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Abstract. In this paper we introduce the concept of regular singular fractional point and use the technique of

fractional power series to solve the fractional Laguerre equation. Then we get the factional Laguerre polynomials.

Keywords: Laguerre equation; local fractional derivatives; fractional Laguerre polynomial.

2010 AMS Subject Classification: 26A33.

1. INTRODUCTION

Fractional differential equations proved to be very important in applied sciences. That is why

there is so much work on fractional calculus and fractional differential equations. The subject

of fractional derivative is as old as calculus. In 1695, L,Hopital asked if the expression
d0.5

dx0.5 f

has any meaning. Since then, many researchers have been trying to generalize the concept of

the usual derivative to fractional derivatives. These days, many definitions for the fractional

derivative are available. Most of these definitions use an integral form. The most popular

definitions are:
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(i) Riemann - Liouville Definition: If n is a positive integer and α ∈ [n−1,n), the α th deriv-

ative of f is given by

T α
a ( f )(t) =

1
Γ(n−α)

dn

dtn

t∫
a

f (x)

(t− x)α−n+1 dx.

(ii) Caputo Definition. For α ∈ [n−1,n), the α derivative of f is

T α
a ( f )(t) =

1
Γ(n−α)

t∫
a

f (n)(x)

(t− x)α−n+1 dx.

Now, all definitions are attempted to satisfy the usual properties of the standard derivative.

The only property inherited by all definitions of fractional derivative is the linearity property.

However, the following are the setbacks of one definition or another:

(i) The Riemann-Liouville derivative does not satisfy T α
a (1) = 0 (T α

a (1) = 0 for the Caputo

derivative), if α is not a natural number.

(ii) All fractional derivatives do not satisfy the known product rule:

T α
a ( f g) = f T α

a (g)+gT α

a ( f ).

(iii) All fractional derivatives do not satisfy the known quotient rule:

T α
a ( f/g) =

gT α
a ( f )− f T α

a (g)
g2 .

(iv) All fractional derivatives do not satisfy the chain rule:

T α
a ( f ◦g)(t) = f (α)

(
g(t)

)
g(α)(t).

(v) All fractional derivatives do not satisfy: T αT β f = T α+β f in general

(vi) Caputo definition assumes that the function f is differentiable.

(v) T1(λ ) = 0, for all constant functions f (t) = λ .

In [5 ], a new definition called α−conformable fractional derivative was introduced:
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Let α ∈ (0,1), and f : E ⊆ (0,∞)→ R. For x ∈ E let: Dα f (x) = lim
ε→0

f (x+εx1−α )− f (x)
ε

. If the

limit exists then it is called the α−conformable fractional derivative of f at x.

For x = 0, Dα f (0) = lim
x→0

Dα f (0) if such limit exists.

The new definition satisfies:

1.Dα(a f +bg) = aDα( f )+bDα(g), for all a,b ∈ R.

2.DαDα(λ ) = 0, for all constant functions f (t) = λ .

Further, for α ∈ (0,1] and f ,g be α−differentiable at a point t, with g(t) 6= 0. Then

3. TαDα( f g) = f Dα(g)+gDα( f ).

4. Dα( f
g ) =

gDα ( f )− f Dα (g)
g2

We list here the fractional derivatives of certain functions,

(1) 1.Dα(t p) = p t p−α .

(2) Dα(sin 1
α

tα) = cos 1
α

tα .

(3) Dα(cos 1
α

tα) =−sin 1
α

tα .

(4) Dα(e
1
α

tα

) = e
1
α

tα

.

On letting α = 1 in these derivatives, we get the corresponding ordinary derivatives.

One should notice that a function could be α−conformable differentiable at a point but not

differentiable, for example, take f (t) = 2
√

t. Then D
1
2 ( f )(t) = 1. Hence D

1
2 ( f )(0) = 1. But

D1( f )(0) does not exist. This is not the case for the known classical fractional derivatives.

For more on fractional calculus and its applications we refer to [1 ] to [11]

2. FRACTIONAL LAGUERRE EQUATION

The equation

xy′′+(1− x)y′+ny = 0.................(1)

is called Laguerre differential equation. It is a well known and important equation that appears

in the quantum mechanical description of the hydrogen atom. The point x = 0 is a regular

singular point for the equation. Power series technique is a method to solve such equation. In

this paper we are interested in some fractional form of the Laguerre equation. More precisely

we will study the equation:
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xαDαDαy+(α− xα)Dαy+ kαy....................(2)

where α ∈ (0,1], and k is a natural number.

Often we will use Dnα to denote Dα .....Dα n-times

Definition 2.1. The point x = 0 is called an α−regular singular point for the equation

DαDαy+P(x)Dαy+Q(x)y = 0 if

lim
x−→0+

P(x)
xα and lim

x−→0+
Q(x)
x2α both exist.

Clearly, x = 0 is an α−regular singular point for equation (2).

Definition 2.2.[ 6]. A series
∞

∑
n=0

anxnα is called a fractional power series.

If Dnα f exits for all n in some interval [0,λ ], then one can write f in the form of a fractional

power series.

Now, let us start solving equation (2)

Procedure:

xαDαDαy+(α− xα)Dαy+α py = 0..............(∗)

Put

y = ∑anxαn , a0 6= 0

Then

Dαy = ∑
1

nαanxαn −α , ,DαDαy = ∑
2

nα(nα−α)anxαn −2α

Substitute to get

∑
2

nα(nα−α)xαn −αan +∑
1

nα
2anxαn −α −∑

1
nα xαnan +α p∑

0
anxαn = 0

∑
1
(n+1)nα

2an+1xαn +∑
0
(n+1)α2an+1xαn −∑

1
nαanxαn +∑

0
α p anxαn = 0
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α
2a1 +α pa0 +∑

1

{[
(n+1)nα

2 +(n+1)α2]an+1 +(α p−nα)an
}

xn +α = 0

Hence

a1 =
−p
α

a0...................................(3)

((n+1)nα
2 +(n+1)α2)an+1 +(α p−nα)an = 0..........(4)

From equation (4) we get

an+1 =
−α(n− p)

α2(n+1)(n+1)
an So an+1 =

n− p
α(n+1)2 ............(5)

Hence if n = 1 we get from 3 and 5 we get

a2 =
(1− p)
α(2)(2)

a1 =
p (p−1)
α2(2!)2 a0

Similarly,

a3 =
−p (p−1)(p−2)

α3(3!)2 a0

and for general n = 3 we have

ar = (−1)r p (p−1)(p−2).............(p− r +1)
αr(r !)2 a0 .......... r ≤ p, and ap+1 = 0

Consequently

y = a0 ∑(−1)r p (p−1)(p−2).............(p− r +1)
αr(r !)2 xαr

But

(
p
r

)
=

p!
(p− r)!r!

r ≤ p
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so

y = a0 ∑
r=0

(−1)r p (p−1)(p−2).........(p− r +1)(p− r)(p− r−1).......(3)(2)(1)
αr(p− r)(p− r−1).......(3)(2)(1)(r !)2 xαr

y = a0 ∑(−1)r p!
αr(p− r)!r!r!

xαr

y = a0

p

∑
r=0

(−1)r
(

p
r

)
xαr

αrr!

By taking a0 = 1

y(x) =
p

∑
r=0

(−1)r p!
αr(p− r)!(r!)2 xαr...............(6)

3. THE LAGUERRE POLYNOMIALS AND GENERATING FUNCTION

From equation (6) one can see that for each value of p we get a form of a solution which

is a fractional polynomial to be called Laguerre fractional polynomial. The following are the

Laguerre polynomials:

L0(x) = 1

L1(x) =
1

∑
r =0

(−1)r 1!
αr(1− r)!(r!)2 xαr = (1− xα

α
)

L2(x) =
2

∑
r =0

(−1)r 2!
αr(2− r)!(r!)2 xαr =

[
1− 2

α
xα +

x2α

2!α2

]
=

1
2!

[
2−4

xα

α
+(

xα

α
)2
]

And similarly one can find the Leguerre polynomials of all orders.

The function F(x, t) is called generating function for the Laguerre polynomial if F(x, t) =
∞

∑
p=0

Lp(
xα

α
)t p.

Theorem3.1. The generating function of the Laguerre Polynomials is: 1
1−t Exp

((
−xα

α
t
)
(1− t)

)
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Proof.

1
1− t

∞

∑
r =0

(
−xα

α
t
)r

r !(1− t)r =
1

1− t

∞

∑
r =0

(−1)r

(
xα

α

)r
t r

r !(1− t)r

=
∞

∑
r =0

(−1)r

(
xα

α

)r
t r

r !(1− t)r +1

But
1

1− t
=

∞

∑
0

t s

1
(1− t)2 = ∑

1
s t s−1

= ∑
0
(s+1) t s

1
(1− t)3 = ∑

2
s (s−1)t s−2

= ∑
0
(s+2)(s+1) t s

1
(1− t)r +1 = ∑

0

(s+ r)!
s !r !

t s

Hence

1
1− t

∞

∑
r =0

(
−xα

α
t
)r

r !(1− t)r =
∞

∑
r =0

(−1)r

(
xα

α

)r
t r

r !

∞

∑
s =0

(s+ r)!
s !r !

t s

=
∞

∑
r =0

∞

∑
s =0

(−1)r

(
xα

α

)r
(s+ r)!

(r !)2s !
t r +s

Put r+ s = p . We get

=
∞

∑
p =0

∞

∑
r =0

(−1)r p!
(r !)2(p− r) !

(
xα

α

)r

t p

=
∞

∑
p =0

LP

(
xα

α

)
t p
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