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1. Introduction
We consider that N = { 0,1,2,...,n ,} Let 7Z be integer set. The subset § C N is a numerical
semigroup if
. x+yes, forx,yes
il. gcd(S ) =1
ii. 0 S
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(Here, gcd(S ) = greatest common divisor the elements of §).

A numerical semigroup S can be written that
S =< X, Xy, X, >= {zn:aixj ta; € N} .
im1
T C N is minimal system of generators of § if <7 >=§ and there isn’t any subset M C T
such that <M >=§. Also, ©(S)=min {x eS:x> 0} is called as multiplicity of S (see [3]).
Let S be anumerical semigroup, then F(S)= max(Z\S) is calledas Frobenius number of S .
Also, C isconductorof S if C=F(S)+1,and n(S)= Card ({O,l,Z,...,F(S)} N S) is called

as the determiner number of .

If S is anumerical semigroup such that § =< x,,x,,...,x, >, then we observe that
S =<x,Xy,.,x, >= {so =0,8,,8,,..,8, 1,5, :F(S)+l,—>...},

99012

where s, <s,,,, n=n(S) and the arrow means that every integer greater than F(S)+1 belongs

i+l
to § for i=1,2,...n=n(S).

If yeNand y&S,then y iscalled gap of S. We denote the set of gaps of S, by H(S),
e, H(S)=N\S . The G(S)=#(H(S)) 1s called the genus of § . It known that
G(S)=F(S)+1—n(S) (see[3]).

A numerical semigroup S is Arf if x +x,—x; €S8, for all x,x,,x; €S such that
X, > X, > x;. Also, a numerical semigroup S is saturated if s-+ds, +d,s, +..+d, s, €S,
where s,5,€S and d,€Z such that ds +d,s,+..+d,s, >0 and s <s for
i=12,..,m. A saturated numerical is Arf, but an Arf numerical semigroup need not be

saturated. For example, S:<8,13,17,18,19,20,22,23>:{0,8,13,16,—>...} is Arf numerical

semigroup but it is not saturated. Many researchs have studied on saturated numerical semigroups
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(see, [2], [3], [9] ). Especialy, saturated numerical semigroups with multiplicity 3, 4, 5, 6 and 7
have studied by Ilhan et al. (for details, see [1], [4], [5], [6], [7], [8] ).

In this paper, we will give some saturated numerical semigroups multiplicity 8 and conductor C.
Also, we will obtain formulas for Frobenius number, determiner number and genus of these

saturated numerical semigroups.

2. Main results

Proposition 2.1. (/3]) Let S be a numerical semigroup. Then following conditions are
equivalent:

1) S is a saturated numerical semigroup.

2) y+d;(y)eS forall yeS,y>0 where ds(y):gcd{xeS:xgy}.

3) y+mdg(y)eS forall yeS,y>0 and meN.

Now, we give our first result in the following theorem.

Theorem 2.2. Let C=8q+1(qeN,g>1) be an integer and S a numerical semigroup
with multiplicity 8 and conductor C > 8. Then

1) The semigroup S=<38,C+1,C+2,C+3,C+4,C+5C+6,C+7> is saturated
numerical semigroup, where C = 0(mod8),

2) The semigroup S=<8 C,C+1,C+2,C+3,C+4,C+5, C+7> is saturated
numerical semigroup, where C = 2(mod8),

3) The semigroup S=<38 C,C+1,C+2,C+3,C+4,C+6,C+7> is saturated
numerical semigroup, where C = 3(mod8),

4) The semigroup S =<8, C,C+1,C+2,C+3,C+5 C+6,C+7> is saturated

numerical semigroup, where C = 4(mod8),
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5) The semigroup S=<38 C,C+1,C+2,C+4,C+5 C+6,C+7> is saturated
numerical semigroup, where C = 5(mod8),

6) The semigroup S=<8,C,C+1,C+3,C+4,C+5 C+6,C+7> is saturated
numerical semigroup, where C = 6(mod8),

7) The semigroup S =<8, C,C+2,C+3,C+4,C+5 C+6,C+7> is saturated

numerical semigroup, where C = 7(mod8).

Proof. We will prove only one case. Other cases can be proved in a similar way.
Let prove case (1).

Let C=8qg (g€ N, g>1) beaninteger. Then we have

§=<8,C+1LC+2,C+3,C+4C+5C+6,C+7>
=<8,8¢+1,8¢+2,8¢+3,8q+4,8q+5,8q +6,8q +7>.
={0,8,16,24,...,8(g — 1),8¢,— ...}

In this case,

i.if s> C then s+dg(s)=s+1€§,since d;(s)=1and s € S,s> 0. Thus, we obtain that

S is saturated numerical semigroup by Proposition 2.1.

i.if s<C then s+d;(s)=s+8€cS, since dg(s)=8and scS,s>0. Thus, we obtain
that S is saturated numerical semigroup by Proposition 2.1.

Theorem 2.3. Let C =8q (¢ €N, g >1) be an integer and
§=<8,C+1,C+2,C+3,C+4,C+5C+6,C+7> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then, we have

a) F(S)=8q—1,

b) n(S)=gq,

¢ G(S)=1q.
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Proof. Let C=8¢g (g€ N, g>1) bean integer and
§S=<8C+1,C+2,C+3,C+4,C+5C+6,C+7> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then we write that
a) F(S)=8g—1 since C=F(S)+1=28q.
b) Since C=8¢q (¢geN,g>1), S is

§=<8,C+1,C+2,C+3,C+4,C+5C+6,C+7>
=< 8,8¢+1,8¢+2,8¢+3,8¢+4,8¢+5,8¢+6,8q+7>
= {0,8,16, 24,...,8(qg —1),8q,— }

So, we have
n(S) :#({0,1,2,...,8q—8,...,8q—2,8q—1}ﬂS) :#({ 0,8,16,24,...,8(q—1)}) =gq.
c) G =FS)+1—-n(S)=8¢—1+1—¢q=17q.
Theorem 2.4. Let C=8q+2(q<€N, g>1) bean integer and

§=<8,C,C+1,C+2,C+3,C+4,C+5,C+7> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then, we have

a) F(S§)=8q+1,
b) n(S)=q+1,
¢ GS)=T7q+1.
Proof. Let C=8¢+2(q<€ N, g>1) be an integer and

S§=<8C,C+1,C+2,C+3,C+4,C+5,C+7> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then,

a) Itistrivial F(S)=8¢g+1 from C=F(S)+1.

b) If §=<8,C,C+1,C+2,C+3,C+4,C+5,C+7> issaturated numerical

semigroup with multiplicity 8 and conductor C. Then we write
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§=<8C,C+1,C+2,C+3,C+4,C+5C+7>
=< 8,8¢+2,8¢+3,8¢ +4,8¢g+5,8¢+ 6,89+ 7,8¢+9>
={0,8,16,24,...,8(¢ — 1),8¢,8q + 2,— ..}.

In this case, n(S):#({0,1,2,...,8q—8,...,8q—2,8q—1,8q,8q+1,8q+2}ﬂS)
:#({ 0,8,16,24,...,8(q—1),8q}) =q+1.
c) GS)=FS)+1—-n(S)=8¢+1+1—(g+1)=7qg+1.

The following theorems will be given without their proofs. Anyone can be proved by similar ways

in Theorem 2.3 and Theorem 2.4.

Theorem 2.5. Let C =8q+3(q €N, g>1) be an integer and

S§=<8,C,C+1,C+2,C+3,C+4,C+6,C+7T> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then, we have

a) F(S)=8q+2,
b) n(S)=q+1,
c) GS)=Tq+2.
Theorem 2.6. Let C =8q+4(q €N, g >1) be an integer and

§=<8,C,C+1,C+2,C+3,C+5, C+6,C+ 7> is saturated numerical semigroup with

multiplicity 8 and conductor C. Then, we have

a) F(S)=8q+3,
b) n(S)=q+1,
¢ G(S)=T79+3.
Theorem 2.7. Let C =8q+5(q €N, g>1) be an integer and

S=<8C,C+1,C+2,C+4,C+5 C+6,C+ 7> is saturated numerical semigroup with

multiplicity 8 and conductor C. Then, we have
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a) F(S)=8q+4,
b) n(S)=q+1,
¢ G(S)=T7q+4.
Theorem 2.8. Let C =8q+6(q €N, g >1) bean integer and

S=<8C,C+1,C+3,C+4,C+5,C+6,C+7> is saturated numerical semigroup with

multiplicity 8 and conductor C. Then, we have

a) F(S)=8q+5,

b) n(S)=q+1,

¢) G(S)=T79+5.
Theorem 2.9. Let C=8q+7(q <N, g>1) be an integer and
§=<8,C,C+2,C+3,C+4,C+5,C+6,C+7> is saturated numerical semigroup with
multiplicity 8 and conductor C. Then, we have

a) F(S)=8q+6,

b) n(S)=q+1,

¢ G(S)=T79g+6.
Example 2.10. Ifwetake C =15 ( for ¢ =1) in Theorem 2.9, then we write

§=<8,C,C+2,C+3,C+4,C+5C+6,C+7>
=<8,15,17,18,19,20,21,22 >={ 0,8,15,— ... }.

In this case, we find that F(S)=8¢+6=14, n(S)=¢g+1=2 and G(S)=T7¢+6=13.
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