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Abstract. In this paper we find some types of solutions for certain degenerate and non degenerate fractional inverse

problems. The main idea of the proofs is based on theory of tensor product of Banach spaces.
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1. Introduction

Fractional derivatives proved to be very fruitful in applied sciences. In the literature, there are

many definitions of fractional derivatives. The most classical and well known are the Riemann-

Liouvill and the Caputo definitions [7]. Conformable fractional definition was introduced in

[2], and it coincides with classical ones on polynomials.

For f : [0,∞)→ R, and 0 < α ≤ 1, we let

f (α)(t) = lim
ε−→0

f (t + εt1−α)− f (t)
ε

..........(1)
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denote the α−derivative of f at t > 0. Further, we let

f (α)(0) = lim
t→0

f (α)(t)

We refer to [1] and [2] for more properties and results on such derivative.

It should be noticed and clear to see that the derivative in (1) can be carried on when f takes

values in a normed space.

Let X be a Banach space and I = [0,1] . Let C(I) be the Banach space of all continuous real

valued functions defined on I , and C(I,X) be the set of all continuous functions from I to X .

It is well

known, [5], that C(I,X) is isometrically isomorphic to C(I)
∨
⊗X , the complete injective tensor

product of C(I) with X .

A classical and important problem in differential equations is the so called Abstract Cauchy

Problem that takes the form:

Bu′(t) = Au(t)+ f (t)z, with u(0) = x0, where u : I→ X is a differentiable function and A is

a closed densely defined linear operator on X , [6].

In this paper we discuss the fractional Abstract Cauchy Problem. Now, the general form of

the α−Abstract Cauchy Problem is

Bu(α)(t) = Au(t)+ f (t)z..............(2)

u(0) = x0

Now, If f (t) = 0 or z = 0 then equation (2) is called homogeneous, otherwise it is nonho-

mogeneous. In the homogeneous case u is the only unknown in the

equation.

If B is an invertible linear operator, then Problem (2) is called degenerate otherwise it is

nondegenerate.

Now, in the nonhomogeneous case we have two types of problems. The first type only u is

unknown ,and f is given. In the second type we have two unknowns f and u.

But in this type we have some initial conditions in order to be able to determine u and f .

Usually, α−Abstract Cauchy Problem is called α−inverse problem.
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2. Main results

Let X and Y be Banach spaces. For x ∈ X and y ∈Y, the operator x⊗y : X∗→Y is called an

atom, where X∗ is the dual of X . So atoms in C(I)
∨
⊗X are elements of the form

F = h⊗ y where h ∈C(I), and y ∈ X . We are interested in solutions for problem (2) which

are atoms.

Theorem 2.1. Consider the problem

u(α)⊗ x+u⊗Ax = f ⊗ z.........(3)

where u : I→ R is α− differentiable and f is continous on I, A is a densely defined closed

linear operator on X (and x ∈ X).

Assume that :

(1) There exists some x∗ ∈ X∗, and g ∈ C(I,R), such that g(α)(0) exists, and u(t)〈x,x∗〉 =

g(t).

(2) ln(g(1)
g(0)) ∈ ρ(A).

Then (3) has a unique solution.

Proof

Since,[2], every α−differentiable function is continuous, it follows that g is continous.

Now, since every atom has infinite number of representations (e.g.: if x⊗ y is an atom then

λx⊗ 1
λ

y another representation of x⊗ y for any λ 6= 0 ), then

without loss of generality we can assume that u(0) = f (0) = 1.

From (3), u(α)⊗ x and u⊗Ax are two atoms whose sum is also an atom f ⊗ z. Thus, [8],

we have two cases: (i) u(α) = λu and (ii) Ax = βx.

Case (i)

If u(α) = λu, then using a result in[2], we have u(t) = ce
λ

α
tα

,c ∈ R.

But since u(0) = 1,then we have c = 1.

So

u(t) = e
λ

α
t .α ................(4)

.

Now using condition (1), we have 〈x,x∗〉= g(0).
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Thus,

g(t) = u(t)〈x,x∗〉

= u(t)g(0)

= e
λ

α
t .α g(0)

= e
λ

α
t .α 〈x,x∗〉

Putting t = 1, we get g(1) = e
λ

α g(0).

Consequently, e
λ

α = g(1)
g(0) .

By taking logarithm of both sides, we get

λ = α ln
(

g(1)
g(0)

)
.........(5).

Since u(t) = e
λ

α
t .α by (4), hence u is determined uniquely.

Now, we want to find f and x uniquely.

substitute (4),in (3) ,and apply x∗ to both sides, we get

f (t)〈z,x∗〉 = u(α) 〈x,x∗〉+u〈Ax,x∗〉

=
λ

α
e

λ

α
t .α 〈x,x∗〉+ e

λ

α
t .α 〈Ax,x∗〉

= g(α)(t)+ e
λ

α
t .α 〈Ax,x∗〉

Now, for t = 0, we have

〈Ax,x∗〉= 〈z,x∗〉−g(α)(0).........(6)

Thus

f (t)〈z,x∗〉= g(α)(t)+ e
λ

α
t .α (〈z,x∗〉−g(α)(0))

Hence f is determined uniquely.

Now to show that x is determined uniquely:

Let t = 0. Then we have

u(α)(0)x = u(0)Ax+ f (0)z........(7)
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But u(α)(0) = λ

α
, and u(0) = f (0) = 1. Hence, λ

α
x = Ax+ z.

So by (4)

z =

(
λ

α
I−A

)
x

=

(
ln
(

g(1)
g(0)

)
I−A

)
x

Thus, by condition (2) we have

x = z
(

ln
(

g(1)
g(0)

)
I−A

)−1

So x is unique.

Case (ii)

If Ax = βx, then (3) becomes

u(α)⊗ x+u⊗βx = f ⊗ z........(8)

Apply x∗ to both side to get

u(α)(t)〈x,x∗〉+βu(t)〈x,x∗〉= f (t)〈z,x∗〉 .......(9)

So

g(α)(t)+βg(t) = f (t)〈z,x∗〉 .......(10)

In (9) let t = 0. Then we get g(α)(0)+βg(0) = 〈z,x∗〉, and β =
〈z,x∗〉−g(α)(0)

g(0) .

And so β is determined uniquely.

Since g is given, using (9), we get f (t) is determined uniquely.

Back to equation (8), we have(
u(α)+βu

)
⊗ x = f ⊗ z.......(11)

Consequently, (
u(α)+βu

)
= γ f .......(12)

And

x =
1
γ

z........(13)
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Equation (12) is a first order linear differential equation, whose solution, [ ], is

u(t) = e
−β

α
tα

 t∫
0

γτ
α−1e

β

α
τα

f (τ)dτ

+ ce
−β

α
tα

........(15)

Further, from (12) and (13), we get(
u(α)(t)+βu(t)

)
x = γ f (t)x.....(16)

Now, applying x∗ to both sides of (16), we get

u(α)(t)〈x,x∗〉+βu(t)〈x,x∗〉= γ f (t)〈x,x∗〉

Thus,

g(α)(t)+βg(t) = γ f (t)g(0)........(17)

Put t = 0 in (17) we get g(α)(0)+βg(0) = γ f (t)g(0).

Thus, γ = g(α)(0)
g(0) +β ,and γ is determined uniquely.

Now, by (13) x is also determined uniquely.

And we can find the value of c by using u(0) = 1.

So u is also determined uniquely, and this completes the proof.

Theorem 4.2.

Consider the problem

Bu(α)(t)x+Au(t)x = f (t)z.........(18)

where A,B are two densely defined closed linear operator defined on X , and x ∈ X .

Assume the following two conditions are satisfied :

(1) There exist some x∗ ∈ X∗, and g ∈C(I,R), such that g is α−differentiable function on I,

where g(α)(0) exist, and u(t)〈x,x∗〉= g(t).

(2) The element z is a uniquely imaged element in X , for the operators A and ln
(

g(1)
g(0)

)
B+A.

Then (18) has a unique solution.

Proof

Without loss of generality we can assume that u(0) = f (0) = 1.

Now, since u(t)〈x,x∗〉= g(t),then we haveg(0) = u(0) 〈x,x∗〉= 〈x,x∗〉 .

So u(t) = g(t)
g(0) , and u is determined uniquely.
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Now, we want to determine f and x uniquely.

First, since we are looking for atomic solution, then we can write (18) as

u(α)⊗Bx+u⊗Ax = f ⊗ z........(19)

Again, using [8], there are two cases to consider: (i) u(α) = λu, and (ii) Bx = βAx.

Case (i)

If u(α) = λu, then [2], we have u(t) = ce
λ

α
tα

,c ∈ R.Since u(0) = 1,then we have c = 1.

So u(t) = e
λ

α
t .α . But u(t) = g(t)

g(0) .

Hence, g(1)
g(0) = e

λ

α . Take logarithm of both side ofg(1)
g(0) = e

λ

α to get

λ = α ln
(

g(1)
g(0)

)
.......(20)

.

Thus, λ is determined uniquely.

Now, Substitute u(t) = e
λ

α
t .α in (18), we get

λ

α
e

λ

α
t .α Bx+ e

λ

α
t .α Ax = f (t)z........(21)

So

e
λ

α
t .α ⊗

(
λ

α
Bx+Ax

)
= f (t)⊗ z..........(22)

Now, since we have two atoms which are equal, then we have either

e
λ

α
t .α = µ f (t).........(23)

or (
λ

α
Bx+Ax

)
=

1
µ

z...........(24)

To find the value of µ , take t = 0 in (23), to get 1 = µ f (0).

Thus, µ is determined, and thus f (t) is determined uniquely.

Substitute (20) in (24), we get(
ln
(

g(1)
g(0)

)
Bx+Ax

)
=

1
µ

z........(25)

By condition (2) and equation (25), we get x is uniquely determined.

Case (ii)
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If Bx = βAx, then (18) takes the form:

u(α)(t)βAx+u(t)Ax = f (t)z........(26)

Using tensor product we have

f ⊗ z = u(α)⊗βAx+u⊗Ax

=
(

βu(α)+u
)
⊗Ax..............(27)

Now, since we have two atoms are equal, then we have either

(1)
(

βu(α)+u
)
= λ f or (2) Ax = 1

λ
z

In case (1), substitute t = 0 to get(
βu(α)(0)+1

)
= λ .......(28)

Using condition (2) and (25), we have x is uniquely determined.

The rest of the proof is similar to Theorem 2.1.
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