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1.   INTRODUCTION 

      Left restriction semigroups are class of semigroups which generalize inverse semigroups and 

which emerge very naturally from the study of partial transformation of a set. A more detailed 

description of left restriction semigroups can be found in [7], [8]. 

An F-inverse semigroup is an inverse semigroup S in which every  𝜎 - class (where 𝜎 is the 

group congruence on S) has greatest element with respect to the natural partial order  ≤ on S. 

McFadden and O’Caroll [5] have pointed out that the concept of F-inverse semigroups is indeed 

a generalization of resituated inverse semigroups. Edwards [1] defined analogously F-regular 

semigroups and F-orthodox semigroups and showed that an F-regular semigroup is indeed an F-

orthodox semigroup. 
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     Following Fountain [3] a semigroup S is called left abundant if each  ℛ∗ - class of S contains 

atleast one idempotent. Dually, right abundant semigroup can be defined. The semigroup S is 

called abundant if S is both left abundant and right abundant. As in [2], a left (right) abundant 

semigroup is called a left (right) adequate semigroup if the set of idempotents of S (i.e. (𝑆) ) 

form a semilattice. Regular semigroups are abundant semigroups and inverse semigroups are 

adequate semigroups. 

In order to generalize the F-regular semigroups, Guo [10] defined F-abundant semigroup as an 

abundant semigroup in which there exists a cancellative congruence 𝜎 such that each  𝜎 – class 

contains a greatest element with respect to the Lawson order  ≤ . Further investigation by Cui 

and Guo [6] obtained a structure theorem for right adequate semigroups of type F (i.e. right 

adequate semigroups that are F-right abundant).     

As an analogue of [6], we obtain a structure theorem for left restriction semigroups which are F-

left restriction, called left restriction semigroups of type F. 

 

2.   PRELIMINARIES 

In this section we recall some definitions as well as some known results which will be useful in 

the sequel. 

Definition 2.1.  Let 𝑆 be a semigroup. Then 𝑆 is said to be left (right) ample if 

i)   every element  𝑎 𝜖 𝑆 is ℛ∗(ℒ∗) − related to an idempotent, denoted by 𝑎† (𝑎∗) 

ii)  for all 𝑎 𝜖 𝑆 and all  𝑒 𝜖 𝐸(𝑆), 

                                      𝑎𝑒 = (𝑎𝑒)†𝑎      ( 𝑒𝑎 = 𝑎(𝑒𝑎)∗ ). 

Definition 2.2.  Let 𝑆 be a semigroup and let 𝐸 ⊆ 𝐸(𝑆) (E is the distinguished semilattice of 

idempotents). 

Let 𝑎, 𝑏 𝜖 𝑆, we have following relations on 𝑆             

                                𝑎 ℛ ̃𝐸𝑏  ⇔  ∀  𝑒 𝜖 𝐸,    𝑒𝑎 = 𝑎 ⇔ 𝑒𝑏 = 𝑏 

                                  𝑎ℒ ̃𝐸𝑏  ⇔   ∀  𝑒 𝜖 𝐸,    𝑎𝑒 = 𝑎 ⇔ 𝑏𝑒 = 𝑏 . 

Definition 2.3.  Let 𝑆  be a semigroup and let 𝐸 ⊆ 𝐸(𝑆). Then 𝑆  is said to be left (right) 

restriction semigroup if 

i)   𝐸 is a semilattice 

ii)  every element  𝑎 𝜖 𝑆 is  ℛ ̃𝐸  (ℒ ̃𝐸)– related to an idempotent of  𝐸, denoted by  𝑎† (𝑎∗) 

iii)  the relation  ℛ ̃𝐸  (ℒ ̃𝐸) is a left (right) congruence 
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iv)  the left (right) ample condition holds:  

                     𝑎𝑒 = (𝑎𝑒)†𝑎             ( 𝑒𝑎 = 𝑎(𝑒𝑎)∗ ). 

Definition 2.4.  Let 𝑆  be a semigroup and 𝐸  be a set of idempotents contained in S. Then 

for 𝑎, 𝑏 𝜖 𝑆, the relation  𝜎𝐸 is defined to be the smallest (semigroup) congruence on S identifying 

the elements E.  

 

If  𝐸 = 𝐸(𝑆), then we may write 𝜎 for 𝜎𝐸 and if S is either left or right restriction we shall denote 

 𝜎𝐸𝑆
 by  𝜎𝑆, where 𝐸𝑆, is the distinguished semilattice of S. 

Lemma 2.5 [8]. Let S be a left restriction semigroup with distinguished semilattice E. Then for 

all 𝑎, 𝑏 𝜖 𝑆, 

                                        𝑎 𝜎𝑆 𝑏  ⟺ 𝑒𝑎 = 𝑒𝑏     for some  𝑒 𝜖 𝐸. 

The following Lemmas are due to Fountain [3] and Gould [8], [9]. 

Lemma 2.6.  Let 𝑆  be a semigroup and 𝑒  be an idempotent in 𝑆.  Then the following are 

equivalent for  𝑎 𝜖 𝑆. 

i)  𝑎 ℛ∗𝑒   

ii)  𝑒𝑎 = 𝑎, and for all  𝑥, 𝑦 𝜖 𝑆1,   𝑥𝑎 = 𝑦𝑎 ⇒  𝑥𝑒 = 𝑦𝑒. 

Lemma 2.7. Let S be a semigroup and 𝐸 ⊆ 𝐸(𝑆),  let  𝑎 𝜖 𝑆, 𝑒 𝜖 𝐸.   Then the following 

conditions are equivalent: 

i)   𝑎 ℛ̃𝐸  𝑒 

ii)  𝑒𝑎 = 𝑎 and for all 𝑓 𝜖 𝐸, 𝑓𝑎 = 𝑎 ⇒ 𝑓𝑒 = 𝑒. 

In a similar way to the *-relations, the  ~ -relations are also related to the Green’s relations as 

follows: 

Lemma 2.8. In any semigroup S we have  ℛ ⊆ ℛ∗ ⊆ ℛ̃𝐸  . If S is regular, and 𝐸 = 𝐸(𝑆) then 

ℛ̃𝐸 ⊆ ℛ and so ℛ̃𝐸 ⊆ ℛ∗.    

Dually we have ℒ ⊆ ℒ∗ ⊆ ℒ̃𝐸 , and if S is regular, and 𝐸 = 𝐸(𝑆) then ℒ̃𝐸 ⊆ ℒ and so ℒ̃𝐸 ⊆ ℒ∗. 

Let S be a left restriction semigroup with distinguished semilattice of idempotents E, we define 

the relation  ≤ on S by  𝑎 ≤ 𝑏 if and only if   𝑎 = 𝑒𝑏 for some  𝑒 𝜖 𝐸. 

If S is a right restriction semigroup with distinguished semilattice of idempotents E, we define 

the relation  ≤ on S by  𝑎 ≤ 𝑏 if and only if   𝑎 = 𝑏𝑓 for some 𝑓 𝜖 𝐸. 

It can be easily checked that these relations are partial orders. 
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However, we note that if S is a restriction semigroup, then these two definitions are infact 

equivalent by the ample conditions. 

When considering a left restriction semigroup S with distinguished semilattice of idempotents E 

we have that for  𝑎, 𝑏 𝜖 𝑆, 

                                  𝑎† ≤ 𝑏† ⟺ 𝑎† = 𝑎†𝑏†, 

 

which is the usual order on E, and 

                                  𝑎 ≤ 𝑏 ⟹ 𝑎†𝑏 ⟹ 𝑎† = 𝑎†𝑏† ⟹ 𝑎† ≤ 𝑏†. 

We note the following useful Lemma, the proof for which in [2] for left adequate semigroups can 

be easily adapted for left restriction semigroups. 

Lemma 2.9.  Let S be a left restriction semigroup. Then 

i)  (𝑎𝑏)† = (𝑎𝑏†)†  for all 𝑎, 𝑏 𝜖 𝑆 

ii)  (𝑒𝑎)† = 𝑒𝑎†  for all 𝑎 𝜖 𝑆  and 𝑒 𝜖 𝐸. 

 

A congruence  𝜌𝑆  on a left restriction semigroup S is called a right cancellative semigroup 

congruence on S if  𝑆/𝜌𝑆  is a right cancellative semigroup. 

By an F-left restriction semigroup, we mean a left restriction semigroup S in which there exists a 

right cancellative semigroup congruence  𝜎𝑆 on  𝑆  such that each  𝜎𝑆  -class of S contains a 

greatest element with respect to ≤ (for a left restriction semigroup). From [8], we know that  𝜎𝑆 

is indeed the smallest right cancellative semigroup congruence on S. 

Let S be an F-left restriction semigroup. We denote by T the set of greatest elements in all  𝜎𝑆 -

classes of S. We define a multiplication  ∘ as follows: 

                       𝑡 ∘ 𝑢 = the greatest element of the  𝜎𝑆 -class of S containing  𝑡𝑢. 

It can be easily checked that  (𝑇, ∘) is a semigroup isomorphic to 𝑆/𝜎𝑆 . We shall employ this 

fact in our next section. 

 

3.   THE STRUCTURE THEOREM 

The aim of this section is to establish the structure theorem for left restriction semigroups of type 

F. First, we consider the following structure which is taken from [6]. 

Let T be a right cancellative semigroup with identity 1 and  𝑌 be a semilattice with identity j.  Let 

T act on the left of  𝑌 and let  𝑡, 𝑢 𝜖 𝑇, 𝐴, 𝐵 𝜖 𝑌. 
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Suppose that the following hold: 

𝐹1)    1𝐴 = 𝐴 

𝐹2)    𝑡(𝐴 ∧ 𝐵) = 𝑡𝐴 ∧ 𝑡𝐵. 

Then (𝑇, 𝑌) is called an F-pair. This pair induces the semigroup 

                                          ℱ = ℱ(𝑇, 𝑌) = { (𝐴, 𝑡) 𝜖  𝑌×𝑇 ∶ 𝐴 ≤ 𝑡𝑗 }, 

with product defined by the rule 

                                            (𝐴, 𝑡)(𝐵, 𝑢) = (𝐴 ∧ 𝑡𝐵, 𝑡𝑢), 

for (𝐴, 𝑡), (𝐵, 𝑢) 𝜖 ℱ(𝑇, 𝑌). 

Remark 3.1.  In  ℱ(𝑇, 𝑌), 𝐸 = 𝐸ℱ = { (𝐴, 1) ∶ 𝐴 𝜖 𝑌 } ≅ 𝑌.  Furthermore, 𝐸ℱ is a semilattice. 

Lemma 3.2.  ℱ(𝑇, 𝑌) is left adequate. 

Proof.  It follows from Remark 3.1. 

Lemma 3.3.  ℱ(𝑇, 𝑌) is left ample. 

Proof. Let (𝐴, 𝑡) 𝜖 ℱ(𝑇, 𝑌) and  𝐸ℱ 𝜖 ℱ(𝑇, 𝑌), then 

                            (𝐴, 𝑡)(𝐵, 1) = (𝐴 ∧ 𝑡𝐵, 𝑡) = (𝐴 ∧ 𝑡𝐵, 1)(𝐴, 𝑡) 

                                               = [(𝐴, 𝑡)(𝐵, 1)]†(𝐴, 𝑡). 

Lemma 3.4.  ℱ(𝑇, 𝑌) is left restriction. 

Proof. We know from Lemma 3.2 that  𝐸ℱ  is a semilattice. Let  (𝐴, 𝑡) 𝜖 ℱ(𝑇, 𝑌) and (𝐴, 1) 𝜖 

𝐸ℱ . We wish to show that  (𝐴, 𝑡)ℛ̃𝐸ℱ
(𝐴, 1) for (𝐴, 𝑡) 𝜖 ℱ(𝑇, 𝑌). 

We have 

                               (𝐴, 1)(𝐴, 𝑡) = (𝐴 ∧ 𝐴, 𝑡) = (𝐴, 𝑡). 

For (𝐵, 1) 𝜖 𝐸ℱ, 

                            (𝐵, 1)(𝐴, 𝑡) = (𝐴, 𝑡) ⟹ (𝐵 ∧ 𝐴, 𝑡) = (𝐴, 𝑡) 

                                                               ⟹  𝐵 ∧ 𝐴 = 𝐴 

                                                               ⟹ (𝐵, 1)(𝐴, 1) = (𝐴, 1) 

So (𝐴, 𝑡)ℛ̃𝐸ℱ
(𝐴, 1) and we shall let  (𝐴, 𝑡)† = (𝐴, 1).  

Now we wish to show that  ℛ̃𝐸ℱ
 is a left congruence, 

For  (𝐴, 𝑡), (𝐵, 𝑢) 𝜖 ℱ(𝑇, 𝑌), 

                                         (𝐴, 𝑡)ℛ̃𝐸ℱ
(𝐵, 𝑢) ⟺ (𝐴, 𝑡)† = (𝐵, 𝑢)†   

                                                                     ⟺ (𝐴, 1) = (𝐵, 1) 

                                                                     ⟺ 𝐴 = 𝐵. 
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We now have that (𝐴, 𝑡) ℛ̃𝐸ℱ
(𝐵, 𝑢) ⟹ 𝐴 = 𝐵 

                                                  ⟹ 𝑣𝐴 = 𝑣𝐵  for any  𝑣 𝜖 T 

                                               ⟹ (𝑣𝐴, 𝑡) = (𝑣𝐵, 𝑢) 

                                               ⟹ (𝑣𝐴, 𝑣𝑡) = (𝑣𝐵, 𝑣𝑢) 

                                               ⟹  (𝐶 ∧ 𝑣𝐴, 𝑣𝑡) = (𝐶 ∧ 𝑣𝐵, 𝑣𝑢) 

                                                    ⟹ [(𝐶, 𝑣)(𝐴, 𝑡)]† = [(𝐶, 𝑣)(𝐵, 𝑢)]†  for any  (𝐶, 𝑣) 𝜖 ℱ(𝑇, 𝑌) 

                                                ⟹ (𝐶, 𝑣)(𝐴, 𝑡) ℛ̃𝐸ℱ
(𝐶, 𝑣)(𝐵, 𝑢)  for any  (𝐶, 𝑣) 𝜖 ℱ(𝑇, 𝑌) 

Thus ℛ̃𝐸ℱ
  is a left congruence. The ample condition follows from Lemma 3.3. 

Lemma 3.5.  For (𝐴, 𝑡), (𝐵, 𝑢) 𝜖 ℱ(𝑇, 𝑌), (𝐴, 𝑡)𝜎ℱ(𝐵, 𝑢) if and only if  𝑡 = 𝑢. Thus  ℱ/𝜎ℱ ≅ 𝑇.     

Proof.  Let  (𝐴, 𝑡)𝜎ℱ(𝐵, 𝑢), then there exists (𝐶, 1) 𝜖 𝐸ℱ such that 

                                            (𝐶, 1)(𝐴, 𝑡) = (𝐶, 1)(𝐵, 𝑢),  

i.e.                                         (𝐶 ∧ 𝐴, 𝑡) = (𝐶 ∧ 𝐵, 𝑢) 

and so  𝑡 = 𝑢. 

Conversely, let  𝑡 = 𝑢. We wish to show that  (𝐴, 𝑡)𝜎ℱ =  (𝐵, 𝑢)𝜎ℱ . Let  (𝐴 ∧ 𝐵, 1) 𝜖 𝐸ℱ . We 

have 

                                     (𝐴 ∧ 𝐵, 1)(𝐴, 𝑡) = (𝐴 ∧ 𝐵 ∧ 𝐴, 𝑡) 

                                                                = (𝐴 ∧ 𝐵, 𝑡) = (𝐴 ∧ 𝐵 ∧ 𝐵, 𝑢)  

                                                                = (𝐴 ∧ 𝐵, 1)(𝐵, 𝑢). 

So (𝐴, 𝑡)𝜎ℱ =  (𝐵, 𝑢)𝜎ℱ when 𝑡 = 𝑢. 

The rest of the proof follows from the fact that the map  𝜃 ∶  ℱ/𝜎ℱ → 𝑇  defined 

by [(𝐴, 𝑡)𝜎ℱ]𝜃 = 𝑡 is an isomorphism. 

Lemma 3.6.  For (𝐴, 𝑡), (𝐵, 𝑢) 𝜖 ℱ(𝑇, 𝑌), (𝐴, 𝑡) ≤ (𝐵, 𝑢) if and only if  𝑡 = 𝑢 and 𝐴 ≤ 𝐵. 

Proof. Let (𝐴, 𝑡) ≤ (𝐵, 𝑢), then there exists (𝐴, 1) 𝜖 𝐸ℱ such that 

                                             (𝐴, 𝑡) = (𝐴, 1)(𝐵, 𝑢) = (𝐴 ∧ 𝐵, 𝑢). 

By comparing components, 𝑡 = 𝑢  and 𝐴 =  𝐴 ∧ 𝐵, i. e  A ≤ B. 

Conversely, let 𝑡 = 𝑢  and A ≤ B,  then 

                                                  (𝐴, 𝑡) = (𝐴, 1)(𝐵, 𝑢) 

                                                   ⟹ (𝐴, 1) = (𝐴, 1)(𝐵, 1)     

                                                   ⟹ (𝐴, 1) ≤ (𝐵, 1) 

                                                   ⟹ (𝐴, 𝑡) ≤ (𝐵, 𝑢) . 
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Lemma 3.7.  (𝐴, 𝑡) (ℛ̃𝐸ℱ
∩  𝜎ℱ )(𝐵, 𝑢) ⟺ (𝐴, 𝑡) = (𝐵, 𝑢). 

Proof. We have that 

                  (𝐴, 𝑡) (ℛ̃𝐸ℱ
∩  𝜎ℱ )(𝐵, 𝑢) ⟺ (𝐴, 𝑡) ℛ̃𝐸ℱ

(𝐵, 𝑢)  and (𝐴, 𝑡) 𝜎ℱ (𝐵, 𝑢) 

                                                            ⟺ 𝐴 = 𝐵  and 𝑡 = 𝑢 

                                                            ⟺ (𝐴, 𝑡) = (𝐵, 𝑢). 

Lemma 3.8.  ℱ(𝑇, 𝑌) is a left restriction semigroup of type F. 

Proof.  It follows from Lemma 3.5 and Lemma 3.6. 

Now, we can establish the structure theorem for left restriction semigroups of type F. 

Theorem 3.9.  The semigroup ℱ(𝑇, 𝑌) is a left restriction semigroup of type F. Conversely, a 

left restriction semigroup of type F is isomorphic to ℱ(𝑇, 𝑌) for some F-pair (𝑇, 𝑌). 

Proof. The direct part of the proof follows from Lemma 3.8, so we only need to prove the 

converse part. Let S be a left restriction semigroup of type F and  𝐸𝑆  be the distinguished 

semilattice of S. Then 𝐸𝑆  is a distinguished semilattice with identity j. We let T denote the set of 

greatest elements in all the  𝜎𝑆  -classes of S. Define multiplication  ∘  as follows: 

                      𝑡 ∘ 𝑢 = the greatest element of the  𝜎𝑆 -class of S containing  𝑡𝑢. 

It can be easily checked that (𝑇,∘) is a semigroup isomorphic to 𝑆/𝜎𝑆 . Hence T is a right 

cancellative semigroup. Let 1 be the identity of T. It is not difficult to see that 1 = j. Also, we 

define an action of T on Y by  𝑡𝐴 = (𝑡𝐴)†   for  𝐴 𝜖 𝐸𝑆  and 𝑡 𝜖 𝑇. 

We now show that  (𝑇, 𝐸𝑆) is an F-pair. Let  𝑡, 𝑢 𝜖 𝑇  and 𝐴, 𝐵 𝜖 𝐸𝑆. 

                               1𝐴 = (𝑗𝐴)†  = 𝐴, Thus  𝐹1) holds. 

For the condition  𝐹2), we have 

                                     𝑡(𝐴 ∧ 𝐵) = (𝑡(𝐴 ∧ 𝐵))† = (𝑡𝐴𝐵)† 

                                                     = (𝑡𝐴(𝑡𝐵)†)† = (𝑡𝐴)†(𝑡𝐵)† 

                                                     = 𝑡𝐴 ∧ 𝑡𝐵 . 

Therefore (𝑇, 𝐸𝑆) is an F-pair. 

It remains to show that  𝑆 ≅ ℱ(𝑇, 𝐸𝑆) . 

     We now define a map  𝜑 ∶ 𝑆 → ℱ(𝑇, 𝐸𝑆) by  

                                               𝑠𝜑 = (𝑠†, 𝑢𝑠) , 

where  𝑢𝑠 is the greatest element of the  𝜎𝑆 –class containing s with respect to  ≤ . It is clear that 

𝜑 is well defined. The conclusion of the last paragraph in effect is that  𝜑 is onto. 
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It is clear that  𝜑 is also one-one, since (for all 𝑠, 𝑡 𝜖 𝑆) 

                            𝑠𝜑 = 𝑡𝜑 ⟹ (𝑠†, 𝑢𝑠) = (𝑡†, 𝑢𝑡) 

                                            ⟹ 𝑠† = 𝑡†,  𝑢𝑠 = 𝑢𝑡 . 

Hence  (𝑠, 𝑡) 𝜖 ℛ̃𝐸ℱ
∩  𝜎𝑆  and by Lemma 3.7,  𝑠 = 𝑡 . 

Taking 𝑠, 𝑡 𝜖 𝑆, we have 

                                 𝑠𝜑𝑡𝜑 = (𝑠†, 𝑢𝑠)(𝑡†, 𝑢𝑡) = (𝑠† ∧ (𝑢𝑠𝑡†), 𝑢𝑠 ∘ 𝑢𝑡) 

                                            = (𝑠† ∧ (𝑢𝑠𝑡†)†, 𝑢𝑠 ∘ 𝑢𝑡) = ((𝑠†𝑢𝑠𝑡†)†, 𝑢𝑠𝑡) 

                                            = ((𝑠𝑡†)†, 𝑢𝑠𝑡) = ((𝑠𝑡)†, 𝑢𝑠𝑡) 

                                            = (𝑠𝑡)𝜑.  

This completes the proof. 
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