ON LARGE ARBITRARY LEFT PATH WITHIN A SEMIGROUP

AJMAL ALI ${ }^{1, *}$, ZAHID RAZA ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Nizwa College of Technology, Nizwa, Oman
${ }^{2}$ Department of Mathematics, College of Science, University of Sharjah, UAE

Copyright (c) 2017 Ajmal Ali and Zahid Raza. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is about the construction of semigroups S from some given graph G. Let S be a finite non-commutative semigroup, its commuting graph, denoted by $G(S)$, is a simple graph (which has no loops and multiple edges) whose sets of vertices are elements of S and whose sets of edges are those elements of S which commute with other elements i.e. for any $a, b \in S$ such that $a b=b a$ for $a \neq b$. For some non empty finite set X, denote $T(X)$ by semigroup of full transformations and I_{r} by ideal of $T(X)$ whose rank is less than or equals to r. Let $a_{1}-a_{2}-a_{3}-\ldots-a_{m}$ be a path in $G(S)$, this path is said to be left path or $l-$ path if

$$
a_{1} a_{i}=a_{m} a_{i} \text { for } i \in\{1,2,3, \ldots m\}
$$

In this paper, we construct semigroup S of a complete bipartite graph $K_{n, m}$ and find maximum length of l - path in its commuting graph $G(S)$. Moreover, we see that such type of semigroups have knit degree 2 .

Keywords: commuting graph; $l-$ path; ideal; semigroup of full transformations; knit degree.
2010 AMS Subject Classification: 20M14.

1. Introduction

*Corresponding author
E-mail addresses: ajmal.ali@nct.edu.om (A. Ali), zraza@sharjah.ac.ae (Z. Raza)
Received May 8, 2016
J. Arajo, Kinyon M. and Konieczny give a construction of band (semigroups of idempotents) in which one can find semigroup of any knit degree n, for some positive integer n, except $n=3$ [1]. The construction of such type of semigroups also helps for finding semigroups for every $n \geq 2$ such that the diameter of commuting graph $G(S)$ is n. On the other hand, finding out the semigroups from a given graph is very important and difficult task in the theory of semigroups. In our paper, we find the semigroup of complete bipartite graph which will be the partly answer, to some extent, of problem given in [1].

Let S be a finite non-commutative semigroup whose centre is defined as $Z(S)=\{a \in S: a b=$ $b a \quad \forall b \in S\}$. The commuting graph of a finite non-commutative semigroup is a simple graph whose sets of vertices are from $S-Z(S)$ and whose sets of edges are the elements of S which commute with other elements i.e. for any $a, b \in \mathrm{~S}$ such that $a b=b a$ for $a \neq b$. This paper is actually the construction of band (of course non commutative) from a graph and finding out $l-$ path of length n for any even positive number n within the commuting graph of a semigroup. For the construction of such type of semigroups, our main focus will be on semigroup of full transformations $T(X)$ for a finite set X and $l-$ path in a commuting graph of $G(T(X))$.

Let S be a finite non commutative semigroup and $a_{1}-a_{2}-a_{3}-\ldots-a_{m}$ is a path in $G(S)$, this path is said to be left path or $l-$ path if $a_{1} a_{i}=a_{m} a_{i}$ for $i \in\{1,2,3, \ldots m\}$. The length of minimal l - path is called the knit degree of the semi group S, denoted by $\operatorname{Kd}(S)$. We also see that in such type of semigroups, $K d(S)=2$ and the maximum length of l - path in its commuting graph is $2 m-2$, for any positive number m.

Let $T(X)$ be a semigroup of full transformations for a finite set X under the composition of function. Actually the semigroups $T(X)$ is the set of all functions from a finite set X to X. In this paper we consider transformations $a, b \in T(X)$ and define composition of functions as $(a b)(x)=a(b(x))$ from right instead of left i.e. $(x)(a b)=((x) a) b$ for $x \in X$.

Suppose that $G(S)$ is commuting graph of some non-commutative semigroup of S, then $G(S)=(V, E)$ where V is a finite vertex set and and E is a set of edges such that $E \subseteq\{\{u, v\}$: $u, v \in V$ for $u \neq v\}$. If $v_{1}, v_{2}, \ldots v_{k}$ are the vertices in $G(S)$ then we write a path λ from v_{1} to v_{k} as $\lambda=v_{1}-v_{2}-\ldots v_{k}$ of length $k-1$. We say that λ is minimal path if there does not exist any path shorter than λ.

A bipartite graph is a simple graph in which vertex set $V(G)$ can be divided into two sets named as V_{1} and V_{2} such that if $v \in V_{1}$ it may only be adjacent to the vertices of V_{2} and similarly if $v \in V_{2}$ it may only be adjacent to the vertices of V_{1}. Moreover $V_{1} \cap V_{2}=\emptyset$ and $V_{1} \cup V_{2}=V(G)$. A complete bipartite graph $K_{m, n}$ is bipartite graph that has each vertex set from one set adjacent to each vertex to another set. In this paper, we only consider complete bipartite graphs in which the orders of the both sets are the same.

For $a \in T(X)$ we write image of a by $\operatorname{im}(a)$ and kernel of a is defined as

$$
\operatorname{ker}(a)=\{(x, y) \in X \times X: a(x)=a(y)\}
$$

and rank of a as $\operatorname{rank}(a)=|i m(a)|$
Also $T(X)$ has n ideals $I_{1}, I_{2} \ldots I_{n}$ where $1 \leq r \leq n$

$$
I_{r}=\{a \in T(X): \operatorname{rank}(a) \leq r\}
$$

Clearly the ideal I_{1} is of rank 1 i.e. a constant transformation and hence its commuting graph will be isolated vertices.

Definition 1.1. Let S be a semigroup and $e \in S$ is an idempotent if $e^{2}=e$. Also we define the sets of idempotents in S to be $E(S)=\left\{e \in S: e^{2}=e\right\}$ Now, $E(S)$ may be empty or it may be $E(S)=S$. If $E(S)=S$ then S is a band. We construct band in our construction in the monoid $T(X)$.

Definition 1.2. Let $e \in T(X)$ be an idempotent and $\left\{A_{1}, A_{2}, \ldots . A_{k}\right\}$ be a partition of X and unique elements $x_{1} \in A_{1}, x_{2} \in A_{2}, \ldots x_{k} \in A_{k}$ such that for every i we have $A_{i} e=\left\{x_{i}\right\}$. Then the set $\left\{x_{1}, x_{2}, \ldots x_{k}\right\}$ is the image set of e.We use the following notation for e,

$$
e=\left(A_{1}, x_{1}\right\rangle\left(A_{2}, x_{2}\right\rangle \ldots\left(A_{k}, x_{k}\right\rangle
$$

If e is a constant transformation with image set $\{x\}$ then we write $(X, x\rangle[1]$.
Definition 1.3. Let $e=\left(A_{1}, x_{1}\right\rangle\left(A_{2}, x_{2}\right\rangle \ldots\left(A_{k}, x_{k}\right)$ an idempotent in $T(X)$ and let $b \in T(X)$ then b commutes with e if and only if for every $i \in\{1,2 \ldots k\}$ there is a $j \in\{1,2 \ldots k\}$ such that $b x_{i}=x_{j}$ and $b A_{i} \subseteq A_{j}[1]$.
Definition 1.4. Let $e, f \in I_{r}$ be idempotents and suppose there is $x \in X$ such that $x \in \operatorname{im}(e) \bigcap \operatorname{im}(f)$ then $e-(X, x\rangle-f[1]$

2. Semigroup of complete bipartite graph

Lemma 2.1. Let $c_{x}, c_{y}, e \in T(X)$ such that e is an idempotent, then
(1) $c_{x} e=e c_{x}$ if and only if $x \in \operatorname{im}(e)$
(2) $c_{x} e=c_{y} e$ if and only if $(x, y) \in \operatorname{ker}(e)$

Proof: (1) Consider $c_{x} e=e c_{x}$. As c_{x} and e commute with each other, therefore, there should be at least one element common in the images of c_{x} and e but c_{x} has only one element in the image set i.e x in $\operatorname{im}\left(c_{x}\right)$. So $x \in \operatorname{im}\left(c_{x}\right) \bigcap \operatorname{im}(e)$ or $x \in\{x\} \bigcap \operatorname{im}(e)$. This implies that $x \in \operatorname{im}(e)$. Conversely, suppose that $x \in \operatorname{im}(e)$. We can write it as $x \in\{x\} \bigcap \operatorname{im}(e)$. This implies that $x \in \operatorname{im}\left(c_{x}\right) \bigcap \operatorname{im}(e)$. Thus we have $c_{x} e=e c_{x}$.
(2) Consider $c_{x} e=c_{y} e$. As $\operatorname{ker}(e)$ is defined as $\operatorname{ker}(e)=\{(x, y) \in X \times X: x e=y e\}$. Consider $c_{x} e=c_{z}$ and $c_{y} e=c_{t}$ for some t and z in X. Thus $c_{z}=c_{t} \Rightarrow z=t$ and hence $z e=t e$. Therefore $(x, y) \in \operatorname{ker}(e)$. Conversely, let $(x, y) \in \operatorname{ker}(e)$ then by def. of $\operatorname{ker}(e)$ we have $x e=y e$, implies $c_{x} e=c_{y} e$.

Definition 2.1. Let $K \geq 2$ be an integer and $X=\left\{y_{1}, y_{2}, y_{3}, \ldots y_{2 k}, s\right\}$. We define the idempotent $a_{1}, a_{2}, \ldots a_{k}, b_{1}, b_{2}, \ldots, b_{k}$ as follows:

For $i \in\{1,2, \ldots 2 k\}$. Consider, $\operatorname{im}\left(a_{i}\right)=\left\{y_{1}, y_{2}, y_{3}, \ldots . y_{2 k}\right\}$ and $\operatorname{im}\left(b_{i}\right)=\left\{y_{2 i}\right\}$
For $i \in\{1,2, \ldots k\}$. There will be $2 k$ kernel classes of each $\operatorname{ker}\left(a_{i}\right)$.
We define $\operatorname{ker}\left(a_{i}\right)$ - classes by,

$$
\operatorname{ker}\left(a_{1}\right)=\left\{\begin{array}{l}
\left\{y_{1}, s\right\} \\
\left\{y_{2}\right\},\left\{y_{3}\right\} \ldots\left\{y_{2 k}\right\}
\end{array}\right.
$$

For $i \geq 2$

$$
\operatorname{ker}\left(a_{i}\right)= \begin{cases}\left\{y_{i+j}, s\right\}, & \text { if } j=1,2,3, \ldots \\ \left\{y_{i}\right\}, \ldots\left\{y_{2 k}\right\}, & \text { if } j \neq 1,2,3, \ldots\end{cases}
$$

Also

$$
\operatorname{ker}\left(b_{i}\right)=X
$$

Theorem 2.1. (Cayley's Theorem)
Every semigroup S can be embedded into the semigroup of full transformations $T(X)$ i.e there will be subsemigroups S^{\prime} of $T(X)$ such that $S \simeq S^{\prime}$. For proof see [7].

Example 2.1. Let $S=\{a, b, c, d, e, f\}$ be a semi group and its cayley's table is as follows:

$*$	a	b	c	d	e	f
a	a	b	c	d	e	f
b						
c	a	b	c	d	e	f
d						
e	a	b	c	d	e	f
f						

To make the transformations of the above semigroup S we add identity i in S and get the following set of transformations S^{\prime}.

$$
\vdots
$$

$$
\begin{aligned}
& S^{\prime}=\left\{\phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}, \phi_{6}\right\} \text { Where } X=\{a, b, c, d, e, f, i\} \text { we partitioning } X \text { as: } \\
& A_{1}=\{a, i\} A_{2}=\{b\} A_{3}=\{c\} A_{4}=\{d\} A_{5}=\{e\} A_{6}=\{f\} \\
& \phi_{1}=\left(A_{1},\{a\}\right\rangle\left(A_{2},\{b\}\right\rangle\left(A_{3},\{c\}\right\rangle\left(A_{4},\{d\}\right\rangle\left(A_{5},\{e\}\right\rangle\left(A_{6},\{f\}\right\rangle \\
& A_{1}=\{a\} A_{2}=\{b, i\} A_{3}=\{c\} A_{4}=\{d\} A_{5}=\{e\} A_{6}=\{f\} \\
& \phi_{2}=\left(A_{1},\{a\}\right\rangle\left(A_{2},\{b\}\right\rangle\left(A_{3},\{c\}\right\rangle\left(A_{4},\{d\}\right\rangle\left(A_{5},\{e\}\right\rangle\left(A_{6},\{f\}\right\rangle \\
& A_{1}=\{a\} A_{2}=\{b\} A_{3}=\{c\} A_{4}=\{d\} A_{5}=\{e\} A_{6}=\{f, i\} \\
& \phi_{6}=\left(A_{1},\{a\}\right\rangle\left(A_{2},\{b\}\right\rangle\left(A_{3},\{c\}\right\rangle\left(A_{4},\{d\}\right\rangle\left(A_{5},\{e\}\right\rangle\left(A_{6},\{f\}\right\rangle
\end{aligned}
$$

The transformations defined in this way and by Theorem 2.3, S is isomorphic to S^{\prime} because S is semigroup.i.e $S \simeq S^{\prime}$

Lemma 2.2. The products of elements of the semigroups are defined as:
Let $1 \leq i<j \leq k$ then
(1) $a_{i} a_{i}=a_{i}$ and $b_{i} b_{i}=b_{i}$
(2) $a_{i} a_{j}=a_{j}$ and $a_{j} a_{i}=a_{i}$
(3) $b_{i} b_{j}=c y_{i}$ and $b_{j} b_{i}=c y_{j}$
(4) $a_{i} b_{i}=c y_{i}$ and $b_{i} a_{i}=c y_{i}$
(5) $a_{i} b_{j}=c y_{j}$ and $a_{j} b_{i}=c y_{i}$
(6) $b_{i} a_{j}=c y_{i}$ and $b_{j} a_{i}=c y_{j}$

Proof: (1) Statement is true because the generators are idempotents. (2) Since each kernel class of $\operatorname{ker}\left(a_{j}\right)$ except $\left\{y_{i}, s\right\}$ contains both $\operatorname{im}\left(a_{j-1}\right)=\left\{y_{1}, y_{2}, \ldots, y_{2 k}\right\}$ and $\operatorname{im}\left(a_{i}\right)$. Since $y_{j-1} \in$ $\operatorname{im}\left(a_{j}\right)$, therefore, a_{j} will map elements of each kernel class except $\left\{y_{i}, s\right\}$ to y_{j}. Thus $a_{i} a_{j}=a_{j}$. Similarly each kernel class of $\operatorname{ker}\left(a_{i}\right)$ except $\left\{y_{i}, s\right\}$ contains both $\operatorname{im}\left(a_{i+1}\right)=\left\{y_{1}, y_{2}, \ldots, y_{2 k}\right\}$ and $\operatorname{im}\left(a_{j}\right)$. Since $y_{i} \in \operatorname{im}\left(a_{i}\right)$, therefore, a_{i} maps element of each kernel class except $\left\{y_{i}, s\right\}$ to y_{i}. Thus $a_{j} a_{i}=a_{i}$. Therefore both transformations a_{i} and a_{j} are making right zero semi groups so they will never commute with each other. (3) Both b_{i} and b_{j} are constant transformations and therefore they will map on a single element of X and never commute with each other. The proof of other products are similar as proved in (2). Thus $S=<a_{i}, b_{j}>$ will be our required semigroup verified by GRAPE which is a package of GAP[10].

3. Left paths (l-path) in $G\left(K_{m, m}\right)$

Lemma 3.1. Let $a_{i}, a_{j}, b_{i}, b_{j} \in G\left(K_{m, n}\right)$ for $m=n$ and $i<j$ and $c_{b} \in G\left(K_{m, n}\right)$ such that $a_{i}-c_{b}-a_{j}$ is a path in $G\left(K_{m, n}\right)$, then $a_{i} a_{j} \neq a_{j} a_{i}$ and $b_{i} b_{j} \neq b_{j} b_{i}$.

Proof: Since $a_{i}-c_{b}-a_{j}$ is a path in $G\left(K_{m, n}\right)$. By Lemma 2.1, we have, $a_{i} c_{b}=c_{b} a_{i}$ and $a_{j} c_{b}=c_{b} a_{j}$
$\Rightarrow b \in \operatorname{im}\left(a_{i}\right) \bigcap \operatorname{im}\left(c_{b}\right)$ and $b \in \operatorname{im}\left(a_{j}\right) \bigcap \operatorname{im}\left(c_{b}\right) \Rightarrow b \in \operatorname{im}\left(a_{i}\right) \bigcap \operatorname{im}\left(b_{j}\right)$. But by Lemma 2.2 (2) we have, $a_{i} a_{j}=a_{j}$ and $a_{j} a_{i}=a_{i}$. Therefore $a_{i} a_{j} \neq a_{j} a_{i}$. That is, the transformations a_{i} and a_{j} form right zero semigroups, therefore, they will never commute with each other. By Lemma 2.2
(3), implies $b_{i} b_{j} \neq b_{j} b_{i}$. That is, any two different constant transformations never commute with each other.

Lemma 3.2. Let $K_{m, n}$ for $m=n$ be a complete bipartite graph, then the paths $\Pi_{1}=a_{i}-b_{k}-a_{j}$ with $i<k<j$ and $\Pi_{2}=a_{1}-b_{1}-a_{2}-\cdots-b_{n-1}-a_{n}$ are the only l-paths in $G\left(K_{m, n}\right)$ with endpoints not constants.

Proof: Consider the path $\Pi_{1}=a_{i}-b_{k}-a_{j}$. By definition of $l-$ path we have, $a_{1} a_{i}=$ $a_{m} a_{i} \forall\{1,2,3, \ldots, m\}$ and products defined in Lemma 2.2, we can show that $a_{i} a_{i}=a_{i}, a_{i} b_{k}=$ $b_{k}, a_{i} a_{j}=a_{j}$ and on the other hand, $a_{j} a_{i}=a_{i}, a_{j} b_{k}=b_{k}, a_{j} a_{j}=a_{j}$. So the path $\Pi_{1}=$ $a_{i}-b_{k}-a_{j}$ with $i<k<j$ is a $l-p a t h s$ in $G\left(K_{m, n}\right)$ and it is minimum left path in $G\left(K_{m, n}\right)$ of length 2 thus, $K d(S)=2$.

Now consider the path $\Pi_{2}=a_{1}-b_{1}-a_{2}-\cdots-b_{n-1}-a_{n}$. Again by definition of l-path and by Lemma 2.2 we have $a_{1} a_{1}=a_{1}, a_{1} a_{j}=a_{j}$ and $a_{1} a_{n}=a_{n}, a_{1} b_{1}=b_{1}, a_{1} b_{j}=b_{j}$ and $a_{1} b_{n-1}=b_{n-1}$
On the other hand $a_{n} a_{1}=a_{1}, a_{n} a_{i}=a_{i}, a_{n} b_{i}=b_{i}$ and $a_{n} a_{n}=a_{n}$
Therefore the path $\Pi_{2}=a_{1}-b_{1}-a_{2}-\cdots-b_{n-1}-a_{n}$ is also a $l-$ paths in $G\left(K_{m, n}\right)$.
Lemma 3.3. There is no $l-$ path of odd length in $G\left(K_{m, n}\right)$ for $m=n$.
Proof: A path of odd length will be in following two cases.
1)path starts from a_{i} and ends at b_{j} for some $i<j$ or
2)path starts from b_{i} and ends at a_{j} for some $i<j$

In both cases, we see that by Lemma 3.2 above two paths are not l - paths because for l - path starting and end points should be non-constants.

Proposition 3.1. For any even positive number m , there is a l - path of length m in $G\left(K_{m, n}\right)$ for $m=n$ and maximum length of $l-$ path will not be more than $2 m-2$.

Proof: For $m \geq 2$, the maximum length of a path in $G\left(K_{m, n}\right)$ is $2 m-1$. The path of length $2 m-1$ is not l - path by Lemma 3.3. The maximum even length of a path in $G\left(K_{m, n}\right)$ is $2 m-2$ for $m \geq 2$. By Lemma 3.2, this path is $l-$ path in $G\left(K_{m, m}\right)$ because its end points are not constants. Thus maximum length of $l-$ path in $G\left(K_{m, n}\right)$ will not be more than $2 m-2$.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] J.Araujo, Kinyon M., Konieczny J., Minimal paths in the commuting graphs of semigroups, European J. Combin., 32(1)(2011), 178-197.
[2] J. Araujo, J. Konieczny, Semigroups of transformations preserving an equivalence relation and a crosssection, C. Algebra, 32 (2004) 1917-1935.
[3] B. Bundy, The connectivity of commuting graphs, J. Comb. Theory Ser. A 113 (2006), 995-1007.
[4] The GAP Group, Algorithms, and Programming, Version 4.4.12, 2008, http://www.gap-system.org
[5] M. Howie, Idempotent generatorsin finite full transformations semigroup, Proc. Roy. Soc. E.Sect A 81 (3-4) (1978), 317-323.
[6] M. Howie, The sunsemigroup generated by the idempotents of a full transformation semigroup, J London Math Soc. 41 (1966), 707-716
[7] M. Howie, Fundamentals of Semigroup Theory, London Math. Soc. Monogr, Oxford University Press, New York, 1995
[8] A. Iranmanesh and A. Jafarzadeh, On the commuting graph associated with the symmetric and alternating groups, J. Algebra Appl. 7 (2008), 129-146.
[9] J. Konieczny, Semigroups of transformations commuting with idempotents, Algebra Colloq. 9 (2002), 121134.
[10] L.H. Soicher, The GRAPE package for GAP, Version 4.3, 2006, http://www.maths.qmul.ac.uk/ leonard/grape

