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Abstract. In this work, we study the existence and regularity of solutions for some partial functional integrod-
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Secondly, we give sufficient conditions ensuring the existence of the strict solution. The method used treats the

equations in the domain of A with the graph norm employing results from linear semigroup theory. To illustrate

our abstract result, we conclude this work with an application.
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1. Introduction

In this work, we study the existence and regularity of solutions for the following partial func-

tional integrodifferential equation with infinite delay
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(1.1)


u′(t) = Au(t)+

∫ t

0
α (t− s,u(s))ds+ f (t,ut) for t ≥ 0,

u0 = ϕ ∈P,

where A : D(A) ⊂X →X is the infinitesimal generator of a linear semigroup in a Banach

space X , α is in general a nonlinear operator from R+×D(A) to X , f : R+×P → X

is a continuous function and the phase space P is a linear space of functions mapping ]−

∞,0] into D(A) endowed with the graph norm namely for x ∈ D(A), |x|D(A) = |x|+ |Ax| then(
D(A), |.|D(A)

)
is a Banach space, for every t ≥ 0, the history function ut ∈P is defined by

ut(θ) = u(t +θ) for θ ∈]−∞,0].

As in [36], we consider a nonlinear Volterra integrodifferential equation of parabolic type

(1.2)



∂

∂ t
w(t,x) =

∂ 2

∂x2 w(t,x)+
∫ t

0
k
(

t− s,
∂ 2

∂x2 w(s,x)
)

ds+h(t,x),

for t > 0 and 0 < x < 1,

w(t,0) = w(t,1) = 0, for t > 0,

w(0,x) = w0(x), for 0 < x < 1.

The abstract version of the initial boundary value problem (1.2) is given by

(1.3)


u′(t) = Au(t)+

∫ t

0
α (t− s,u(s))ds+F(t), for t ≥ 0,

u(0) = x ∈X .

Some results are proved concerning local existence, global existence, continuous dependence

upon initial values and asymptotic stability for Eq.(1.3) under some suitable assumptions. A

vast literature has investigated this equation in various aspects. Eq.(1.3) has many physical

applications and arises in such problems as heat flow in materials with memory [7], [8]. As a

model see Eq.(1.2). For his study, we also refer the reader to [[3], [9], [23], [28]].

Partial functional differential equations arise in a variety of areas of biological, physical and
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engineering applications, see, for example, the books and the papers in the following references

[[18], [19], [26], [31], [37]] , [17,29] and the references therein. Recently, the following differen-

tial equations with delay have been studies by many authors ([35], and references therein):

(1.4)


u′(t) = Au(t)+F(t,ut), for t ∈ [0,T ],

u0 = ϕ ∈P.

There has been a great deal of work contributed to the study of partial differential equations

with delay by using different methods under different conditions. The most classical work is

due to Travis and Webb [35].

The investigation of functional differentials with infinite delay in an abstract admissible phase

space was initiated by Hale and Kato [20], Kappel and Schappacher [24], and Schumacher [34].

The method of using admissible phase space enables one to treat a large class of functional dif-

ferential equations with infinite delay at the same time and obtain general results. For a detailed

discussion on this topic, we refer to the book by Hino and al. [22].

Eq.(1.1) is the mixed type of Eq.(1.3) and Eq.(1.4). It well enable us to study the nonlinear

Volterra integrodifferential equation with delay. On the basis of the results in Eq.(1.4) we gen-

eralize the method used in [36] to derive global existence and regularity of Eq.(1.1). The result

obtained is a generalization and a continuation of [36]. The method used treats the equations

in the domain of A with the graph norm employing results from linear semigroup theory con-

cerning abstract inhomogeneous linear differential equations. In our work the nonlinear term is

treated as a perturbation of the linear equation.

The organization of this work is as follows, in Section 2, we recall some preliminary results

about Eq.(1.3) and Eq.(1.4). Some basic notations and assumptions are also given in this sec-

tion. In Section 3, we prove global existence and regularity of solution to Eq.(1.1) which are the

main results of this paper. Moreover, some properties of solutions are also studied. In Section

4, we give an example of application to show that our results valuable.
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2. Preliminary results

In this section, we recall some fundamental results needed to establish our results. Throughout

the paper, X is a Banach space, A is closed linear operator on X . Y represent the Banach

space D(A) equipped with the graph norm defined by |y|Y = |y|X + |Ay|X for y∈Y . P is the

space of continuous function from ]−∞,0] to Y . It is well know by the Hille-Yosida theorem

that A is the infinitesimal generator of a c0− semigroup of bounded linear operators in X if

and only if

(i) D(A) = X ,

(ii) there exist M ≥ 1, w ∈ R such that for λ > w, (λ I−A)−1 ∈B(X ) and

∣∣(λ I−A)−n∣∣≤ M
(λ −w)n for λ > w and n ∈ N,

where B(X ) is the space of bounded linear operators on X .

Definition 2.1. A continuous function u : [0,+∞[→D(A) is said to be strict solution of Eq.(1.3)

if

(i) u ∈ C 1 ([0,+∞[;X )∩C ([0,+∞[;Y )

(ii) u satisfies Eq.(1.3) for all t ≥ 0.

Remark 2.2. From this definition, we deduce that u(t) ∈D(A), the function t 7→ α(t− s,u(s))

is integrable for all t ≥ 0 and s ∈ [0,s].

Theorem 2.3. [33] If u is a strict solution of Eq.(1.3) then u satisfies

(2.1) u(t) = T (t)x+
∫ t

0
T (t− s)

∫ s

0
α(s− r,u(r))drds+

∫ t

0
T (t− s)F(s)ds.

Remark 2.4. If u satisfies the formula (2.1) u is not in general a strict solution. That is why we

give the definition of the mild solution.

Definition 2.5. A continuous function u : [0,+∞[→D(A) is called a mild solution of Eq.(1.3)

if u satisfies the formula (2.1).
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3. Existence and regularity of the solutions for Eq.(1.1)

In this section, we prove global existence and regularity of solution to Eq.(1.1), which are the

main results of this paper. Firstly, we show the existence of the mild solutions. Secondly, we

give sufficient conditions ensuring the existence of the strict solutions.

3.1 Global existence of the mild solutions

Definition 3.1. We say that a continuous function u :]−∞,+∞[→ D(A) is a strict solution of

Eq.(1.1) if the following conditions hold

(i) u ∈ C 1([0,+∞[;X )∩C ([0,+∞[;Y ),

(ii) u satisfies Eq.(1.1) on [0,+∞[,

(iii) u(θ) = ϕ(θ) for −∞ < θ ≤ 0.

Proposition 3.2. If u is a strict solution of Eq.(1.1), then u is given by

(3.1)
u(t) = T (t)ϕ(0)+

∫ t

0
T (t− s)

∫ s

0
α(s− r,u(r))drds

+
∫ t

0
T (t− s) f (s,us)ds.

Proof. It is just a consequence of Theorem.(2.3). In fact, let us suppose F(t) = f (t,ut) for t ≥ 0.

Then we get the desired result. ♦

Definition 3.3. We say that a continuous function u :]−∞,+∞[→ D(A) is a mild solution of

Eq.(1.1) if u satisfies the formula (3.1) and u0 = ϕ.

In this work, we assume that the phase space (P, |.|P) is a normed linear space of functions

mapping ]−∞,0] into D(A) and satisfying the following fundamental axioms ( cf. Hale and

Kato in [20]).

(A1) There exist positive constant H and functions K(.),M(.) : R+→ R+, with K continuous

and M locally bounded, such that for any σ ∈R and a > 0, if u :]−∞,σ +a]→D(A), uσ ∈P,

and u(.) is continuous on [σ ,σ +a], then for every t ∈ [σ ,σ +a] the following conditions holds

(i) ut ∈P,

(ii) |u(t)|Y ≤ H |ut |P , which is equivalent to |ϕ(0)|Y ≤ H |ϕ|P for every ϕ ∈P,
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(iii) |ut |P ≤ K(t−σ) sup
σ≤s≤t

|u(s)|Y +M(t−σ) |ut |P ,

(A2) For the function u(.) in (A1), t 7→ ut is a P−valued continuous function for t ∈ [σ ,σ +a].

(B) The space P is a Banach space.

(H0) A is the infinitesimal generator of a c0− semigroup(T (t))t≥0 on X .

(H1) f : R+×P →D(A) is continuous and lipschitzian with respect to the second argument.

Let L f > 0 be such that

| f (t,ϕ)− f (t, ϕ̂)| ≤ L f |ϕ− ϕ̂|P for all t ≥ 0 and ϕ, ϕ̂ ∈P.

(H2) The derivative ∂α

∂ t (t,u) exists and is continuous from R+×D(A) into X , moreover there

exist two nondecreasing continuous functions b : R+→ R+ and c : R+→ R+ such that:

|α(s,u1)−α(s,u2)| ≤ b(s) |u1−u2|Y

and ∣∣∣∣∂α

∂ s
(s,u1)−

∂α

∂ s
(s,u2)

∣∣∣∣≤ c(s) |u1−u2|Y

for all s ∈ R+ and u1,u2 ∈ Y .

Theorem 3.4. Assume that (H0), (H1) and (H2) hold. If ϕ ∈P, then there exist a unique

continuous function u :]−∞,+∞[→ Y which solves (3.1).

Proof. Let t1 > 0. Define the set Γt1(ϕ) := {u ∈ C ([0, t1];Y ) : u(0) = ϕ(0)} . Γt1(ϕ) is a closed

subset of C ([0, t1];Y ), where C ([0, t1];Y ) is the space of continuous functions from [0, t1] to Y

equipped with the uniform norm topology. Next, for each u ∈ Γt1(ϕ) we define ũ its extension

over ]−∞, t1] by

ũ(t) =


ϕ(t) for t ∈]−∞,0],

u(t) for t ∈ [0, t1].

Define the operator K : Γt1(ϕ)→ C (]−∞,0],X ) by

(3.2) (K u)(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

[∫ s

0
α (s− r, ũ(r))dr+ f (s, ũs)

]
ds
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The first steep is to show that K (Γt1(ϕ))⊂ Γt1(ϕ). In fact, we have

(K u)(t) = T (t)ϕ(0)+
∫ t

0
T (t− s)

∫ s

0
α(s− r, ũ(r))drds+

∫ t

0
T (t− s) f (s, ũs)ds 0≤ t ≤ t1,

and

(AK u)(t) = AT (t)ϕ(0)+A
∫ t

0
T (t− s)

∫ s

0
α(s− r, ũ(r))drds+A

∫ t

0
T (t− s) f (s, ũs)ds 0≤ t ≤ t1.

Since A is closed, then

(AK u)(t) = AT (t)ϕ(0)+A
∫ t

0
T (t− s)

∫ s

0
α (s− r, ũ(r))drds

+
∫ t

0
T (t− s)A f (s, ũs)ds 0≤ t ≤ t1.

For the next, we need the following lemmas.

Lemma 3.5. Let u : [0, t1]→X be continuously differentiable. Assume that (H2) hold. Then,

k(t) =
∫ t

0
α(t− s,u(s))ds

is continuously differentiable from [0, t1] to X .

Proof. Let k(t) =
∫ t

0
α(t− s,u(s))ds for all t ∈ [0, t1]. Let h > 0.

k(t +h)− k(t)
h

=
1
h

[∫ t+h

0
α(t +h− s,u(s))ds)−

∫ t

0
α(t− s,u(s))ds

]

=
1
h

∫ t

0
(α(t +h− s,u(s))−α(t− s,u(s)))ds+

1
h

∫ t+h

t
α(t +h− s,u(s))ds

passing to the limit we obtain

k′(t) =
k(t +h)− k(t)

h
−→

∫ t

0

∂

∂ t
α(t− s,u(s))ds+α(0,u(t)) when h−→ 0+.

By virtue of the hypothesis we have placed on α, we see that k(t) is continuously differentiable

from [0, t1] to X . ♦

We require the following Lemma, which is proved in [25, p.488].
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Lemma 3.6. [25] Let k : [0, t1]→X be continuously differentiable and q be defined by

q(t) =
∫ t

0
T (t− s)k(s)ds for t ∈ [0, t1].

Then q(t) ∈D(A) for t ∈ [0, t1], q is continuously differentialble, and

Aq(t) = q′(t)− k(t) =
∫ t

0
T (t− s)k′(s)ds+T (t)k(0)− k(t).

By virtue of the hypothesis (H2) then, by Lemmas 3.5 and 3.6, for u ∈ Y , we deduce that,

(3.3)

(AK u)(t) = AT (t)ϕ(0)+
∫ t

0
T (t− s)α (0, ũ(s))ds

+
∫ t

0
T (t− s)

∫ s

0

∂α

∂ s
(s− r, ũ(r))drds−

∫ t

0
α (t− s, ũ(s))ds

+
∫ t

0
T (t− s)A f (s, ũs)ds 0≤ t ≤ t1.

From the axioms (A1− i),A2 and assumption (H1), it follows that the maps t 7→ f (t, ũt) is

continuous. Moreover, from (H2) and (A1) we infer that for every u ∈ Γt1(ϕ) the function

s 7→ α(s, ũ) is continuous on [0, t1] and so by assumption (H0) that t 7→
∫ t

0
T (s) f (s, ũs)ds is

continuous on [0, t1]. Thus, for u∈Γt1(ϕ),K u and AK u are both continuous from [0, t1] to X ,

K maps Γt1(ϕ) into Γt1(ϕ). Then K u ∈ C ([0, t1];Y ) and consequently K (Γt1(ϕ))⊂ Γt1(ϕ).

We claim that K is a strict contraction in Γt1(ϕ). In fact, let u,v ∈ Γt1(ϕ). In fact,

|(K u)(t)− (K v)(t)|X ≤
∣∣∣∣∫ t

0
T (t− s)

∫ s

0
(α(s− r, ũ(r))−α(s− r, ṽ(r))drds

∣∣∣∣
X

+

∣∣∣∣∫ t

0
T (t− s)( f (s, ũs)− f (s, ṽs))ds

∣∣∣∣
X

≤M
∫ t

0
ew(t−s)

∫ s

0
|α(s− r, ũ(r))−α(s− r, ṽ(r))|X drds

+M
∫ t

0
ew(t−s) | f (s, ũs)− f (s, ṽs)|X ds

≤M
∫ t

0
ew(t−s)

∫ s

0
|α(s− r, ũ(r))−α(s− r, ṽ(r))|X drds

+M
∫ t

0
ew(t−s) | f (s, ũs)− f (s, ṽs)|Y ds.

Without loss of generality, we assume that w > 0. By (H1) and (H2), we obtain that

|(K u)(t)− (K v)(t)|X ≤Mewt1
∫ t

0

∫ s

0
b(s− r) |ũ(r)− ṽ(r)|Y drds+ML f ewt1

∫ t

0
|ũs− ṽs|Y ds,
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|(AK u)(t)− (AK v)(t)|X ≤M
∫ t

0
ew(t−s) |α(0, ũ(s))−α(0, ṽ(s))|X ds

+M
∫ t

0
ew(t−s)

∫ s

0

∣∣∣∣∂α

∂ s
(s− r, ũ(r))− ∂α

∂ s
(s− r, ṽ(r))

∣∣∣∣
X

drds

+
∫ t

0
|α (t− s, ũ(s))−α (t− s, ṽ(s))|X ds+M

∫ t

0
ew(t−s) |A f (s, ũs)−A f (s, ṽs)|Y ds

≤Mb(0)ewt1
∫ t

0
|ũ(s)− ṽ(s)|Y ds+Mewt1

∫ t

0

∫ s

0
c(s− r) |ũ(r)− ṽ(r)|Y drds

+
∫ t

0
b(t− s) |ũ(s)− ṽ(s)|Y ds+ML f ewt1

∫ t

0
|ũs− ṽs|Y ds.

Which implies that

|(K u)(t)− (K v)(t)|Y ≤Mb(0)ewt1
∫ t

0
|ũ(s)− ṽ(s)|Y ds

+Mewt1
∫ t

0

∫ s

0
[b(s− r)+ c(s− r)] |ũ(r)− ṽ(r)|Y drds

+
∫ t

0
b(t− s) |ũ(s)− ṽ(s)|Y ds+2ML f ewt1

∫ t

0
|ũs− ṽs|Y ds.

Define

β1(t) =
∫ t

0
e−ws(b(s)+ c(s))ds and β2(t) = max

0≤s≤t
e−wsb(s) for all t ≥ 0.

|(K u)(t)− (K v)(t)|Y ≤Mb(0)ewt1
∫ t1

0
|ũ(s)− ṽ(s)|Y ds+Mβ1(t)ewt1

∫ t1

0
|ũ(s)− ṽ(s)|Y ds

+Mβ2(t)ewt1
∫ t1

0
|ũ(s)− ṽ(s)|Y ds+2ML f ewt1

∫ t1

0
|ũs− ṽs|Y ds

|(K u)(t)− (K v)(t)|Y ≤Mt1ewt1
[
b(0)+β1(t)+β2(t)+2L f

]
|ũ− ṽ|Y .

If we choose t1 such that Mt1
[
b(0)+β1(t)+β2(t)+2L f

]
ewt1 < 1, then K is a strict contrac-

tion in Γt1(ϕ), then by applying the Banach fixed point theorem, we deduce that there exists a

unique fixed point u = u(.,ϕ) for K in Γt1(ϕ), which implies that Eq.(1.1) has a unique mild

solution on ]−∞, t1]. A similar argument can be used for [t1,2t1],...,[nt1,(n+1)t1], for all n≥ 0,

which implies that the mild solution exists uniquely in ]−∞,+∞[. This completes the proof.

♦

Proposition 3.7. (Dependence continuous with respect to the initial data)

Assume that (H0), (H1) and (H2) hold. Let ϕ ∈P. Then there exist continuous functions

β1 : R+ → R+ and β2 : R+ → R+ such that if u and v satisfy Eq.(1.1) for 0 ≤ t ≤ t1 with

u0 = ϕ1,v0 = ϕ2. then
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
|ut− vt |Y ≤M |ϕ1−ϕ2|e[w+M(b(0)+β1(t)+β2(t)+k)]t if w≥ 0

|ut− vt |Y ≤Me−wr |ϕ1−ϕ2|e[w+M(b(0)+β1(t)+β2(t)+k)e−wr]t if w < 0,

where k is the Lipschitz constant of f .

Proof. Define

β1(t) =
∫ t

0
e−ws(b(s)+ c(s))ds and β2(t) = max

0≤s≤t
b(s)e−ws for t ≥ 0.

Using (3.2) and (3.3) we have

|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|P +M
∫ t

0
ew(t−s)

∫ s

0
|α(s− r,u(r))−α(s− r,v(r))|X drds

+M
∫ t

0
ew(t−s) | f (s,us)− f (s,vs)|X ds

|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|P +M
∫ t

0
ew(t−s)

∫ s

0
|α(s− r,u(r))−α(s− r,v(r))|X drds

+M
∫ t

0
ew(t−s) | f (s,us)− f (s,vs)|Y ds

|u(t)− v(t)|X ≤Mewt |ϕ1−ϕ2|P +Mewt
∫ t

0
e−ws

∫ s

0
b(s− r) |u(r)− v(r)|Y drds

+ML f ewt
∫ t

0
e−ws |us− vs|Y ds

On the other hand, we have

|(Au)(t)− (Av)(t)|X ≤Mewt |A(ϕ1−ϕ2)|P

+M
∫ t

0
ew(t−s)

[
|α(0,u(s))−α(0,v(s))|X +

∫ s

0

∣∣∣∣∂α

∂ s
(s− r,u(r))− ∂α

∂ s
(s− r,v(r))

∣∣∣∣
X

dr
]

ds

+
∫ t

0
|α(t− s,u(s))−α(t− s,v(s))|X ds+M

∫ t

0
ew(t−s) |A f (s,us)−A f (s,vs)|X ds
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|(Au)(t)− (Av)(t)|X ≤Mewt |A(ϕ1−ϕ2)|P

+M
∫ t

0
ew(t−s)

[
b(0) |u(s)− v(s)|Y +

∫ s

0
c(s− r) |u(r)− v(r)|Y dr

]
ds

+
∫ t

0
b(t− s) |u(s)− v(s)|Y ds+ML f

∫ t

0
ew(t−s) |us− vs|Y ds.

|u(t)− v(t)|Y ≤Mewt |ϕ1−ϕ2|+Mewt
∫ t

0
e−ws

∫ s

0
(b(s− r)+ c(s− r)) |u(r)− v(r)|Y drds

+Mb(0)ewt
∫ t

0
e−ws |u(s)− v(s)|Y ds+Me−wt

∫ t

0
b(t− s) |u(s)− v(s)|Y ds

+2ML f ewt
∫ t

0
e−ws |us− vs|Y ds

|u(t)− v(t)|Y ≤Mewt |ϕ1−ϕ2|+Mewt
β1(t)

∫ t

0
|u(s)− v(s)|Y ds+Mb(0)ewt

∫ t

0
e−ws |u(s)− v(s)|Y ds

+Mβ2(t)
∫ t

0
|u(s)− v(s)|Y ds+2ML f ewt

∫ t

0
e−ws |us− vs|Y ds

|u(t +θ)− v(t +θ)|Y ≤



|ϕ1−ϕ2| if t +θ ≤ 0,

Mew(t+θ) |ϕ1−ϕ2|+Mew(t+θ)
β1(t +θ)

∫ t+θ

0
|u(s)− v(s)|Y ds

+Mb(0)ew(t+θ)
∫ t+θ

0
e−ws |u(s)− v(s)|Y ds

+Mβ2(t +θ)
∫ t+θ

0
|u(s)− v(s)|Y ds

+2ML f ew(t+θ)
∫ t+θ

0
e−ws |us− vs|Y ds, if t +θ ≥ 0.
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If w≥ 0, then

e−wt |ut− vt |Y ≤M |ϕ1−ϕ2|+Mβ1(t)
∫ t

0
e−ws |us− vs|Y ds+Mb(0)

∫ t

0
e−ws |us− vs|Y ds

+Mβ2(t)
∫ t

0
e−ws |us− vs|Y ds+2ML f

∫ t

0
e−ws |us− vs|Y ds

e−wt |ut− vt |Y ≤M |ϕ1−ϕ2|+M
[
b(0)+β1(t)+β2(t)+2L f

]∫ t

0
e−ws |us− vs|Y ds.

If w < 0, then

e−wt |ut− vt |Y ≤Me−wr |ϕ1−ϕ2|+Me−wr [b(0)+β1(t)+β2(t)+2L f
]∫ t

0
e−ws |us− vs|Y ds.

By Gronwall’s Lemma, the result follows. ♦

Proposition 3.8. Suppose the hypothesis of Theorem 3.4 and ϕ ∈ P. Suppose there exist

constants β 0
1 and β 0

2 such that
∫ t

0
e−ws(b(s) + c(s))ds ≤ β

0
1 , b(t)e−wt ≤ β 0

2 for t ≥ 0, and

M(β 0
1 + β 0

2 + b(0)+ k)+w =de f λ < 0 for some w < 0. Then the solutions of Eq.(1.1) are

exponentially asymptotically stable in the following sens: if u,v are the solutions of Eq.(1.1)

for u0 = ϕ1,v0 = ϕ2, respectively, then

|ut− vt |Y ≤Me−wr |ϕ1−ϕ2|eλ t , for t ≥ 0.

Proof. The proof following Proposition 3.7 by obseving that β1(t) and β2(t) satisfy β1(t)≤ β 0
1

and β2(t)≤ β 0
2 . ♦

3.2 Existence of strict solutions

In this section we recall some fundamental results needed to establish our results. The following

results were established in [30]. We consider the inhomogeneous initial value problem

(3.4)


u′(t) = Au(t)+F(t) for t ≥ 0,

u(0) = x ∈X

where F : [0,a]−→X , be continuous.
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Theorem 3.9. [30] Let A be the infinitesimal generator of a c0-semigroup (T (t))t≥0. let F ∈

L1 (0,a;X ) be continuous on [0,a] and let

v(t) =
∫ t

0
T (t− s)F(s)ds, t ∈ [0,a].

The Eq.(3.4) has a solution u on [0,a] for every x ∈D(A) if one of the following conditions is

satisfied;

(1) v(t) is continuously differentiable on [0,a].

(2) v(t) ∈D(A) for t ∈ [0,a] and Av(t) is continuous on [0,a].

If Eq.(3.4) has a strict solution u on [0,a] for some x ∈D(A) then v satisfies both (1) and (2).

Theorem 3.10. Let u ∈ C ([0, t1];D(A)) the mild solution be defined by the formula (3.1). If

u0 ∈ D(A) and f ∈ L1 (R+×C ;D(A)) be continuous from R+×C to D(A), then u is a strict

solution of Eq.(1.1).

Proof. It is just a consequence of Theorem 3.9. In fact, let us suppose

v(t) =
∫ t

0
T (t− s)

∫ s

0
α(s− r,u(r))drds+

∫ t

0
T (t− s) f (s,us)ds for t ≥ 0.

We show that v satisfies the following two conditions

(i) v is continuously differentiable on [0, t1] and v′ is continuous,

(ii) v(t) ∈D(A) on [0, t1] and Av ∈ L1 ([0, t1];X ) .

Based on the formula (3.1) we have: v(t) = u(t)−T (t)ϕ(0) is differentiable for t > 0 as the

difference of two such differentiable functions and v′(t) = u′(t)−T (t)Aϕ(0) is obviously con-

tinuous on ]0, t1[. Therefore (i) is satisfied. Also if ϕ ∈D(A) T (t)ϕ ∈D(A) for t ≥ 0 and there-

fore v(t) = u(t)−T (t)ϕ(0) ∈ D(A) for t > 0 and Av(t) = Au(t)−AT (t)ϕ = u′(t)−
∫ t

0
α(t−

s,u(s))ds− f (t,ut)−T (t)Aϕ is continuous on ]0, t1[. Thus also (ii) is satisfaied.
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On the other hand, it is easy to verify for h > 0 the identify

(3.5)

(
T (h)− I

h

)
v(t) =

v(t +h)− v(t)
h

−1
h

∫ t+h

t
T (t +h− s) [k(s)+ f (s,us]ds.

From the continuity of k and f it is clear that the second therm on the right-hand side of (3.5) has

the limit k(t)+ f (t,ut) as h→ 0. If v(t) is continuously differentiable on ]0, t1[ then it follows

from (3.5) that v(t) ∈D(A) for 0 < t < t1 and Av(t) = v′(t)− [k(t)+ f (t,ut)] . Since v(0) = 0 it

follows that u(t)= T (t)ϕ(0)+v(t) is the solution of Eq.(1.1) for ϕ(0)∈D(A). If v(t)∈D(A) it

follows from (3.5) that v(t) is differentiable from the right at t and the right derivative D+v(t) of

v satisfies D+v(t) =Av(t)+k(t)+ f (t,ut). Since D+v(t) is continuous, v(t) is continuously dif-

ferentiable and v′(t) = Av(t)+k(t)+ f (t,ut). Since v(0) = 0, u(t) = T (t)ϕ(0)+v(t) is the solu-

tion of Eq.(1.1) for ϕ ∈D(A) and the proof is complete. ♦

4. Application

For illustration, we propose to study the existence of solutions for the following model

(4.1)



∂

∂ t
w(t,x) =

∂ 2

∂x2 w(t,x)+
∫ t

0
γ(t− s,

∂ 2

∂x2 w(s,x))ds

+
∫ 0

−∞

h(θ ,w(t +θ ,x))dθ for t ≥ 0 and 0≤ x≤ 1,

w(t,0) = w(t,1) = 0 for t ≥ 0,

w(θ ,x) = ϕ0(θ ,x) for θ ∈]−∞,0] and 0≤ x≤ 1,

where h : R−×R→ R is continuous and Lipschitzian with respect to the second argument, the

initial data function ϕ0 :]−∞,0]× [0,1]→ R is a given function, γ : R+×R→ R is bounded

uniformly continuous, continuously differentiable in its first place and the derivative ∂γ

∂ t exists

and is lipschitzian continuous.

To rewrite Eq.(4.1) in the abstract from, we introduce the space X = L2((0,1);R).
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Let A : D(A)→X be defined by
D(A) = H2(0,1)∩H1

0 (0,1),

Az = z′′.

It is well known that A is the generator of c0-semigroup, which implies that (H0) is satisfied.

Let α : R+×D(A)→X by α(t,z) = γ(t,Az) for t ≥ 0.

The phase space P =BUC (R−;D(A)) is the space of bounded uniformly continuous functions

from R− into D(A) provided with the following norm

|ϕ|P = sup
θ≤0
|ϕ(θ)|D(A) = sup

θ≤0
|ϕ(θ)|L2(0,1)+ sup

θ≤0

∣∣∣∣ ∂ 2

∂x2 ϕ(θ)

∣∣∣∣
L2(0,1)

.

Then P = BUC (R−;D(A)) satisfies axioms (A1), (A2).

Let f : R+×P →X be defined by

f (t,ϕ)(x) =
∫ 0

−∞

h(θ ,ϕ(θ)(x))dθ for 0≤ x≤ 1 and t ≥ 0.

Let us suppose v(t) = w(t, .) and the initial data ϕ be defined by

ϕ(θ)(x) = ϕ0(θ ,x), for θ ≤ 0 and x ∈ [0,1].

Then Eq.(4.1) takes the following abstract from

(4.2)


d
dt

v(t) = Av(t)+
∫ t

0
α(t− s,v(s))ds+ f (t,vt) for t ≥ 0,

v0 = ϕ.

We suppose that there exists a function b1(.) ∈ L1 (R−,R+) such that

(H3)

|h(θ ,x1)−h(θ ,x2)| ≤ b1(θ) |x1− x2| for θ ≤ 0 and x1,x2 ∈ R.

(H4) h(θ ,0) = 0, for θ ≤ 0.

Assumptions (H3) and (H4) imply that f (t,ϕ) ∈D(A) for ϕ ∈P. In fact, let ϕ ∈P. Then

f (t,ϕ)(x) =
∫ 0

−∞

h(θ ,ϕ(θ)(x))dθ for x ∈ [0,1],



16 K. EZZINBI, S. KOUMLA AND A. SENE

and

| f (t,ϕ)(x)| ≤
∫ 0

−∞

b1(θ) |ϕ(θ)(x)|dθ

≤ sup
θ≤0
|ϕ(θ)(x)|

∫ 0

−∞

b1(θ)dθ

| f (t,ϕ)(x)|L2(0,1) ≤ sup
θ≤0
|ϕ(θ)|L2(0,1) |b1|L1(−∞,0) .

On the other hand, we have

|A f (t,ϕ)(x)| ≤
∫ 0

−∞

b1(θ) |Aϕ(θ)(x)|dθ

≤ sup
θ≤0
|Aϕ(θ)(x)|

∫ 0

−∞

b1(θ)dθ

|A f (t,ϕ)(x)|L2(0,1) ≤ sup
θ≤0
|Aϕ(θ)|L2(0,1) |b1|L1(−∞,0) .

Consequently

| f (t,ϕ)(x)|D(A) ≤ C |ϕ|P .

Moreover assumption (H4) implies that f (t,ϕ)(0) = f (t,ϕ)(1) = 0.

Using the dominated convergence theorem, one can show that f (t,ϕ) is a continuous function

on [0,1]. Moreover, for every ϕ1,ϕ2 ∈P, we have

|( f (t,ϕ1)− f (t,ϕ2))(x)| ≤
∫ 0

−∞

|h(θ ,ϕ1(θ)(x))−h(θ ,ϕ2(θ)(x))|dθ

≤
∫ 0

−∞

b1(θ) |ϕ1(θ))(x)−ϕ2(θ)(x)|dθ

|( f (t,ϕ1)− f (t,ϕ2))(x)|L2(0,1) ≤ sup
−∞≤θ≤0

|ϕ1(θ)(x)−ϕ2(θ)(x)| |b1|L1(R−)
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On the other hand, we have

|A( f (t,ϕ1)− f (t,ϕ2))(x)| ≤
∫ 0

−∞

b1(θ) |A(ϕ1(θ))(x)−ϕ2(θ))(x)|dθ

|A( f (t,ϕ1)− f (t,ϕ2))(x)|L2(0,1) ≤ sup
−∞≤θ≤0

|A(ϕ1(θ)(x)−ϕ2(θ))(x)| |b1|L1(R−)

Consequently

| f (t,ϕ1)− f (t,ϕ2)|D(A) ≤ C |ϕ1−ϕ2|P .

We conclude that f is Lipschitz continuous.

In addition, we suppose that

(i) γ is bounded uniformly continuous, continuously differentiable in its first place and the de-

rivative ∂γ

∂ t exists and is lipschitzian continuous.

(ii) The initial data ϕ ∈P = BUC (]−∞,0]× [0,1];D(A)) ,

ϕ0(0,0) = ϕ0(0,1) = 0 is continuous from ]−∞,0]× [0,1] to D(A).

From the assumption (i), α satisfies the hypothesis (H2). Finally, from assumption (ii) and

Theorem 3.4, we deduce that ϕ ∈P,Eq.(4.2) has a unique mild solution which is defined for

all t ≥ 0.

To prove that the mild solution of Eq.(4.2) is a strict one, we need the following assumption.

(iii) h ∈ L1(R−×R;R) be continuous on R−×R.

(iv) ϕ0 ∈P such that ϕ0(0, .) ∈ D(A). Consequently, by Theorem 3.10, we obtain the

following existence result.

Proposition 4.1. Under the above assumptions, Eq.(4.2) has a unique strict solution v and the

solution u defined by u(t,x) = v(t)(x) for t ≥ 0 and x ∈ [0,1] is a solution Eq.(4.2).
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