—1, then

xz%n—kl = (2x>s,+2) and (3x23%n—|—3:sn+ %n +3>s,)
<~
VA

= 2x,3x€SS.

This implies x € FH(S). So, K C FH(S).

Now, we show FH(S) C K. Letx € FH(S) and x ¢ K. If x ¢ K, then either x € H(S) or
x¢ H(S). If x ¢ H(S), then x € S, in contradiction with x € FH(S). Then x € H(S).

If x € FH(S), then either 2x =s; fori <norx > %. Ifi <nand 2x=s;, thenx € K. If x > 3,
then 3 <s; — 1 and consequently, it must happen that either x € {% +1,% +2,....5; — 1} or
xe{yeN:s; <y<s,}\{s1,...,8n}. So FH(S) C K.

Since K C FH(S) and FH(S) C K, we have FH(S) =K.

Corollary 2.7. Let a,t,n € Z*. Take S = {0,a"%t,(a" > +a" )t,....,(a" > +...+a’ + 1)t, =
i} ={0,81,82, ..y Sn—1,8n — ...} for a,n > 2 The set of Fundamental gaps of numerical semi-

group S is as follow:

Fori=23,...n—1,

(1) If a is positive even integer and t is positive odd integer, then

FH(S) = {3, %,... 22, 2,2+ 1,2 +2, 51— Lisi+ Ls1 +2,...0 — 1,....5 +

Loosipi—Lsipn+1,.,8,— 1}
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(2) If a,t is positive odd integers, then

e [or even positive integer n,

FH(S)={%,%,..,252, %2+ 1,%+2, . si—Lsi+1s14+2,...,50—1,...,5+
I oosipi—Lsipi+1, .8, — 1}

e For odd positive integer n,

s S Sn— S S, S
FH(S)={%,%,..., 25, 25, 2+ 1,25 42, s — Lsi+1Ls1+2, 50— 1, s+

Loosipi—Lsipi+ 1,8, — 1}

Example 2.8. Take a = 3,n = 6 and t = 6. Then S = {0,162,216,234,240,242,244, — ...} and

The set of Fundamental gaps of numerical semigroup S is

FH(S) = {81,108,117,120,121,122,123,124,125,126,127,128,129, 130, 131,132, 133,
134,135,136, 137, 138,139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151,152,153,154,155,156,157,158,159, 160, 161, 163, 164, 165, 166, 167, 168,
169,170,171,172,173,174,175,176,177,178,179, 180, 181, 182, 183, 184, 185,
186,187,188,189, 190,191,192, 193,194, 195,196, 197, 198, 199,200, 201,202,
203,204,205,206,207,208,209,210,211,212,213,214,215,217,218,219, 220,
221,222,223,224,225,226,227,228,229,230,231,232,233,235,236,237,238,

239,241,243},
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