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where 1,k k . Also, we will obtain Arf closure of these symmetric numerical semigroups.  
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1. INTRODUCTION 

Let  0,1,2,..., ,...n  and   be integer set. S  is called a numerical semigroup if  

(i) 1 2 ,s s S for 1 2,s s S   

      (ii) gcd 1S        

       (iii) 0 S  

where S  ( Here, gcd S greatest common divisor the elements of S ).  
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  A numerical semigroup S  can be written that 

1 2

1

, ,..., :
n

n i i i

i

S a a a c a c  (for detail see [4]). 

T  is minimal system of generators of S  if  T S  and there isn’t any subset 

M T   such that M S .Also, ( ) min : 0m S x S x  is called as multiplicity of S  

(See [3]). Let S be a numerical semigroup, then ( ) max \F S S  is called as Frobenius 

number of S . ( ) 0,1,2,..., ( )n S Card F S S  is called as the determine number of S (see 

[5]). 

If S is a numerical semigroup such that 1 2, ,..., nS a a a , then we observe that 

1 2 0 1 2 1, ,..., 0, , ,..., , ( ) 1, ...n n nS a a a s s s s s F S , where 1, ( )i is s n n S  and 

the arrow means that every integer greater than ( ) 1F S  belongs to S for 1,2,..., ( )i n n S  

(see [6]). 

If t and t S , then t  is called gap of S . We denote the set of gaps of S , by 

( )H S , i.e, ( ) \H S S . The ( ) #( ( ))G S H S  is called the genus of S . It known that 

( ) ( ) 1 ( )G S F S n S  (see [4]).  

      S  is called symmetric numerical semigroup if  ( )F S u  belongs to S , for \u S . 

It is known the numerical semigroup 1 2,S a a  is symmetric and  1 2 1 2( )F S a a a a  . 

In this case, we write 
( ) 1

( )
2

F S
n S  (see [1]). 

       A numerical semigroup S  is called Arf  if 1 2 3s s s S , for all 1 2 3, ,s s s S  such 

that  1 2 3s s s . The smallest Arf numerical semigroup containing a numerical semigroup S  

is called the Arf closure of S , and it is denoted by ( )Arf S  ( for detail see [ 2, 3 ] ).  If S  is a 

numerical semigroup such that 1 2, ,..., nS a a a , then 1 2 1 3 1 1( ) , , ,..., nL S a a a a v a v= − − −   

is called  Lipman numerical semigroup of S , and  it is known that 
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0 1 0 2 1 1( ) ( ) ( ( )) ( ( )) ... ( ( )) ...m mL S S L S L L S L L L S L L L S−=  =  =   =    (see [7]). 

 

2. MAIN RESULTS 

Theorem 1.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, we 

have  

                 (a) ( ) 20 7kF S k   

                 (b)  ( ) 10 4kn S k   

                 (c)  ( ) 10 4kG S k .  

Proof.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, kS  is 

symmetric and we find that  

 (a) ( ) 5(5 3) 5 5 3 20 7kF S k k k . 

 (b) 
( ) 1 20 7 1

( ) 10 4
2 2

k
k

F S k
n S k .  

 (c) ( ) 20 7 1 10 4 10 4kG S k k k  from ( ) ( ) 1 ( )k k kG S F S n S . 

Theorem 2.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, 

( ) 0,5,10,15,...,5 ,5 3,5 5, ...kArf S k k k . 

Proof.   Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, we have 

( ) 5,5 (3 5 )i kL S k i  for 0,1,2,..., 2i k . In this case, 

If 5 5 (3 5 )k i then 5im . 

If 5 5 (3 5 )k i then 3im . So, we write 1 1( ) 5,6 , 5k k kL S m   

and ( ) 5,1 1 , 1.k k kL S m  

Thus, we obtain ( ) 0,5,10,15,...,5 ,5 3,5 5, ...kArf S k k k . 
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Corollary 3.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, we 

have 

           (a) ( ( )) 5 4kF Arf S k  

           (b) ( ( )) 2kn Arf S k   

           (c) ( ( )) 4 3kG Arf S k .  

Proof. Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, we write 

that ( ( )) 5 4kF Arf S k  from Theorem 2. On the other hand, we find that 

( ( )) #( 0,1,2,...,5 4 ( )) #( 0,5,10,...,5 ,5 3 ) 2kn Arf S k Arf S k k k  

and we obtain 

( ( )) 5 4 1 2 4 3kG Arf S k k k  

since ( ( )) ( ( )) 1 ( ( ))k k kG Arf S F Arf S n Arf S . 

Corollary 4.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, we 

have  

           (a) ( ) 4 ( ( )) 9k kF S F Arf S   

           (b) ( ) 10 ( ( )) 16k kn S n Arf S   

           (c) ( ) 2 ( ( )) 2( 1)k kG S G Arf S k .  

Proof.  Let 5,5 3kS k  be numerical semigroups, where 1,k k .  We write that 

 (a) 4 ( ( )) 9 4(5 4) 9 20 7 ( ).k kF Arf S k k F S  However, we find that  

 (b) 10 ( ( )) 16 10( 2) 16 10 4 ( )k kn Arf S k k n S , 

 (c) 2 ( ( )) 2( 1) 2(4 3) 2 2 10 4 ( )k kG Arf S k k k k G S . 

Corollary 5.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, it 

satisfies following conditions: 
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            (a)  1( ) ( ) 20k kF S F S   

            (b)  1( ) ( ) 10k kn S n S   

            (c)  1( ) ( ) 10k kG S G S .   

Corollary 6.  Let 5,5 3kS k  be numerical semigroups, where 1,k k . Then, it 

satisfies following conditions: 

             (a) 1( ( )) ( ( )) 5k kF Arf S F Arf S   

             (b) 1( ( )) ( ( )) 1k kn Arf S n Arf S   

             (c)  1( ( )) ( ( )) 4k kG Arf S G Arf S .   

Example 7. We put  1k  in 5,5 3kS k  symmetric numerical semigroups. Then we 

have 1 5,8 0,5,8,10,13,15,18,20,23,24,25,26,28, ...S . In this case, we obtain 

1 1 1( ) 27, ( ) 14, ( ) 1,2,3,4,6,7,9,11,12,14,17,19,22,27F S n S H S ,  1( ) 14G S , 

1( ) 0,5,8,10, ...Arf S , 1( ( )) 9,F Arf S 1( ( )) 3,n Arf S 1( ( )) 1,2,3,4,6,7,9H Arf S   

and 1( ( )) 7G Arf S . Thus, we find that  

1 14 ( ( )) 9 4.9 9 27 ( )F Arf S F S , 1 110 ( ( )) 16 10.3 16 14 ( )n Arf S n S  

and 1 1 12 ( ( )) 2(1 1) 2 ( ( )) 2.7 14 ( )G Arf S G Arf S G S . 

If 2k then we write 

2 5,13 0,5,10,13,15,18,20,23,25,26,28,30,31,33,35,36,38,39,40,41,43,44,45,46,48, ...S .  

Thus, we have 2 2( ) 47, ( ) 24,F S n S 2( ) 24G S , 2( ) 0,5,10,13,15, ...Arf S ,  

2( ( )) 14,F Arf S 2( ( )) 4n Arf S  and 2( ( )) 11G Arf S . 

So, we write that 1 2( ) 20 27 20 47 ( )F S F S ,  

1 2( ) 10 14 10 24 ( )n S n S  and 1 2( ) 10 14 10 24 ( )G S G S . Also, we obtain that 
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1 2( ( )) 5 9 5 14 ( ( ))F Arf S F Arf S , 1 2( ( )) 1 3 1 4 ( ( ))n Arf S n Arf S  

and 1 2( ( )) 4 7 4 11 ( ( ))G Arf S G Arf S . 
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