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Abstract. We consider inverse semigroup amalgams [S1,S2;U ] such that for any u ∈U and e ∈ E(Si) with u≥ e in Si,

where i ∈ {1,2}, there exists f ∈ E(U) with u≥ f ≥ e in Si; we say that U is lower bounded in S1 and S2. We construct

and describe the Schützenberger automata of S1 ∗U S2 and give conditions for decidable word problem. The homomorphisms

of the Schützenberger graphs of S1 ∗U S2 are studied and conditions are given for S1 ∗U S2 to be completely semisimple. In

the case when S1 and S2 have decidable word problems and U is finite, we show that S1 ∗U S2 has decidable word problem.
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1. INTRODUCTION

It was proved by Hall [11] (1975) that any amalgam of inverse semigroups is strongly embedded

into an inverse semigroup. It follows that any amalgam [S1,S2;U ] is strongly embedded into the

amalgamated free product S1 ∗U S2, in the variety of inverse semigroups. Since Hall’s result, the

structure of S1 ∗U S2 and conditions for decidability of the word problem, in the general case, have been

open problems, although some special cases have been studied.
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It was shown by Birget, Margolis and Meakin [3] (1991) that S1 ∗U S2 can have undecidable word

problem. Haataja, Margolis and Meakin in [10] (1996) considered full amalgams. Lower bounded

amalgams were studied by the author in [1] and [2] (1997). Stephen [18] (1998) reproved Hall’s result.

Cherubini, Meakin and Piochi [6] (1997) showed that the amalgamated free product of free inverse

semigroups can have decidable word problem. In [7] (2005), they showed that amalgams of finite

inverse semigroups have decidable word problem. Further work was done by Cherubini, Jajcayová,

Mazzuchelli, Nuccio and Rodaro in [5], [15], [8], [9] and [4] (2008–2015).

In Algorithm 4.20, a method is given for constructing the Schützenberger automata of S1 ∗U S2.

Theorem 4.26 describes the Schützenberger automata of S1 ∗U S2. Results are given concerning

homomorphisms of Schützenberger graphs, which lead to conditions for S1 ∗U S2 to be completely

semisimple. In Theorem 4.40, a list of conditions is given for S1 ∗U S2 to have decidable word problem.

As an example, Corollary 4.41 shows that S1 ∗U S2 has decidable word problem when S1 and S2 have

decidable word problems and U is finite.

2. PRELIMINARIES

A semigroup S is called an inverse semigroup if, for every element s ∈ S, there is a unique element s−1,

called the inverse of s, such that ss−1s = s and s−1ss−1 = s. The set E(S) = {e ∈ S : e2 = e} is

called the semilattice of idempotents of S. The natural partial order of S is defined by a≤ b if and only

if a = eb, for some e ∈ E(S), for a,b ∈ S. A subsemigroup U of S is called an inverse subsemigroup

of S if the inverse of each element of U is also contained in U . For results on inverse semigroups, see

Howie [12] and Petrich [14].

A presentation for an inverse semigroup S is a pair 〈X | R〉, where X is a non-empty set and R is

a binary relation on (X ∪X−1)+ such that S∼= (X ∪X−1)+/τ , letting τ denote the congruence

generated by R and the Vagner congruence ρ . We say that the inverse semigroup S is presented by the

generators X and relations R and write S = Inv〈X | R〉.

The presentation 〈X | R〉 is then studied by considering the Schützenberger automaton A (X ,R,w)

of w, for w ∈ (X ∪X−1)+. The automaton A (X ,R,w) has underlying graph SΓ(X ,R,w), consisting

of vertices Rwτ , the R-class of S containing wτ , and an edge from s to t labeled by y, if s, t ∈ Rwτ and

y ∈ X ∪X−1 such that s · yτ = t. The initial and terminal states are the vertices ww−1τ and wτ ,
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respectively. If a presentation has been specified then we also denote 〈X | R〉, SΓ(X ,R,w), A (X ,R,w)

by 〈S〉, SΓ(S,w), A (S,w), respectively. For results on presentations, see Stephen [16], [17] and [18].

For a non-empty set X , an inverse word graph Γ over X is a connected graph with edges labeled

over X ∪X−1, such that for every edge from v1 to v2 labeled by y, there is an inverse edge from v2 to

v1 labeled by y−1. The inverse word graph Γ is deterministic if no two distinct edges have the same

initial vertex and label. The vertex and edge sets are denoted V (Γ) and E(Γ), respectively.

A V -equivalence η is an equivalence relation on V (Γ). The quotient of Γ under η is defined to be

the graph Γ/η with vertices V (Γ/η) =V (Γ)/η and an edge from v1η to v2η , labeled by y, if there

is an edge from v1 to v2 in Γ labeled by y. The quotient Γ/η is also an inverse word graph over X and

η induces a homomorphism from Γ onto Γ/η .

If v1,v2 ∈V (Γ) and w labels a path, or edge, from v1 to v2 then we write this as v1→w v2. We

have a path v1η →w v2η in Γ/η if and only if there are paths x1→w1 y1, x2→w2 y2, . . ., xn→wn yn

in Γ, where n≥ 1, v1ηx1, y1ηx2, . . ., yn−1ηxn, ynηv2 and w1w2 · · ·wn = w.

The V -equivalence η is called determinising if Γ/η is deterministic. The least determinising

V -equivalence containing η is defined as the intersection η∗ of all determinising V -equivalences that

contain η . The determinised form of Γ is the quotient Γ/id∗, where id is the identity relation.

Result 2.1. [17, Lemma 4.3, Theorem 4.4] The determinised form Γ/id∗ of an inverse word graph Γ

over X is a well-defined deterministic inverse word graph over X. For v1,v2 ∈V (Γ), we have

v1id∗ = v2id∗ if and only if there is a path v1→w v2, for some word w freely reducible to 1.

The composition of V -equivalences η ◦ id∗ is equal to η∗. Thus, for vertices v1,v2 ∈V (Γ), we

have v1η∗v2 if and only if there is a path v1η →w v2η in Γ/η , where w is freely reducible to 1.

Then v1η∗v2 if and only if there are paths x1→w1 y1, x2→w2 y2, . . ., xn→wn yn in Γ, where n≥ 1,

v1ηx1, y1ηx2, . . ., yn−1ηxn, ynηv2 and w1w2 · · ·wn is freely reducible to 1.

Further, we have a path v1η∗→w v2η∗ in Γ/η∗ if and only if there exist paths x1η →w1 y1η ,

x2η →w2 y2η , . . ., xnη →wn ynη in Γ/η , where n≥ 1, v1η∗x1, y1η∗x2, . . ., yn−1η∗xn, ynη∗v2

and w1w2 · · ·wn = w. Thus, using the above, we a path v1η∗→w v2η∗ in Γ/η∗ if and only if

there exist paths x1→w1 y1, x2→w2 y2, . . ., xn→wn yn in Γ, where n≥ 1, v1ηx1, y1ηx2, y2ηx3, . . .,

yn−1ηxn, ynηv2 and w1w2 · · ·wn is freely reducible to w.
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A (birooted) inverse automaton over X is a triple A = (α,Γ,β ), where Γ is an inverse word

graph over X and α,β ∈V (Γ). The vertices α and β are called the initial and terminal roots of A ,

respectively. We also denote the vertices of A by V (A ). The language L[A ] of A is the set of all

words that label paths from α to β . If η is a V -equivalence on the vertices of Γ then the quotient

automaton A /η is given by (αη ,Γ/η ,βη). The determinised form of A is the quotient A /id∗.

Result 2.2. [17, Theorem 2.5] If A and A ′ are deterministic inverse automata over X with

L[A ]⊆ L[A ′] then there is a unique homomorphism from A into A ′. Thus if L[A ] = L[A ′] then

we have A ∼= A ′.

An inverse automaton A over X has decidable language if there exists an algorithm that decides, on

input w ∈ (X ∪X−1)+, whether or not w ∈ L[A ].

Result 2.3. [17, Theorems 3.1 and 3.9] For S = Inv〈X | R〉, the language L[A (X ,R,w)] consists

of all words w1 ∈ (X ∪X−1)+ such that w1 ≥ w in S. We have w = w1 in S if and only if

A (X ,R,w)∼= A (X ,R,w1).

Result 2.4. The word problem for S = Inv〈X | R〉 is decidable if and only if the Schützenberger

automata of 〈X | R〉 have decidable languages.

Proof. The proof follow from Result 2.3. �

An inverse automaton A over X is called an approximate automaton of A (X ,R,w) if we

have L[A ]⊆ L[A (X ,R,w)] and there exists w1 ∈ L[A ] with w1 = w in S = Inv〈X | R〉, written

A  A (X ,R,w). An inverse word graph Γ over X is called an approximate graph if we have

(α,Γ,β ) A (X ,R,w), for some α,β ∈V (Γ) and some w. Multiplication of disjoint automata

A1 = (α1,Γ1,β1) and A2 = (α2,Γ2,β2) is defined by A1×A2 = (α1η ,(Γ1∪Γ2)/η ,β2η), where

η is the V -equivalence generated by {(β1,α2)}.

Result 2.5. [17, Theorem 5.2] If we have A1 A (X ,R,w1) and A2 A (X ,R,w2) then

A1×A1 A (X ,R,w1w2).

The linear automaton of w = y1y2 · · ·yn ∈ (X ∪X−1)+, for yk ∈ X ∪X−1, is the inverse automaton

(αw,Γw,βw), with vertices v0 = αw, v1, . . ., vn−1, vn = βw and edges vk−1→yk vk, vk→y−1
k vk−1,

for k = 1,2, . . . ,n.
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If (α,Γ,β ) is an inverse automaton over X and (r,s) is a relation in R such that Γ contains a path

v1→r v2, and no path v1→s v2, then we perform an elementary expansion, relative to 〈X | R〉, by

taking the disjoint union Γ∪Γs and then forming the automaton (αη ,(Γ∪Γs)/η ,βη), where η is

the V -equivalence generated by {(v1,αs),(v2,βs)}. We refer to this construction as sewing on the

linear automaton of s from v1 to v2.

If we take the disjoint union of Γ with any automaton (α1,Γ1,β1) and then take the quotient by the

V -equivalence generated by {(v1,α1),(v2,β1)}, then we also refer to this operation as sewing on

(α1,Γ1,β1) from v1 to v2. If v1 = v2 then we refer to this operation as sewing on (α1,Γ1,β1) at v1.

If Γ has two edges v1→y v2 and v1→y v3, for some y ∈ X ∪X−1, then we can perform an

elementary determination, relative to 〈X | R〉, by taking the quotient of Γ by the V -equivalence

generated by {(v2,v3)}. An elementary expansion or determination of an inverse automaton is just an

elementary expansion or determination of the underlying graph.

Result 2.6. [17, Lemmas 4.1, 5.5, 5.6] If B is obtained from the automaton A by an elementary

expansion or elementary determination, relative to 〈X | R〉, then L[A ]⊆ L[B]. Further, if

A  A (X ,R,w) then B A (X ,R,w).

Result 2.7. If B is the determinised form of the automaton A , relative to 〈X | R〉, then

L[B]⊆ {z ∈ (X ∪X−1)+ : zτ ≥ yτ, for some y ∈ L[A ]}.

Proof. We have B = A /id∗. Thus if z ∈ L[B] then there exists y ∈ L[A ] that is freely reducible

to z. Hence zτ ≥ yτ for some y ∈ L[A ]. �

Result 2.8. If A  A (X ,R,w) and B is the determinised form of A then B A (X ,R,w).

Proof. The proof follows from Results 2.3 and 2.7. �

A deterministic inverse automaton over X is closed, relative to 〈X | R〉, if no elementary expansions

can be performed.

Result 2.9. [17, Theorem 5.10] If A  A (X ,R,w) and A is deterministic and closed, relative

to 〈X | R〉, then A ∼= A (X ,R,w).

If Γ is an inverse graph over X then we say there is a path from vertex v1 to vertex v2 labeled

by s ∈ S, and write v1→s v2, if there is a path v1→w v2, for some w ∈ (X ∪X−1)+ with wτ = s ∈ S.
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If Γ is closed, relative to 〈X | R〉, and we have a path v1→w v2, for some w ∈ (X ∪X−1)+ with

wτ = s, then we have a path v1→y v2, for every y ∈ (X ∪X−1)+ with yτ ≥ s.

As defined in Stephen [17], an expansion, relative to 〈X | R〉, consists of performing an elementary

expansion and then taking the determinised form.

Result 2.10. [16] The category of all inverse automata over X is cocomplete.

That is, every directed system of inverse automata over X has a direct limit. For an inverse automaton

A over X , the closed form of A , relative to 〈X | R〉, is the direct limit of the directed system of all

automata obtained from A by finite elementary expansions and determinations, relative to 〈X | R〉.

Result 2.11. [18, Theorem 3.3] The automaton A (X ,R,w) is the closed form, relative to 〈X | R〉, of

the linear automaton of w.

Result 2.12. [18, Lemma 3.4] If B is the closed form of the automaton A , relative to 〈X | R〉, then

we have L[B] = {z ∈ (X ∪X−1)+ : zτ ≥ yτ, for some y ∈ L[A ]}.

Let S1 = Inv〈X1 | R1〉 and S2 = Inv〈X2 | R2〉, where X1∩X2 = /0. Then the free product S1 ∗S2,

in the variety of inverse semigroups, has presentation 〈X | R〉, where X = X1∪X2 and R = R1∪R2. If

Γ is an inverse word graph over X then each edge of Γ is labeled from Xi∪X−1
i , for some i ∈ {1,2},

and is said to be colored by i. A subgraph of Γ is monochromatic if all its edges have the same color. A

lobe of Γ is a maximal monochromatic connected subgraph of Γ. The coloring of edges extends to

coloring of lobes. Two lobes are said to be adjacent if they share common vertices, called intersections.

A path in Γ is called simple if it contains no repeated vertex, other than perhaps its first and last, in

which case it is a simple cycle. The graph Γ is called cactoid if it has finitely many lobes and every

simple cycle is monochromatic. An inverse automaton is called cactoid if is underlying graph is cactoid.

Result 2.13. [13, Theorem 4.1] The Schützenberger automata of the free product S1 ∗S2 = Inv〈X | R〉

are precisely, up to isomorphism, the cactoid inverse automata over X, where the lobes are isomorphic

to Schützenberger graphs of either 〈X1 | R1〉 or 〈X2 | R2〉.

Construction 2.14. [13, Section 3] Let A = (α,Γ,β ) be a cactoid inverse automaton over X

with lobes that approximate graphs relative to either 〈X1 | R1〉 or 〈X2 | R2〉. Let ∆ be a lobe with
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(v,∆,v) A (Xi,Ri,y), for some v ∈V (∆) and y ∈ (Xi∪X−1
i )+, and let (v1,∆1,v1)∼= A (Xi,Ri,y)

be disjoint from ∆. Construct the quotient A ′ = (αη ,(Γ∪∆1)/η ,βη), where η is the least

V -equivalence identifying v with v1 and determinising ∆ and ∆1.

Result 2.15. [13, Propositions 3.1, 3.2, 3.3] If A ′ is obtained from A by an application of

Construction 2.14 then A ′ is a cactoid inverse automaton over X with lobes that approximate graphs

relative to either 〈X1 | R1〉 or 〈X2 | R2〉. Further, if A  A (X ,R,w) then A ′ A (X ,R,w).

Result 2.16. [13, Theorem 3.4] Starting with the linear automaton of w, any sequence obtained by

repeated applications of Construction 2.14 terminates finitely in A (X ,R,w).

Result 2.17. [13, Corollary 3.5] The free product S1 ∗S2 = Inv〈X | R〉 has decidable word problem if

S1 = Inv〈X1 | R1〉 and S2 = Inv〈X2 | R2〉 both have decidable word problems.

3. DIRECTED SYSTEMS OF INVERSE AUTOMATA

Notation 3.1. Suppose we have an operation, Construction Q, say, that we can apply to inverse

automata over X . Let I denote the set of all automata obtained from a deterministic automaton A by

finitely many applications of Construction Q. Define a relation by B ≤ C if and only if B = C or C

is obtained from B by finite applications of Construction Q, for B,C ∈ I.

Lemma 3.2. Suppose Construction Q satisfies the following, for B,C ,D ∈ I:

(A) B ≤ C implies C is a deterministic and L[B]⊆ L[C ].

(B) B ≤ C and B ≤D imply C ≤ E and D ≤ E , for some E ∈ I.

Then the automata of I form a directed system. The direct limit is the quotient of the disjoint union

tB∈IB, under the V -equivalence η defined by v1ηv2 if and only if B ≤D and C ≤D , for some

D ∈ I, where the images of v1 and v2 are identified in D , for v1 ∈V (B), v2 ∈V (C ) and B,C ∈ I.

For any w in the language of the direct limit, there exists B in the directed system with w ∈ L[B].

Proof. It is immediate that the relation ≤ is reflexive and transitive. If B ≤ C and C ≤B then

condition (A) implies B ∼= C , by Result 2.2. Hence ≤ defines a partial order on I. If C ,D ∈ I

then A ≤ C and A ≤D imply C ≤ E and D ≤ E , for some E ∈ I, by condition (B). Thus (I,≤)

determines a directed set.
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If B,C ∈ I and B ≤ C then we have a unique homomorphism αB,C : B→ C , where αB,B is

the identity map on B, by Result 2.2. If B,C ,D ∈ I and B ≤ C ≤D then αB,C ◦αC ,D = αB,D ,

by uniqueness. Thus the automata in I, with the homomorphisms αB,C , determine a directed system.

It is immediate that η is reflexive and symmetric. Suppose v1ηv2 and v2ηv3, for some

v1 ∈V (B), v2 ∈V (C ) and v3 ∈V (D), where B,C ,D ∈ I. There exist E ,F ∈ I with B,C ≤ E

and C ,D ≤F , where v1 and v2 are identified in E , and v2 and v3 are identified in F . There exists

G ∈ I with E ,F ≤ G . Thus v1 and v3 are identified in G and so v1ηv3. Hence η is transitive.

Therefore η defines a V -equivalence. Put H = (tB∈IB)/η .

Suppose v1→x v3 is an edge in B and v2→x v4 is an edge in C , where v1ηv2, for some B,C ∈ I.

There exists D ∈ I such that B,C ≤D , where the images of v1 and v2 are identified in D . Then v3

and v4 are identified in D , since D is deterministic. Thus v3 and v4 are identified in H . Hence H is

deterministic. For each B ∈ I, we have a unique homomorphism βB : B→H , induced by η . For

all B,C ∈ I with B ≤ C , we have αB,C ◦βC = βB, by uniqueness.

Suppose we have an inverse automaton H ′ over X and a homomorphism γB : B→H ′,

for each B ∈ I, such that αB,C ◦ γC = γB, for all B,C ∈ I with B ≤ C . If v1ηv2, where

v1 ∈V (B) and v2 ∈V (C ), for some B,C ∈ I, then there exists D ∈ I with B,C ≤D , such

that (v1)αB,D = (v2)αC ,D . Thus we have (v1)γB = (v1)αB,D ◦ γD = (v2)αC ,D ◦ γD = (v2)γC .

Hence we have a map δ : V (H )→V (H ′), defined by (vη)δ = (v)γB , for v ∈V (B) and B ∈ I.

For B ∈ I and any edge v1→y v2 in B, we define (v1η →y v2η)δ = (v1→y v2)γB . Then we have

a homomorphism δ : H →H ′ with βB ◦δ = γB, for B ∈ I. Now suppose δ ′ : H →H ′ is a

homomorphism such that βB ◦δ ′ = γB, for B ∈ I. Then (v)βB ◦δ ′ = (vη)δ ′ = (v)γB, for all

v ∈V (B), and it follows that δ ′ = δ . Hence H is the direct limit of the directed system.

Suppose w = x1x2 · · ·xn ∈ L[H ]. Put A = (α,Γ,β ). Then there exists Bk ∈ I containing an

edge vk→xk yk, for each k, with αηv1, ykηvk+1, for k ≤ n−1, and ynηβ . Put y0 = α , vn+1 = β

and B0 = Bn+1 = A . Then, for 0≤ k ≤ n, there exists Ck ∈ I with Bk,Bk+1 ≤ Ck and the

images of the vertices yk and vk+1 are identified in Ck. By induction on n, there exists B ∈ I

with C0,C1, . . . ,Cn ≤B. The images of yk and vk+1 are identified in B, for 0≤ k ≤ n. Thus we

have w ∈ L[B]. �
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In Stephen [16], it was shown that the direct limit of the directed system of all automata obtained

from the linear automaton of w by finitely many expansions, relative to 〈X | R〉, is the automaton

A (X ,R,w). This result is included in the following.

Corollary 3.3. Let A be a deterministic inverse automaton over X and let R1, R2 denote sets of

relations. Then we have a directed system of all automata obtained from A by finite applications of

performing an elementary expansion, relative to 〈X | R1〉, and taking the closed form, relative

to 〈X | R2〉. The direct limit E is the closed form of A , relative to 〈X | R1∪R2〉. Thus if we have

A  A (X ,R1∪R2,w) then E ∼= A (X ,R1∪R2,w).

Proof. If C is obtained from B by performing an elementary expansion, relative to 〈X | R1〉, and

then taking the closed form, relative to 〈X | R2〉, then C is deterministic and L[B]⊆ L[C ]. Thus

condition (A) of Lemma 3.2 is satisfied.

Let v1,v2,v3,v4 denote vertices of B. Let C1 be obtained from B by sewing on the linear

automaton of s from v1 to v2. Then let C2 be the closed form of C1, relative to 〈X | R2〉. Next let C3

be obtained from C2 by sewing on the linear automaton of t from the image of v3 to the image of v4.

Then let C4 be the closed form of C3, relative to 〈X | R2〉. Similarly, let D1 be obtained from B by

sewing on the linear automaton of t from v3 to v4. Then let D2 be the closed form of D1, relative

to 〈X | R2〉. Next let D3 be obtained from D2 by sewing on the linear automaton of s from the image

of v1 to the image of v2. Then let D4 be the closed form of D3, relative to 〈X | R2〉.

It is immediate that L[B]⊆ L[D1]. Now L[D1]⊆ L[D2], by Result 2.12. Thus L[B]⊆ L[D2].

It follows that L[C1]⊆ L[D3]. Then, from Result 2.12, we have L[C2]⊆ L[D4]. It follows that

L[C3]⊆ L[D4], since there is a path labeled by t from the image of v3 to the image of v4 in D4.

Then, again from Result 2.12, we have L[C4]⊆ L[D4]. A similar proof shows that L[D4]⊆ L[C4].

Hence C4 ∼= D4, by Result 2.2. It now follows that condition (B) of Lemma 3.2 is satisfied.

Hence, from Lemma 3.2, we have a directed system of all automata obtained from A by finite

applications of performing an elementary expansion, relative to 〈X | R1〉, and then taking the closed

form, relative to 〈X | R2〉. Let E denote the direct limit of this directed system and let F denote the

closed form of A , relative to 〈X | R1∪R2〉.

Let w ∈ L[E ]. Then, by Lemma 3.2, there exists an automaton B in the directed system for E such

that w ∈ L[B]. The automaton B is obtained from A by performing an elementary expansion, relative
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to 〈X | R1〉, and taking the closed form, relative to 〈X | R2〉, a finite number of times. If A ′ is obtained

from A by an elementary expansion, relative to 〈X | R1〉, then z ∈ L[A ′] implies z≥ y in Inv〈X | R1〉,

for some y ∈ L[A ], by Result 2.12. If A ′′ is the closed form of A ′, relative to 〈X | R2〉, then

z ∈ L[A ′′] implies z≥ y in Inv〈X | R2〉, for some y ∈ L[A ′], by Result 2.12. It now follows that

z ∈ L[B] implies z≥ y in Inv〈X | R1∪R2〉, for some y ∈ L[A ]. Thus w≥ y in Inv〈X | R1∪R2〉,

for some y ∈ L[A ]. Hence L[E ]⊆ L[F ], by Result 2.12.

Conversely, let w ∈ L[F ]. There exists C in the directed system for F with w ∈ L[C ]. Then C is

obtained from A by a finite sequence of elementary expansions and elementary determinations, relative

to 〈X | R1∪R2〉. Now if A ′ is obtained from A by either an elementary expansion or an elementary

determination, relative to 〈X | R1∪R2〉, then there exists an automaton B obtained from A by

an elementary expansion, relative to 〈X | R1〉, and taking the closed form, relative to 〈X | R2〉,

with L[A ′]⊆ L[B]. If A ′′ is obtained from A ′ by an elementary expansion or an elementary

determination, relative to 〈X | R1∪R2〉, then there exists an automaton B′ where either B′ = B or

B′ is obtained from B by an elementary expansion, relative to 〈X | R1〉, and taking the closed form,

relative to 〈X | R2〉, with L[A ′′]⊆ L[B′]. It follows that there exists B′′ in the directed system for E

with L[C ]⊆ L[B′′] and so w ∈ L[E ]. Thus L[F ]⊆ L[E ]. Hence E ∼= F , by Result 2.2.

Suppose A  A (X ,R1∪R2,w). By Results 2.3 and 2.12, we have E  A (X ,R1∪R2,w).

Since E is closed, relative to 〈X | R1∪R2〉, we have E ∼= A (X ,R1∪R2,w), by Result 2.9. �

Corollary 3.4. Let A be a deterministic inverse automaton over X. Let V1 be a subset of the vertices

of A and let R1, R2 be sets of relations. Then we have a directed system of all automata obtained from

A by finite applications of an elementary expansion relative to 〈X | R1〉, between vertices of V1 or

their images, and taking the closed form relative to 〈X | R2〉.

Proof. The proof is similar to that in Corollary 3.3. �

4. A GENERALISATION OF LOWER BOUNDED AMALGAMS

Definition 4.1. We extend the terminology of [1] and [2] by calling an inverse subsemigroup U lower

bounded in S if for any u ∈U and e ∈ E(S) with u≥ e there exists f ∈ E(U) with u≥ f ≥ e. The

lower bounded subsemigroup condition is illustrated in Figure 4.1.
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FIGURE 1. The lower bounded subsemigroup condition.

In this section, let [S1,S2;U ;φ1,φ2] be an amalgam of inverse semigroups where U is lower

bounded in S1 and S2.

Notation 4.2. For i ∈ {1,2}, we assume that Si has a given inverse semigroup presentation, which we

refer to by 〈Si〉. We then denote the Schützenberger automaton of s ∈ Si, relative to 〈Si〉, by A (Si,s).

If ∆ is isomorphic to a Schützenberger graph of 〈Si〉 and v ∈V (∆) then we let ei(v) denote the unique

idempotent of E(Si) such that (v,∆,v)∼= A (Si,ei(v)).

We have an inverse semigroup presentation 〈S1 ∗S2〉= 〈Si∪S2〉 for the free product S1 ∗S2, in the

variety of inverse semigroups. We denote the Schützenberger automaton of z, relative to 〈S1 ∗S2〉, by

A (S1 ∗S2,z), for any word z in the generators of S1 and S2.

For u ∈ E(U), let wi(u) be a word in the generators of Si that equals u in Si, for i ∈ {1,2}. We

have a presentation 〈S1 ∗U S2〉= 〈S1∪S2 |W 〉 for the amalgamated free product S1 ∗U S2, where

W = {(w1(u),w2(u)) : u ∈U}. We assume that w1(u) and w2(u) are calculable, for u ∈U . We let

A (S1 ∗U S2,z) denote the Schützenberger automaton of z, relative to 〈S1 ∗U S2〉.

The following generalises the definitions of [1, Sections 2 and 3].

Definition 4.3. Let Γ be an inverse word graph over the generators of S1 and S2. If v is a vertex of Γ

that belongs to a lobe colored by i then we denote this lobe by ∆i(v), for i ∈ {1,2}. A lobe path is a

finite sequence of lobes ∆1,∆2, . . . ,∆n, where ∆k is adjacent to ∆k+1, for 1≤ k ≤ n−1. The path is

reduced if it is not of the form ∆1,∆2,∆1 and all the lobes in the sequence are distinct, except possibly

the first and last. There is a unique reduced lobe path between any two lobes if and only if there are no

non-trivial reduced lobe loops. The lobe graph of Γ is the graph with vertices consisting of the lobes of

Γ and edges consisting of all (∆1,∆2), from a lobe ∆1 colored by 1 to a lobe ∆2 colored by 2,
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whenever ∆1 and ∆2 are adjacent in Γ. The lobe graph of an inverse automaton, over the generators of

S1 and S2, is the lobe graph of the underlying graph. The lobe graph of Γ is a tree if and only if there

are no non-trivial reduced lobe loops. The graph Γ is cactoid if and only if the lobe graph of Γ is a finite

tree and adjacent lobes share precisely one intersection. A lobe is extremal if it is adjacent to precisely

one other lobe.

The graph Γ has the idempotent property relative to 〈Si〉, for i ∈ {1,2}, if for every loop v→s v

in Γ, where s ∈ Si, there is a loop v→e v, for some e ∈ E(Si) with s≥ e in Si. An inverse automaton

over the generators of S1 and S2 has the idempotent property relative to 〈Si〉 if its underlying graph

does. The Schützenberger graphs of 〈Si〉 have the idempotent property relative to 〈Si〉. A product of

automata with the idempotent property relative to 〈Si〉 also has the idempotent property relative to 〈Si〉.

We say that Γ has the idempotent property if it has the idempotent property relative to 〈S1〉 and 〈S2〉.

An inverse automaton over the generators of S1 and S2 has the idempotent property if its underlying

graph does. The Schützenberger graphs of 〈S1 ∗S2〉 have the idempotent property, by Result 2.13.

Suppose Γ is a cactoid graph with the idempotent property. Let Γ′ be obtained from Γ by closing a

lobe ∆ of Γ colored by i, relative to 〈Si〉. Let v ∈V (∆) and let v′ denote the image of v in Γ′. Then

w ∈ L[(v′,∆i(v′),v′)] implies w≥ y in Si, for some y ∈ L[(v,∆,v)], by Result 2.12. In which case,

w≥ y≥ e in Si, for some e ∈ E(Si) with e ∈ L[(v,∆,v)], by the idempotent property. Thus ∆i(v′) has

the idempotent property relative to 〈Si〉. If v is an intersection of ∆ then (v′,∆ j(v′),v′) is isomorphic to

a product Πx(x,∆ j(x),x), where the product is taken over all intersections x of ∆ that are identified

with v′ in Γ′, where ∆ j(x) denotes the lobe of Γ colored by j that contains x. Thus ∆ j(v′) has the

idempotent property relative to 〈S j〉. It follows that Γ′ also has the idempotent property. More generally,

if Γ is a cactoid graph with the idempotent property then the closed form of Γ, relative to 〈S1 ∗S2〉, also

has the idempotent property.

The graph Γ has the equality property if, for every intersection v, there is loop v→u v in ∆1(v) if

and only if there is loop v→u v in ∆2(v), for all u ∈U . An inverse automaton over the generators of

S1 and S2 has the equality property if its underlying graph does.

For any intersection v of Γ, the set of related pairs of v consists of (v,v) and all pairs (v1,v2) of

vertices for which we have a path v→u v1 in ∆1(v) and a path v→u v2 in ∆2(v), for some u ∈U . If

(v1,v2) is a related pair then v1 and v2 are called its coordinates. The graph Γ has the separation
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property if the related pairs of any two intersections, not belonging to the same pair of lobes, share no

common coordinates. An inverse automaton over the generators of S1 and S2 has the separation

property if its underlying graph does.

Lemma 4.4. Let Γ be an inverse word graph over the generators of S1 and S2 that is closed, relative

to 〈S1 ∗S2〉, and has the equality property. Then, for any intersection v of Γ, the set of related pairs of v

defines a partial one-one map between V (∆1(v)) and V (∆2(v)).

Proof. Suppose (v1,v2) and (v′1,v2) are related pairs of v. Then we have paths v→u v1, v→u′ v′1 in

∆1(v) and paths v→u v2, v→u′ v2 in ∆2(v), for some u,u′ ∈U1. Since Γ has the equality property,

we then have a loop v→u′u−1
v in ∆1(v). Since Γ is closed, relative to 〈S1 ∗S2〉, we must have

v1 = v′1. Similarly, if (v1,v2) and (v1,v′2) are related pairs of v then v2 = v′2. We have a partial

one-one map V (∆1(v))→V (∆2(v)), defined by v1→ v2, for each related pair (v1,v2) of v. �

The following generalises [1, Construction 2.1].

Construction 4.5. Let A be a cactoid inverse automaton over the generators of S1 and S2 that is

closed, relative to 〈S1 ∗S2〉. Suppose v is an intersection of A and we have a loop v→ f v in ∆i(v), for

some f ∈ E(U), and no loop v→ f v in ∆ j(v), for some i ∈ {1,2} and j = 3− i. Let A ′ be the

closed form relative to 〈S1 ∗S2〉 of the automaton obtained from A by sewing on the linear automaton

of w j( f ) at the intersection v. In Figure 2, the circles and dots represent lobes and vertices of A ,

arrows represent paths and the dashed arrow represents the linear automaton of w j( f ).

FIGURE 2. Construction 4.5 illustrated.
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Lemma 4.6. Let A be a cactoid inverse automaton over the generators of S1 and S2 that is closed,

relative to 〈S1 ∗S2〉.

(i) We have a directed system of all automata obtained from A by finite applications of

Construction 4.5.

(ii) The direct limit B is cactoid and closed, relative to 〈S1 ∗S2〉.

(iii) We have a graph homomorphism from the lobe tree of A onto the lobe tree of B.

(iv) If A  A (S1 ∗U S2,w) then B A (S1 ∗U S2,w).

(v) If A has the idempotent property then B has the idempotent property.

(vi) If B has the idempotent property then B has the equality property.

Proof. Only (vi) assumes that U is lower bounded in S1 and S2:

(i) We have a directed system from Corollary 3.4.

(ii) Put A = (α1,Γ1,β1) and B = (α2,Γ2,β2). Since A is cactoid, it follows that any

automaton in the directed system is also cactoid. Thus B must be cactoid. Let v1→r v2 be a

path in B, where (r,s) is some relation of S1 or S2. Let α2→w1 v1 and v2→w2 β2 be paths

in B. Then, from Lemma 3.2, there is some automaton A ′ in the directed system with

w1rw2 ∈ L[A ′]. Since A ′ is closed, relative to 〈S1 ∗S2〉, we have w1sw2 ∈ L[A ′]. Thus

w1sw2 ∈ L[B]. Hence B is closed, relative to 〈S1 ∗S2〉.

(iii) For A ′ in the directed system for B, the homomorphism from A into A ′ induces a

homomorphism from the lobe tree of A onto the lobe tree of A ′. It follows that the

homomorphism from A into B induces a homomorphism from the lobe tree of A onto the

lobe tree of B.

(iv) Suppose A  A (S1 ∗U S2,w). Let w′ ∈ L[B]. From Lemma 3.2, there is some A ′ in the

directed system for B with w′ ∈ L[A ′]. It follows, from Results 2.3, 2.6 and 2.12, that

A ′ A (S1 ∗U S2,w). Thus w′ ∈ L[A (S1 ∗U S2,w)]. Hence B A (S1 ∗U S2,w).

(v) Suppose A has the idempotent property. If z defines an idempotent of E(Si), where i ∈ {1,2},

then, for y ∈ L[(αz,Γz,βz)/η ], we have y≥ z in Si, where (αz,Γz,βz) is the linear automaton

of z and η is the V -equivalence generated by (αz,βz). Thus any automaton obtained from A

by sewing on the linear automaton of z, at some vertex, has the idempotent property. From

Definition 4.3, the idempotent property is preserved under taking the closed form, relative
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to 〈S1 ∗S2〉, of a cactoid graph. It follows that any automaton in the directed system for B has

the idempotent property. If we have a path α2→w1 v and a loop v→s v in B, where s ∈ Si

and i ∈ {1,2}, then, letting α1→w β1 be a path in A , there is some automaton A ′ in the

directed system with w1sw−1
1 w ∈ L[A ′], by Lemma 3.2. Since the automaton A ′ has the

idempotent property, we have w1ew−1
1 w ∈ L[A ′], for some e ∈ E(Si) with s≥ e in Si. We

then have a loop v→e v in B. Hence B has the idempotent property.

(vi) Suppose B has the idempotent property. Let v be an intersection of B and suppose we

have a loop v→wi(u) v in ∆i(v), for some u ∈U and some i ∈ {1,2}. Put j = 3− i. From

the idempotent property, we have a loop v→e v in ∆i(v), for some e ∈ E(Si) with u≥ e.

Since U is lower bounded in Si, there exists f ∈ E(U) with u≥ f ≥ e in Si. Since B is

closed, relative to 〈S1 ∗S2〉, we have a loop v→wi( f ) v in ∆i(v). Let v1 denote an intersection

of A that is a preimage of v and let α1→w β1 and α1→z v1 be paths in A . We have

z ·wi( f ) · z−1w ∈ L[B]. There is some automaton A ′ = (α ′1,Γ
′
1,β
′
1) in the directed system

for B such that z ·wi( f ) · z−1w ∈ L[A ′], by Lemma 3.2. Thus A ′ contains a path α ′1→z v′

and a loop v′→wi( f ) v′, where v′ is an intersection. We can obtain A ′′ from A ′ by an

application of Construction 4.5 such that we have a loop v′′→w j( f ) v′′ in ∆ j(v′′), letting v′′

denote the image of v′ in A ′′. Thus we have a loop v→w j( f ) v in ∆ j(v). Since u≥ f in U ,

we have a loop v→w j(u) v in ∆ j(v). Hence B has the equality property.

�

Lemma 4.7. Let (α2,Γ2,β2) be the direct limit of the directed system of all automata obtained from

(α1,Γ1,β1), by finite applications of Construction 4.5. Let γ1,δ1 ∈V (Γ1) and let γ2, δ2 denote their

respective images in Γ2. Then (γ2,Γ2,δ2) is the direct limit C of the directed system of all automata

obtained from (γ1,Γ1,δ1), by finite applications of Construction 4.5.

Proof. Let γ1→w1 α1 and β1→w2 δ1 be paths in Γ1. Let y ∈ L[(γ2,Γ2,δ2)]. Then we have

w−1
1 yw−1

2 ∈ L[(α2,Γ2,β2)] and so there is some automaton (α ′1,Γ
′
1,β
′
1) in the directed system for

(α2,Γ2,β2) with w−1
1 yw−1

2 ∈ L[(α ′1,Γ
′
1,β
′
1)], from Result 3.2. Now (α ′1,Γ

′
1,β
′
1) is obtained from

(α1,Γ1,β1) by finite applications of Construction 4.5. Let γ ′1 and δ ′1 be the respective images

of γ1 and δ1 in Γ′1. It is immediate that (γ ′1,Γ
′
1,δ
′
1) is obtained from (γ1,Γ1,δ1) by the same

applications of Construction 4.5. Thus (γ ′1,Γ
′
1,δ
′
1) is in the directed system for C . Since Γ′1 is
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deterministic, we have y ∈ L[(γ ′1,Γ
′
1,δ
′
1)]. Thus y ∈ L[C ] and so L[(γ2,Γ2,δ2)]⊆ L[C ]. Similarly,

L[C ]⊆ L[(γ2,Γ2,δ2)]. Hence (γ2,Γ2,δ2)∼= C , by Result 2.2. �

Lemma 4.8. Let B denote the direct limit of the directed system of all automata obtained from A ,

by finite applications of Construction 4.5. Then there exists A ′ in the directed system for B such that

the homomorphism from A ′ into B induces an isomorphism of the lobe trees.

Proof. Put A = (α1,Γ1,β1) and let w ∈ L[A ]. Suppose the homomorphism from A into B maps

distinct lobes ∆1 and ∆2 of A into a lobe of B. Let the images of v1 ∈V (∆1) and v2 ∈V (∆2)

be identified in B. Let α1→w1 v1, α1→w2 v2 be paths in Γ1. Then we have w1w−1
2 w ∈ L[B].

There exists A ′ in the directed system for B with w1w−1
2 w ∈ L[A ′], from Result 3.2. Put

A ′ = (α ′1,Γ
′
1,β
′
1). There are paths α ′1→w1 v′1 and α ′1→w2 v′1 in Γ′1. Thus the images of v1 and v2

in A ′ are identified. Hence the homomorphism from A into A ′ maps ∆1 and ∆2 into a lobe of A ′.

Since A has finitely many lobes, it follows that there exists A ′ in the directed system for B such that

any lobes of A that are identified in B are also identified in A ′. Thus the lobe trees of A ′ and B

must be isomorphic. �

Construction 4.9. Let B = (α2,Γ2,β2) be a cactoid inverse automaton over the generators of

S1 and S2 that is closed, relative to 〈S1 ∗S2〉. Suppose v2 is an intersection, ∆i(v2) is extremal,

where i ∈ {1,2}, α2,β2 /∈V (∆i(v2))\{v2}, and for any loop v2→y v2 in ∆i(v2) there exists a loop

v2→ f v2 in ∆ j(v2), where j = 3− i and f ∈ E(U) with y≥ f in Si. Then put B′ ∼= (α2,Σ2,β2),

where Σ2 is the subgraph of Γ2 consisting of all the lobes except ∆i(v2).

Lemma 4.10. Suppose B′ is obtained from B by Construction 4.9. If we have B A (S1 ∗U S2,w)

then B′ A (S1 ∗U S2,w).

Proof. We adopt the notation of Construction 4.9. We have L[B′]⊆ L[B]⊆ L[A (S1 ∗U S2,w)]. Let

w′ ∈ L[B] such that w′ = w in S1 ∗U S2. If w′ ∈ L[B′] then it is immediate that B′ A (S1 ∗U S2,w).

Otherwise we have w′ = z0y1z1 · · ·ynzn, for some n≥ 1, some paths α2→z0 v2, v2→zk v2, v2→zn β2

in Σ2, where k ≤ n−1, and some loops v2→yk v2 in ∆i(v2), where k ≤ n, allowing z0 and zn to

be 1. Then, by assumption, there is a loop v2→ fk v2 in ∆ j(v2), where fk ∈ E(U), j = 3− i and

yk ≥ fk in Si, for 1≤ k ≤ n. Put z = z0 ·w j( f1) · z1 · · · ·w j( fn) · zn. Then w′ ≥ z in S1 ∗U S2, where

z ∈ L[B′]. Hence z = w in S1 ∗U S2 and so we have B′ A (S1 ∗U S2,w). �
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Corollary 4.11. For any word w, there exists a word w′ such that we have w = w′ in S1 ∗U S2, the

automaton A (S1 ∗S2,w′) has at most as many lobes as A (S1 ∗S2,w) and the direct limit of the

directed system of all automata obtained from A (S1 ∗S2,w′), by finite applications of Construction 4.5,

has the property that Construction 4.9 cannot be applied.

Proof. Let B denote the direct limit of the directed system of all automata obtained from

A = A (S1 ∗S2,w), by finite applications of Construction 4.5. By Lemma 4.6, the automaton B has

at most as many lobes as A .

Suppose B′ is obtained from B by an application of Construction 4.9. Adopt the notation of

Construction 4.9. By Lemma 4.6, we have B A (S1 ∗U S2,w). Hence, from Lemma 4.10, we

have B′ A (S1 ∗U S2,w). Thus there exists a word z ∈ L[B′] such that z = w in S1 ∗U S2. By

Lemma 4.8, there exists A ′ = (α ′1,Γ
′
1,β
′
1) in the directed system for B such that the homomorphism

from A ′ into B induces an isomorphism of the lobe trees. From Lemma 3.2, there exists A ′′

in the directed system for B such that z ∈ L[A ′′]. Since we have a directed system, we can

assume A ′ = A ′′.

Let v′1 denote the unique intersection of A ′ that is a preimage of v2. Then put C = (α ′1,Σ
′
1,β
′
1),

where Σ′1 is the subgraph of Γ′1 consisting of all lobes, except for ∆i(v′1). The automata

C = (α ′1,Σ
′
1,β
′
1), A ′ = (α ′1,Γ

′
1,β
′
1), B′ = (α2,Σ2,β2) and B = (α2,Γ2,β2) are illustrated in

Figure 3. For some word w′, we have C ∼= A (S1 ∗S2,w′). Now L[C ]⊆ L[B′]. Also, z ∈ L[B′]

FIGURE 3. The automata C , A ′, B′ and B.

implies z ∈ L[C ], by the properties of A ′. Thus C  A (S1 ∗U S2,w). Hence we have w′ = w in
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S1 ∗U S2 and C has fewer lobes than B. Let D denote the direct limit of the directed system of all

automata obtained from C , by finite applications of Construction 4.5. By Lemma 4.6, the automaton D

has at most as many lobes as C . Thus D has fewer lobes than B. Since B has finite lobes, we can

continue in this manner until no application of Construction 4.9 can be applied. �

The following generalises [1, Construction 3.3].

Construction 4.12. Let B = (α2,Γ2,β2) be a cactoid inverse automaton over the generators of S1

and S2 that is closed, relative to 〈S1 ∗S2〉. Suppose there are paths v1→wi(u) v0 and v1→w j(u) v2

in Γ2, where v0 and v1 are two intersections, for some u ∈U , i ∈ {1,2} and j = 3− i. Figure 4

illustrates the situation. Since the lobe graph of Γ2 is a tree, the unique reduced lobe path from a lobe of

FIGURE 4. Construction 4.12 illustrated.

Γ2 to ∆i(v1) either contains ∆ j(v1) or does not. Let Σi denote the subgraph of Γ2 containing ∆i(v1)

and any lobe where the unique reduced lobe path to ∆i(v1) does not contain ∆ j(v1). Similarly, let Σ j

denote the subgraph of Γ2 containing ∆ j(v1) and any lobe where the unique reduced lobe path to

∆ j(v1) does not contain ∆i(v1). Thus Σi∪Σ j = Γ2 and Σi∩Σ j consists of v1.

Let Σ∗i and Σ∗j denote disjoint copies of Σi and Σ j, respectively. If α2 6= v1 then let α∗ denote the

unique image of α2 in Σ∗i ∪Σ∗j . It α2 = v1 then let α∗ denote the image of v1 in Σ∗i . Define β ∗

similarly. Then let η denote the V -equivalence on Σ∗i ∪Σ∗j generated by {(v0,v2)}, letting v0 and v2

denote their unique images in Σ∗i and Σ∗j , respectively. Put C = (α∗η ,(Σ∗i ∪Σ∗j)/η ,β ∗η). Let B′

denote the closed form of C relative to 〈S1 ∗S2〉.

Lemma 4.13. Suppose B′ is obtained from B by Construction 4.12.
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(i) The automaton B′ is cactoid and has fewer lobes than B.

(ii) If B A (S1 ∗U S2,w) then B′ A (S1 ∗U S2,w).

(iii) If B has the idempotent property then so does B′.

Proof. We adopt the notation of Construction 4.12.

(i) Since v2 is identified with v0, the automaton C is cactoid and has fewer lobes than B. Thus

B′ is cactoid and has fewer lobes than B.

(ii) Suppose B A (S1 ∗U S2,w). Let α2→z v1 denote a path in either Σi or Σ j. Since

L[B]⊆ L[A (S1 ∗U S2,w)], the languages L[(v0,Σi,v0)] and L[(v2,Σi,v2)] are contained

in L[A (S1 ∗U S2,u−1z−1ww−1zu)] and we have ww−1zuRww−1 in S1 ∗U S2. Then the

language L[(v0η ,(Σ∗1∪Σ∗j)/η ,v0η)] is contained in L[A (S1 ∗U S2,u−1z−1ww−1zu)]. Since

we have a path α∗η →zu v0η in (Σ∗1∪Σ∗j)/η , the language L[(α∗η ,(Σ∗1∪Σ∗j)/η ,α∗η)] is

contained in L[A (S1 ∗U S2,ww−1)]. We show there exists y ∈ L[C ] with y = w in S1 ∗U S2.

It will follow that C  A (S1 ∗U S2,w) and so B′ A (S1 ∗U S2,w), by Result 2.12.

Let z ∈ L[B] such that z = w in S1 ∗U S2. If α2→z β2 is contained in Σi then put y = z. If

α2→z β2 is contained in Σ j then put y = z0zz1, where z0 = wi(u) · (w j(u))−1 if α2 = v1,

else z0 = 1, and z1 = w j(u) · (wi(u))−1 if β2 = v1, else z1 = 1. Then we have y ∈ C and

y = w in S1 ∗U S2.

Now suppose α2→z β2 is not contained in Σi and not contained in Σ j. Then α2→z β2 is

the concatenation of subpaths α2→w0 v1, v1→w1 v1, . . ., v1→wn β2, for some n≥ 2, where

each subpath is either contained in Σi or contained in Σ j. If the subpath labeled by wk

is contained in Σi then put yk = wk. If the subpath labeled by wk is contained in Σ j then

put yk = z0wkz1, where z0 = wi(u) · (w j(u))−1 if the subpath starts at v1, else z0 = 1, and

z1 = w j(u) · (wi(u))−1 if the subpath ends at v1, else z1 = 1. Put y = y1y2 · · ·yn. Then we

have y ∈ C and y = w in S1 ∗U S2.

(iii) Suppose B has the idempotent property. Then the automata (v0,Σi,v0) and (v2,Σi,v2) have

the idempotent property. It follows that C has the idempotent property. Then B′ has the

idempotent property, since C is cactoid and so the idempotent property is preserved under the

operation of taking the closed form, relative to 〈S1 ∗S2〉, from the workings in Definition 4.3.

�
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Corollary 4.14. For any word w, there is a word w′ with w = w′ in S1 ∗U S2, A (S1 ∗S2,w′) has at

most as many lobes as A (S1 ∗S2,w) and the direct limit of the directed system of all automata

obtained from A (S1 ∗S2,w′), by finite applications of Construction 4.5, has the separation property.

Proof. Let A = A (S1 ∗S2,w). Let B = (α2,Γ2,β2) denote the direct limit of the directed system

of all automata obtained from A , by finite applications of Construction 4.5. By Lemma 4.6, the

automaton B is cactoid and has the equality property, with at most as many lobes as A .

Suppose B does not have the separation property. Then there are distinct intersections v0 and v1 of

B and a path v1→wi(u) v0 in ∆i(v1), for some u ∈U and i ∈ {1,2}. Put j = 3− i. Since B has the

equality property, there is a path v1→w j(u) v2 in ∆ j(v1). Let α2→z v1 be a path in B.

By Lemma 4.8, there exists A ′ = (α ′1,Γ
′
1,β
′
1) in the directed system for B such that the

homomorphism from A ′ into B induces an isomorphism of the lobe trees. By Lemma 3.2, there exists

A ′′ in the directed system for B with z ·wi(u) ·w j(uu−1) ·wi(u−1) ·w j(uu−1) · z−1w ∈ L[A ′′].

Since we have a directed system, we can assume that A ′ = A ′′. Thus we have paths α ′1→z v′1,

v′1→wi(u) v′0 and v′1→w j(u) v′2 in A ′, where v′0, v′1 and v′2 are preimages of v0, v1 and v2, respectively,

and v′0 and v′1 are two intersections of A ′.

Let A ′′′ be obtained from A ′ by an application of Construction 4.12. Then A ′′′ has fewer lobes

than A ′ and so A ′′′ has fewer lobes than B. Thus A ′′′ has fewer lobes than A , by Lemma 4.6. From

Construction 2.14 and Result 2.15, we have A ′′′ ∼= A (S1 ∗S2,w′), for some word w′. Also, from

Lemma 4.13, we have A ′′′ A (S1 ∗U S2,w).

Let B′ denote the direct limit of the directed system of all automata obtained from A ′′′, by finitely

many applications of Construction 4.5. Then B′ has at most as many lobes as A ′′′, by Lemma 4.6.

Hence B′ has fewer lobes than B. Continuing in this manner, we reach such an automaton A ′′′ where

the direct limit B′ has the separation property. �

The following generalises the definitions of [1, Sections 4 and 5].

Definition 4.15. Let Γ be an inverse word graph over the generators of S1 and S2 that is closed,

relative to 〈S1 ∗S2〉. We say that an intersection v of Γ has identified related pairs if every related pair

of v is of the form (v′,v′), for some intersection v′ of ∆1(v) and ∆2(v). If, in addition, (v′,v′) is a

related pair of v, for every intersection v′ of ∆1(v) and ∆2(v), then we say that ∆1(v) and ∆2(v) are
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assimilated by v. Figure 5 illustrates a graph where the related pairs are not identified and a graph where

the lobes are assimilated. If ∆1(v) and ∆2(v) are assimilated by v then they are assimilated by every

FIGURE 5. Unidentified related pairs and assimilated lobes.

intersection of ∆1(v) and ∆2(v). The graph Γ has the assimilation property if any two adjacent lobes

are assimilated by a common intersection. The assimilation property implies the separation property, An

inverse automaton over the generators of S1 and S2 that is closed, relative to 〈S1 ∗S2〉, has the

assimilation property if its underlying graph does.

If Γ has the equality property then the related pairs of any intersection v define a partial one-one map

between V (∆1(v)) and V (∆2(v)), by Lemma 4.4. If Γ has the equality and separation properties and v

is the only intersection of ∆1(v) and ∆2(v), then we can assimilate ∆1(v) and ∆2(v) by taking the

quotient of Γ by the V -equivalence η generated by the related pairs of v. Since Γ has the separation

property, each lobe of Γ is mapped isomorphically onto a lobe of Γ/η , under η . It follows that Γ/η is

closed, relative to 〈S1 ∗S2〉, and has the equality and separation properties.

More generally, suppose Γ has the equality and separation properties and adjacent lobes of Γ have

precisely one intersection. Then the assimilated form of Γ is the quotient of Γ by the V -equivalence η

generated by the related pairs of every intersection. Similarly, each lobe of Γ is mapped isomorphically

onto a lobe of Γ/η , under η , and the quotient Γ/η is closed, relative to 〈S1 ∗S2〉, with the equality,

separation and assimilation properties. The assimilated form of an inverse automaton, over the

generators of S1 and S2, is defined by taking the assimilated form of the underlying graph.

The graph Γ is opuntoid if it has the idempotent, equality and assimilation properties and has no

non-trivial reduced lobe loops (equivalently, the lobe graph is a tree). A subopuntoid subgraph of an

opuntoid graph Γ is a connected subgraph that is also opuntoid and formed by a collection of the lobes

of Γ. An inverse automaton over the generators of S1 and S2 that is closed, relative to 〈S1 ∗S2〉, is
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opuntoid if its underlying graph is opuntoid. A subautomaton is subopuntoid if its underlying graph is a

subopuntoid subgraph.

Let Γ be an opuntoid graph. A vertex v ∈V (Γ) is a bud if it is not an intersection and there is a loop

v→ f v in Γ, for some f ∈ E(U). We say that the opuntoid graph Γ is complete if it has no buds. An

opuntoid automaton over the generators of S1 and S2 is complete if its underlying graph is complete.

Lemma 4.16. Let B denote a cactoid inverse automaton over the generators of S1 and S2 that

is closed, relative to 〈S1 ∗S2〉, and has the idempotent, equality and separation properties. Let

C denote the assimilated form of B. Then C is opuntoid and B A (S1 ∗U S2,w) implies

C  A (S1 ∗U S2,w).

Proof. Put B = (α,Γ,β ). Let η denote the V -equivalence generated by the related pairs of

all the intersections of Γ. It follows from the discussion in Definition 4.15 that C = B/η is

opuntoid. Suppose w′ ∈ L[C ]. Then there exist paths x1→w1 y1, x2→w2 y2, . . ., xn→wn yn in B,

where αηx1, ykηxk+1, for 1≤ k ≤ n−1, ynηβ and the word w1w2 · · ·wn is equal to w′. Put

y0 = α and xn+1 = β . For 0≤ k ≤ n, assuming yk 6= xk+1, there is a path yk→ak xk+1 in B

where ak = w1(u−1) ·w2(u) or ak = w2(u−1) ·w1(u), for some u ∈U . Then we have w′ ≥ w′′ in

S1 ∗U S2, where w′′ = a0w1a1w2a2 · · ·wnan ∈ L[B]. Thus, assuming B A (S1 ∗U S2,w), we

have L[C ]⊆ L[A (S1 ∗U S2,w)] and it follows that C  A (S1 ∗U S2,w). �

The following generalises [1, Construction 5.1].

Construction 4.17. Let D be an opuntoid automaton that is closed, relative to 〈S1 ∗S2〉. If v is a bud

of a lobe ∆i(v) of D , where i ∈ {1,2}, then, putting j = 3− i, we form the automaton E from D by

sewing on at v the linear automaton of w j( f ), for every f ∈ E(U) that labels a loop at v in ∆i(v). In

Figure 6, the dashed arrows represent the linear automata that are sewed on at v and the dashed circle

represents the new lobe created. Let E ′ denote the closed form of E , relative to 〈S1 ∗S2〉. Let v′ be the

image of v in E . Then E ′ is obtained from E by closing ∆ j(v′), relative to 〈S j〉. Let v′′ be the image

of v′ in E ′. Let D ′ be the quotient of E ′ by the V -equivalence generated by the related pairs of v′′.

Lemma 4.18. Let D be an opuntoid automaton and let D ′ be obtained from D by an application of

Construction 4.17. Then D ′ is an opuntoid automaton and D is a subopuntoid subautomaton of D ′.

Further, if D  A (S1 ∗U S2,w) then D ′ A (S1 ∗U S2,w).
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FIGURE 6. Construction 4.17 illustrated.

Proof. We adopt the notation of Construction 4.17. Put D = (α,Γ,β ). Let A (w j( f )) denote the

linear automaton of w j( f ), for f ∈ E(U). Let α ′ and β ′ denote the respective images of α and β

in E ′. Let η denote the V -equivalence generated by the related pairs of v′′.

If w′′ ∈ L[(v′′,∆ j(v′′),v′′)] then w′′ ≥ w′ in S j, for some w′ ∈ L[(v′,∆ j(v′),v′)], by Result 2.12.

Now w′ ∈ L[Πn
l=1A (w j( fl))], for some fl ∈ E(U), where fl labels a loop at v in ∆i(v). Thus

w′′ ≥ f1 f2 · · · fn in S j, where f1 f2 · · · fn labels a loop at v in ∆i(v) and so f1 f2 · · · fn labels a loop at

v′′ in ∆ j(v′′). It follows that ∆ j(v′′) has the idempotent property. If we also have w′′ ∈U then

w′′ ≥ f1 f2 · · · fn implies that w′′ labels a loop at v in ∆i(v). Since D has the idempotent and equality

properties, it now follows that D ′ has the idempotent and equality properties.

Since D has the assimilation property, if we have a path v→u v1 in ∆i(v), for some u ∈U , then v1

cannot be an intersection. Thus E ′ must have the separation property. Then D ′ is obtained from E ′ by

assimilating the lobes containing v′′. Since D is opuntoid, it now follows that D ′ is opuntoid and D is a

subopuntoid subautomaton of D ′.

Suppose w′ ∈ L[D ′]. Then there exist paths x1→w1 y1, x2→w2 y2, . . ., xn→wn yn in E ′, where

α ′ηx1, ykηxk+1, for 1≤ k ≤ n−1, ynηβ and the word w1w2 · · ·wn is equal to w′. Put y0 = α and

xn+1 = β . Then, for 0≤ k ≤ n, we have either yk = xk+1, in which case put bk = 1, or there is

a path yk→bk xk+1 in E ′ where bk = w1(u−1) ·w2(u) or bk = w2(u−1) ·w1(u), for some u ∈U .

Thus w′ ≥ z in S1 ∗U S2, where z = b0w1b1w2b2 · · ·wnbn ∈ L[E ′].

By Result 2.12, if z ∈ L[E ′] then z≥ z′ in S1 ∗S2, for some z′ ∈ L[E ]. If z′ /∈ L[D ] then we

have z′ = y1a1w1a2 · · ·wm−1amy2, for some y1 ∈ L[(α,Γ,v)], ak ∈ L[(v′,∆ j(v′),v′)], for all k,

wk ∈ L[(v,Γ,v)], for all k, and y2 ∈ L[(v,Γ,β )]. Now ak ∈ L[Πn
l=1A (w j( fl))], for some fl ∈ E(U),

where the fl label loops at v in ∆i(v) and are different for each k. Hence we have ak ≥ gk = f1 f2 · · · fn
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in S j, where gk labels a loop at v in ∆i(v), for each k. It follows that z′ ≥ z′′ in S1 ∗U S2, where

z′′ = y1g1w1g2 · · ·wm−1gmy2 ∈ L[D ]. Hence we have z≥ z′′ in S1 ∗U S2, for some z′′ ∈ L[D ].

We have shown that if w′ ∈ L[D ′] then we have w′ ≥ z′′ in S1 ∗U S2, for some z′′ ∈ L[D ]. Hence if

D  A (S1 ∗U S2,w) then L[D ′]⊆ L[A (S1 ∗U S2,w)] and so D ′ A (S1 ∗U S2,w). �

Lemma 4.19. Let D be an opuntoid automaton. Then we have a directed system of all automata

obtained from the automaton D by finite applications of Construction 4.17. The direct limit E is a

complete opuntoid automaton that is closed, relative to 〈S1 ∗U S2〉. Thus if D  A (S1 ∗U S2,w) then

we have E ∼= A (S1 ∗U S2,w).

Proof. Put D = (α1,Γ1,β1). Let v1 and v2 denote buds of Γ1. Suppose Dk is obtained from D

applying Construction 4.17 at vk, for k = 1,2. We show that there is an automaton D3 that is obtained

from both D1 and D2 by an application of Construction 4.17. By Lemma 4.18, the automaton D is a

subopuntoid subautomaton of Dk. Thus L[D ]⊆ L[Dk], for k = 1,2. Since D is embedded into Dk,

we let v1 and v2 denote their images in Dk.

Suppose we do not have a path v1→wi(u) v2 in D , for any u ∈U and i ∈ {1,2}. Then v2 is a

bud of D1 and v1 is a bud of D2. It follows that the automaton D3 obtained from D1 by applying

Construction 4.17 at the bud v2 is isomorphic to the automaton obtained from D2 by applying

Construction 4.17 at the bud v1.

Suppose we have a path v1→wi(u) v2 in D , for some u ∈U and i ∈ {1,2}. Then v1 and v2

belong to a lobe of D colored by i. Let ∆ denote the lobe of D1 containing v1 and v2 and colored

by j = 3− i. We have z ∈ L[(v1,∆,v1)] if and only if z≥ f1 f2 · · · fn in S j, for some fk ∈ E(U) that

label loops at v1 in D , using workings similar to those in the proof of Lemma 4.18. We show

that z ∈ L[(v2,∆,v2)] if and only if we have z≥ g1g2 · · ·gn in S j, for some gk ∈ E(U) that label

loops at v2 in D . It will then follow that D1 ∼= D2. Suppose z ∈ L[(v2,∆,v2)]. Then uzu−1 labels a

loop at v1 in ∆ and so uzu−1 ≥ f1 f2 · · · fn, for some fk ∈ E(U) that label loops at v1 in D . Thus

z≥ u−1 f1uu−1 f2u · · ·u−1 fnu, where gk = u−1 fku ∈ E(U) labels a loop at v2 in D . Conversely,

suppose z≥ g1g2 · · ·gn in S j, for some gk ∈ E(U) that label loops at v2 in D . Then ug1g2 · · ·gnu−1

labels a loop at v1 in ∆ and so g1g2 · · ·gn labels a loop at v2 in ∆. Thus we have z ∈ L[(v2,∆,v2)].
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It now follows that conditions (A) and (B) of Result 3.2 are satisfied. We have a directed system of

all automata obtained from D by finite applications of Construction 4.17. Let E = (α2,Γ2,β2) be the

direct limit.

Let v1→r v2 be a path in E , where (r,s) is a relation of S1 or S2. Let α2→z1 v1 and v2→z2 β2 be

paths in E . There exists D ′ in the directed system for E such that z1rz2 ∈ L[D ′], by Result 3.2. Since

D ′ is closed, relative to 〈S1 ∗S2〉, we have z1sz2 ∈ L[D ′]. Thus z1sz2 ∈ L[E ]. Hence E is closed,

relative to 〈S1 ∗S2〉.

Suppose we have a loop v→s v in E , where s ∈ Si and i ∈ {1,2}. Let α1→w β1 be a path in D

and let α2→z v be a path in E . Then we have zsz−1w ∈ L[D ′], for some D ′ in the directed system

for E , by Result 3.2. Put D ′ = (α ′1,Γ
′
1,β
′
1). Thus we have a path α ′1→z v′ and a loop v′→s v′ in D ′.

Since D ′ has the idempotent property, by Lemma 4.18, we have a loop v′→e v′ in D ′, for some

e ∈ E(Si) with s≥ e. Thus we have a loop v→e v in E . Hence E has the idempotent property.

Suppose v is an intersection of E such that we have a loop v→wi(u) v, for some u ∈U

and i ∈ {1,2}. Put j = 3− i. Let α1→w β1 be a path in D and let α2→z v be a path in E .

Then we have z ·wi(u) · z−1w ∈ L[D ′], for some D ′ in the directed system for E , by Result 3.2.

Put D ′ = (α ′1,Γ
′
1,β
′
1). Since w ∈ L[D ′], we must have a path α ′1→z v′ and a loop v′→wi(u) v′ in D ′.

If v′ is an intersection then we have a loop v′→w j(u) v′, since D ′ has the equality property, by

Lemma 4.18. Otherwise, the vertex v′ is a bud and we can obtain an automaton D ′′ from D ′ with the

equality property, by Construction 4.17, such that we have a loop v′′→w j(u) v′′, letting v′′ denote the

image of v′ in D ′′. Thus we have a loop v→w j(u) v in E . Hence E has the equality property.

Suppose v is an intersection of E and let (v1,v2) denote a related pair of v, other than (v,v).

Let α1→w β1 be a path in D and let α2→z v be a path in E . We have paths v→w1(u) v1 and

v→w2(u) v2 in E , for some u ∈U . Hence we have z ·w1(uu−1) ·w2(uu−1) · z−1w ∈ L[D ′], for some

automaton D ′ in the directed system for E , by Result 3.2. Put D ′ = (α ′1,Γ
′
1,β
′
1). Then we have

paths α ′1→z v′, v′→w1(u) v′1 and v′→w2(u) v′2 in D ′1. Since D ′ is opuntoid, with identified related

pairs, by Lemma 4.18, we must have v′1 = v′2. Thus v1 = v2 and so E has identified related pairs.

Suppose v3 is also an intersection of ∆1(v) and ∆2(v). Let v→s1 v3 be a path in ∆1(v) and let

v→s2 v3 be a path in ∆2(v), for some s1 ∈ S1 and s2 ∈ S2. We have zs1s−1
2 z−1w ∈ L[D ′′], for some

automaton D ′′ in the directed system for E , by Result 3.2. Put D ′′ = (α ′′1 ,Γ
′′
1,β

′′
1 ). Then we have
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paths α ′′1 →z v′′, v′′→s1 v′′3 and v′′→s2 v′′3 in D ′′1 . Thus (v′′3,v
′′
3) is a related pair of v′′, since D ′′ has

the assimilation property, by Lemma 4.18. Hence (v3,v3) is a related pair of v and so E has the

assimilation property.

Suppose the lobe graph of E has a reduced lobe loop ∆1,∆2, . . . ,∆n = ∆1, for some n≥ 4. Then

the lobes ∆1,∆2, . . . ,∆n−1 are distinct. Let vk denote an intersection common to ∆k and ∆k+1,

for 1≤ k ≤ n−1. Put vn = v1. Let vk→wk vk+1 be a path in ∆k+1, for 1≤ k ≤ n−1. Let α1→w β1

be a path in D and let α2→y v1 be a path in E . We have yw1w2 · · ·wn−1y−1w ∈ L[D ′], for some

automaton D ′ in the directed system for E , by Result 3.2. Then the lobes of D ′ containing the loop

labeled by w1w2 · · ·wn−1 is a non-trivial reduced lobe loop and we have a contradiction, since D ′ is

opuntoid. Hence the lobe graph of E contains no non-trivial reduced lobe loops. We have now proved

that E is opuntoid.

Suppose v is a bud of E of a lobe ∆i(v), for some i ∈ {1,2}. Let v→wi( f ) v be a loop in ∆i(v), for

some f ∈ E(U). Let α1→w β1 be a path in Γ1 and let α2→z v be a path in E . There is some D ′ in

the directed system such that z ·wi( f ) · z−1w ∈ L[D ′], by Result 3.2. Put D ′ = (α ′1,Γ
′
1,β
′
1). Then we

have a path α ′1→z v′ and a loop v′→wi( f ) v′ in D ′, where v′ is a bud of D ′. We can obtain an

automaton D ′′ from D ′, by an application of Construction 4.17, such that v′′ is an intersection of D ′′,

letting v′′ denote the image of v′ in D ′′. We have a contradiction, since this implies v is an intersection.

Thus E is a complete opuntoid automaton.

Let v1→w1(u) v2 be a path in E , for some u ∈U . Then we have a loop v1→w1(uu−1) v1 in E , since

E is closed, relative to 〈S1〉. Since E is complete, the vertex v1 must be an intersection. Since E has

the equality property, we have a loop v1→w2(uu−1) v1 in E . We have a path v1→w2(u) v′2 in E , since

E is closed, relative to 〈S2〉. Then the assimilation property implies that v2 = v′2. Hence we have a path

v1→w2(u) v2 in E . Similarly, if we have path v1→w2(u) v2 in E , for some u ∈U , then we have a

path v1→w2(u) v2. We have shown that E is closed, relative to 〈S1 ∗U S2〉.

Finally, suppose that D  A (S1 ∗U S2,w). Let w′ ∈ L[E ]. Then there is some automaton D ′ in

the directed system with w′ ∈ L[D ′], by Result 3.2. By Lemma 4.18, we have D ′ A (S1 ∗U S2,w).

Thus w′ ∈ L[A (S1 ∗U S2,w)]. Then L[E ]⊆ L[A (S1 ∗U S2,w)] and so E  A (S1 ∗U S2,w). Hence

we have E ∼= A (S1 ∗U S2,w), by Result 2.9. �
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Algorithm 4.20. Given w in the generators of S1 and S2, the Schützenberger automaton of w,

relative to 〈S1 ∗U S2〉, is constructed as follows:

(i) Construct A = A (S1 ∗S2,w), by Construction 2.14. Then A is cactoid, has the idempotent

property and we have A  A (S1 ∗U S2,w).

(ii) The direct limit B of the directed system of all automata obtained from A , by finite

applications of Construction 4.5, is cactoid, has the idempotent and equality properties, has at

most as many lobes as A and we have B A (S1 ∗U S2,w), by Lemma 4.6.

(iii) An application of Construction 4.12 to B results in an automaton B′ that is cactoid, has the

idempotent and equality properties, has fewer lobes than B and we have B′ A (S1 ∗U S2,w),

by Lemma 4.13.

(iv) Steps (ii) and (iii) can be applied at most a finite number of times, since the initial automaton

has finite lobes. The resulting automaton C is cactoid, has the idempotent, equality and

separation properties and C  A (S1 ∗U S2,w).

(v) The assimilated form D of C is a finite-lobe opuntoid automaton and D  A (S1 ∗U S2,w),

by Lemma 4.16.

(vi) The direct limit E of the directed system of all automata obtained from D , by finite applications

of Construction 4.17, is a complete opuntoid automaton and we have E ∼= A (S1 ∗U S2,w), by

Lemma 4.19.

The following generalises [1, Section 6].

Definition 4.21. Let Γ be an opuntoid graph. Let ∆1 and ∆2 be adjacent lobes, colored by i ∈ {1,2}

and j = 3− i, respectively. Then ∆2 feeds off ∆1 if there is a common intersection v such that, for any

loop v→y v in ∆2, there is a loop v→ f v in ∆2, for some f ∈ E(U) with y≥ f in S j.

Suppose ∆2 feeds of ∆1 and let v′ denote any intersection of ∆1 and ∆2. By the assimilation property,

we have a path v→u v′, for some u ∈U . If we have a loop v′→y v′ in ∆2 then we have a loop

v→uyu−1
v in ∆2. Thus we have a loop v→ f v in ∆2, for some f ∈ E(U) with uyu−1 ≥ f in S j.

Hence we have a loop v′→u−1 f u v′ in ∆2, where y≥ u−1 f u in S j. Therefore, if ∆2 feeds of ∆1 then

for any loop v′→y v′ in ∆2 there is a loop v′→g v′ in ∆2, for some g ∈ E(U) with y≥ g in S j, for

any intersection v′ of ∆1 and ∆2.
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For non-adjacent lobes ∆1 and ∆n of Γ, we say that ∆n feeds off ∆1 if there is a sequence of lobes

∆1,∆2, . . . ,∆n, where ∆k+1 is adjacent to ∆k and ∆k+1 feeds off ∆k, for 1≤ k ≤ n−1.

Let Γ′ be a subopuntoid subgraph of Γ. A lobe of Γ that does not belong to Γ′ is called external

to Γ′. An extremal lobe of Γ′ is a called a parasite if it feeds off the unique lobe of Γ′ to which it is

adjacent. The subgraph Γ′ is parasite-free if it has no parasites. The subgraph Γ′ is a host of Γ if it has

finitely many lobes, is parasite-free, and every lobe of Γ that is external to Γ′ feeds off some lobe of Γ′.

A host of an opuntoid automaton is a host of its underlying graph.

Lemma 4.22. Every finite-lobe opuntoid graph has a host.

Proof. The proof follows from the properties of finite trees, since the lobe graph of an opuntoid graph

is a tree, and is similar to that of [1, Lemma 6.1]. �

Lemma 4.23. Let Γ be an opuntoid graph. Then a host of Γ is a maximal parasite-free subopuntoid

subgraph. If Γ has more than one host, then every host is a lobe of Γ. In addition, the unique reduced

lobe path between any two hosts consists entirely of lobes that are hosts.

Proof. The proof follows from the properties of finite trees and is similar to [1, Lemma 6.2]. �

Lemma 4.24. Let D be a finite-lobe opuntoid automaton with a host Σ. If D ′ is obtained from D by

Construction 4.17 then Σ is also a host of D ′.

Proof. We adopt the notation of Construction 4.17. The automaton D is embedded into D ′, from

Lemma 4.18. Let v′′ denote its image in D ′. From the proof of Lemma 4.18, for any loop v′′→y v′′ in

∆ j(v′′) we have y≥ f in S j, for some f ∈ E(U), where f labels a loop at v′′ in ∆ j(v′′). Thus ∆ j(v′′)

feeds off ∆i(v′′). If ∆i(v′′) is a lobe of Σ then, since ∆ j(v′′) feeds off ∆i(v′′), it follows that Σ is a host

of D ′. Otherwise, the lobe ∆i(v′′) feeds off some lobe ∆ of Σ. In which case, the lobe ∆ j(v′′) also

feeds off ∆ and so Σ is a host of D ′. �

Lemma 4.25. Let Γ be a complete opuntoid graph with a host Σ. Let Γ′ be a subopuntoid subgraph of

Γ containing Σ and let v ∈V (Γ′). Then the direct limit E of the directed system of all automata

obtained from (v,Γ′,v), by finitely many applications of Construction 4.17, is isomorphic to (v,Γ,v).
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Proof. If v1 ∈V (Γ′) is a bud of ∆i(v1) in Γ′, for i ∈ {1,2}, then we can apply Construction 4.17

to (v,Γ′,v), resulting in an automaton (v′,Γ′′,v′). Let v′′1 denote the image of v1 in Γ′′ and put j = 3− i.

From Lemma 4.18, the automaton (v,Γ′,v) is a subopuntoid subautomaton of (v′,Γ′′,v′). From the

workings of Lemma 4.18, the language L[(v′′1,∆ j(v′′1),v
′′
1)] consists of all words y such that y≥ f

in S j, for some f ∈ E(U) labeling a loop v1→ f v1 in ∆i(v1).

Since Γ is complete, there is a lobe ∆ of Γ, colored by j, containing v1. Since the lobe graph

of Γ is a tree and Γ′ contains the host Σ, the lobe ∆ feeds off ∆i(v1). Since Γ has the equality

property, we then have L[(v1,∆,v1)] = L[(v′′1,∆ j(v′′1),v
′′
1)]. Since the lobes are deterministic, we have

(v1,∆,v1)∼= (v′′1,∆ j(v′′1),v
′′
1). Thus (v′,Γ′′,v′) is a subopuntoid subautomaton of (v,Γ,v).

Conversely, any lobe of Γ\Γ′ that is adjacent to a lobe of Γ′ must feed off the lobe of Γ′ and so, by

the equality property, must share a vertex that is a bud of Γ′. It now follows that E ∼= (v,Γ,v). �

Theorem 4.26. Let U denote a lower bounded inverse subsemigroup of inverse semigroups S1 and S2.

Then the Schützenberger automata of 〈S1 ∗U S2〉 are complete opuntoid with a host.

Proof. Steps (i), (ii), (iii), (iv), (v) of Algorithm 4.20 result in a finite-lobe opuntoid automaton D . By

Lemma 4.22, the automaton D has a host Σ. Then, by step (vi), the direct limit E of the directed system

of all automata obtained from D , by finite applications of Construction 4.17, is complete opuntoid that

is closed, relative to 〈S1 ∗U S2〉.

The automaton D is embedded as a subopuntoid subautomaton into every automaton in the directed

system, by Lemma 4.18. Let ∆ be a lobe of E that is not a lobe of D . There is some automaton D ′ in

the directed system such that ∆ is a lobe of D ′. By Lemma 4.24, the subgraph Σ is a host of D ′. Thus

∆ feeds off some lobe of Σ and so Σ is a host of E . Hence every Schützenberger automaton of S1 ∗U S2

is complete opuntoid with a host. �

Lemma 4.27. A host of A (S1 ∗U S2,w) having more than one lobe is the assimilated form of the

(underlying graph of the) direct limit of the directed system of all obtained from A (S1 ∗S2,w′), by

finite applications of Construction 4.5, for some word w′. A host of A (S1 ∗U S2,w) with precisely one

lobe is isomorphic to a Schützenberger graph of 〈S1〉 or 〈S2〉.

Proof. From Corollary 4.14, there exists a word w′ such that w = w′ in S1 ∗U S2 and the direct limit

B of the directed system of all automata obtained from A = A (S1 ∗S2,w′), by finitely many
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applications of Construction 4.5, has the separation property, where A has at most as many lobes

as A (S1 ∗S2,w). Put A = (α1,Γ1,β1), B = (α2,Γ2,β2) and then let D = (α4,Γ4,β4) denote the

assimilated form of B.

If γ1,δ1 ∈V (Γ1) then we have (γ1,Γ1,δ1)∼= A (S1 ∗S2,w′′), where w′′Dw′ in S1 ∗U S2. From

Lemma 4.7, the direct limit of the directed system of all automata obtained from (γ1,Γ1,δ1), by

finite applications of Construction 4.5, is isomorphic to (γ2,Γ2,δ2), letting γ2 and δ2 denote the

respective images of γ1 and δ1 in Γ2. Thus, for the purpose of describing the hosts of A (S1 ∗U S2,w),

we can assume that α1 and β1 are any vertices of Γ1. From Lemma 4.8, we can assume that the

homomorphism from A into B induces an isomorphism of the lobe trees. From Corollary 4.11, we can

assume that no application of Construction 4.9 can be applied to B, for any choice of α2 and β2.

If Γ4 has a parasite then there is an intersection v of Γ4 such that ∆i(v) is an extremal lobe, for some

i ∈ {1,2}, and for any loop v→y v in ∆i(v), there exists a loop v→ f v in ∆i(v), where f ∈ E(U) and

y≥ f in Si. Let v′ denote the unique intersection of B that is a preimage of v and put j = 3− i. Since

B has the equality property, for any loop v′→y v′ in ∆i(v′), there exists a loop v′→ f v′ in ∆ j(v′),

where f ∈ E(U) and y≥ f in Si. Thus we can apply Construction 4.9 to B, a contradiction. Hence Γ4

is parasite-free. Then, from the proof of Theorem 4.26, the graph Γ4 is a host of A (S1 ∗U S2,w).

If Γ4 has precisely one lobe then Γ4 ∼= Γ2 ∼= Γ1 ∼= SΓ(Si,s), for some s ∈ Si and i ∈ {1,2}.

Suppose ∆ is a host of A (S1 ∗U S2,w) that is adjacent to Γ4. Let v be an intersection common to Γ4

and ∆. We have (v,Γ4,v)∼= A (Si,e), for some e ∈ E(Si) and i ∈ {1,2}. Since Γ4 feeds off ∆, we

have e ∈ E(U) and (v,∆,v)∼= A (S j,e), where j = 3− i. The unique reduced lobe path between any

two hosts consists of lobes that feed off each other, by Lemma 4.23. Thus if A (S1 ∗U S2,w) has more

than one host then every host is isomorphic to SΓ(S1, f ) or SΓ(S2, f ), for some f ∈ E(U). �

We prove some results on homomorphisms of Schützenberger graphs.

Lemma 4.28. Let Γ and Γ′ be complete opuntoid graphs that have hosts and let Σ be a host of Γ.

Then every homomorphism Σ→ Γ′ extends (uniquely) to a homomorphism Γ→ Γ′.

Proof. Let v ∈V (Σ). The automaton (v,Γ,v) is the direct limit of the directed system of all automata

obtained from (v,Σ,v), by finitely many applications of Construction 4.17, by Lemma 4.25. If
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y ∈ L[(v,Γ,v)] then y ∈ L[(v,Γ′′,v)] for some (v,Γ′′,v) in the directed system for (v,Γ,v). From the

proof of Lemma 4.18, if y ∈ L[(v,Γ′′,v)] then y≥ z in S1 ∗U S2, for some z ∈ L[(v,Σ,v)].

Let ψ : Σ→ Γ′ be a homomorphism and put v′ = (v)ψ . Then L[(v,Σ,v)]⊆ L[(v′,Γ′,v′)]. From

Lemma 4.19, (v′,Γ′,v′) is closed, relative to 〈S1 ∗U S2〉. Thus L[(v,Γ,v)]⊆ L[(v′,Γ′,v′)], by

Result 2.12. We have a homomorphism π : Γ→ Γ′ uniquely extending ψ , by Result 2.2. �

Corollary 4.29. Let Γ and Γ′ be complete opuntoid graphs that have hosts and let Σ be any host of Γ.

Then every isomorphism from Σ onto some host of Γ′ extends (uniquely) to an isomorphism of Γ onto Γ′.

Proof. The proof is immediate from Lemma 4.28 �

Notation 4.30. Let Γ be an opuntoid graph. Then we let AUT (Γ) denote the automorphism group

and END(Γ) denote the endomorphism monoid of Γ.

Lemma 4.31. If Γ is a finite-lobe opuntoid graph then the group AUT (Γ) is embedded into the

automorphism group of some lobe of Γ.

Proof. The proof is similar to [2, Lemma 7]. An automorphism of Γ induces an automorphism of

the lobe tree of Γ. Every automorphism of a finite tree must stabilize some vertex. Thus every

automorphism of Γ must induce an automorphism of some lobe ∆. It follows that AUT (Γ) is

isomorphic to a subgroup of AUT (∆). �

Lemma 4.32. Let Γ be a complete opuntoid graph that has a host. Let Γ′ be the subgraph that

consists of the lobes of every host of Γ. Then Γ′ is a subopuntoid subgraph of Γ and AUT (Γ) is

isomorphic to AUT (Γ′). Thus if Γ has a finite number of hosts then AUT (Γ) is embedded into the

automorphism group of some lobe.

Proof. The proof is similar to [2, Lemma 8]. If Γ has precisely one host then Γ′ is this host. If Γ has

more than one host then, by Lemma 4.23, every host is a lobe of Γ and the unique reduced lobe

path between any two hosts consists entirely of lobes that are hosts. Thus Γ′ is a subopuntoid

subgraph of Γ. Since automorphisms of Γ map hosts onto hosts, every automorphism of Γ must

induce an automorphism of Γ′. Thus we have a homomorphism from AUT (Γ) into AUT (Γ′). Any

automorphism of Γ′ extends uniquely to an automorphism of Γ, by Corollary 4.29. It follows that

AUT (Γ)∼= AUT (Γ′). The last statement is immediate from Lemma 4.31. �
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Lemma 4.33. Let Γ be a finite-lobe opuntoid graph. If END(∆) = AUT (∆) for every lobe ∆ of Γ

then END(Γ) = AUT (Γ).

Proof. The proof is by induction on the number of lobes of Γ and is similar to that of [2, Lemma 9].

The result is immediately true if Γ has two lobes. Assume the result is true for less than N lobes, for

some N > 2, and suppose Γ has N lobes. The induction hypothesis implies that any endomorphism ψ1

of Γ induces an automorphism ψ2 of the lobe tree of Γ. Since ψ2 must have finite order, it follows that

ψ1 must be an automorphism. �

Notation 4.34. By Lemma 4.23, we can associate a number with an opuntoid graph Γ that has a host,

by defining n(Γ) to be the number of lobes in any host. Either Γ has one host, in which case n(Γ)≥ 1,

or every host of Γ is a lobe, in which case n(Γ) = 1. If ∆ is an extremal lobe of an opuntoid graph Γ

then we let Γ\∆ denote the subopuntoid subgraph of Γ consisting of all the lobes of Γ, except for ∆.

Lemma 4.35. Suppose END(Γ) = AUT (Γ) for any finite-lobe opuntoid graph Γ or for any complete

opuntoid graph Γ with a host and n(Γ) = 1. Then END(Γ) = AUT (Γ) for any complete opuntoid

graph Γ with a host.

Proof. Let Γ denote a complete opuntoid graph with a host Σ. The result is proved by induction on

n(Γ) and is similar to that given in [2, Proposition 1]. Assume that END(Γ) = AUT (Γ) if n(Γ)< N,

for some N ≥ 2.

Now suppose Γ is a complete opuntoid graph with a host Σ and n(Γ) = N. Let α ∈ END(Γ). We

show that the map α induces an endomorphism β of Σ. Since Σ is a finite-lobe opuntoid graph, we will

have β ∈ AUT (Σ). Since any two homomorphisms of a deterministic inverse word graph that agree on

a vertex are equal, the map α is then the unique automorphism of Γ that extends β , by Corollary 4.29.

Let Σ1 denote the minimal subopuntoid subgraph of Γ containing (Σ)α . Let Σ2 denote the minimal

subopuntoid subgraph of Γ containing Σ and (Σ)α . We suppose Σ1 * Σ and reach a contradiction.

Suppose there are no lobes common to Σ and Σ1. Then Σ2 is the union of Σ∪Σ1 and a reduced lobe

path from a lobe of Σ to a lobe of Σ1. Since Σ has at least two extremal lobes, there exists an extremal

lobe ∆ of Σ that does not belong to Σ1 and is also extremal in Σ2.

Suppose there exist lobes that are common to Σ and Σ1. Then Σ2 = Σ∪Σ1. If every extremal lobe of

Σ belongs to Σ1 then the reduced lobe path between any two extremal lobes of Σ also belongs to Σ1. In
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which case, we have Σ⊆ Σ1. Since Σ1 has at most as many lobes as Σ, we would then have Σ = Σ1, a

contradiction. Thus there is an extremal lobe ∆ of Σ that does not belong to Σ1 and is extremal in Σ2.

Now Σ\∆ and Σ2\∆ are both finite-lobe subopuntoid subgraphs of Γ. Also the graphs Σ\∆ and Σ1

are subopuntoid subgraphs of Σ2\∆. By Lemma 4.22, every finite-lobe opuntoid graph has a host. Thus

let Σ3 denote a host of Σ\∆. Suppose ∆∗ is a lobe of Σ2\∆ that is not in Σ\∆. Since Σ is a host of Γ,

there is a reduced lobe path ∆1,∆2, . . . ,∆n = ∆∗ in Σ2, where ∆1 is the only lobe of Σ and ∆k+1 feeds

off ∆k, for all k. If ∆1 = ∆ then ∆ would not be extremal in Σ2, a contradiction. Thus ∆1 is a lobe

of Σ\∆. Since every lobe of Σ\∆ is in Σ3 or feeds off a lobe of Σ3, it follows that Σ3 is a host of Σ2\∆.

We have a homomorphism Σ\∆→ Σ2\∆ induced by α . Let x denote any vertex of Σ2\∆. From

Lemma 4.19, we have a directed system of all automata obtained from (x,Σ2\∆,x) by finite applications

of Construction 4.17. The direct limit (x′,Γ′,x′) is a complete opuntoid automaton and it follows, from

Lemma 4.24, that Σ3 is a host of Γ′. The map Σ\∆→ Σ2\∆, induced by α , defines a homomorphism

Σ3→ Γ′ that extends uniquely to an endomorphism β of Γ′, by Lemma 4.28. Since Σ3 has fewer than

N lobes, the endomorphism β must be an automorphism, by the induction hypothesis. Thus α maps

Σ\∆ isomorphically onto a subopuntoid subgraph of Σ1.

Let ∆′ denote the unique lobe of Σ that is adjacent to ∆. Since the map α is one-one on Σ\∆, the

intersections common to ∆ and ∆′ cannot be mapped to intersections of (Σ\∆)α . Thus ∆ cannot be

mapped, under α , into a lobe of (Σ\∆)α . Therefore ∆ is mapped, under α , into an extremal lobe ∆1

of Σ1. Now ∆1 is external to (Σ3)α . Since Σ3 is mapped isomorphically, under β , onto some host

of Γ′, it follows that ∆1 feeds off some lobe of (Σ3)β . Thus ∆1 feeds off some lobe of (Σ3)α . Hence

∆1 must feed off the unique lobe (∆′)α of Σ1 to which it is adjacent.

Let y be a vertex that is common to ∆ and ∆′. Then (y)α is common to ∆1 and (∆′)α . Let ∆ and ∆1

have color i ∈ {1,2}. If we have a loop (y)α →s (y)α in ∆1 then we have a loop (y)α → f (y)α

in ∆1, for some f ∈ E(U) with s≥ f in Si. Since Γ has the equality property, we also have a loop

(y)α → f (y)α in (∆′)α . Since β is an automorphism, we then have a loop y→ f y in ∆′. Again since

Γ has the equality property, we have a loop y→ f y in ∆. Then, since ∆ is closed, relative to 〈Si〉, we

have a loop y→s y in ∆. It now follows that (y,∆,y)∼= ((y)α,∆1,(y)α). We reach a contradiction,

since this implies that the extremal lobe ∆ is a parasite of the host Σ. We conclude that Σ1 ⊆ Σ and the

proof of the lemma is complete. �
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Lemma 4.36. Suppose the host of every Schützenberger graph of 〈S1 ∗U S2〉 has lobes isomorphic to

Schützenberger graphs of 〈S1〉 and 〈S2〉. Suppose END(Γ) = AUT (Γ) for every Schützenberger

graph Γ of 〈S1 ∗U S2〉 with n(Γ) = 1. Then we have END(Γ) = AUT (Γ) for every Schützenberger

graph Γ of 〈S1 ∗U S2〉.

Proof. Let Γ denote a Schützenberger graph of 〈S1 ∗U S2〉 with host Σ. The result is proved

by induction on n(Γ) and is similar to that of Lemma 4.35. Assume that END(Γ) = AUT (Γ)

if n(Γ)< N, for some N ≥ 2. Adopt the notation of Lemma 4.35.

By assumption, the lobes of Σ are isomorphic to Schützenberger graphs of 〈S1〉 or 〈S2〉. It follows

that Σ3 approximates a Schützenberger graph of 〈S1 ∗U S2〉. Hence Γ′ is a Schützenberger graph

of 〈S1 ∗U S2〉, with host Σ3, by Algorithm 4.20 and Lemma 4.24. Then, by the induction hypothesis, the

endomorphism β : Γ′→ Γ′ is an automorphism. The proof that Σ1 ⊆ Σ now follows as in Lemma 4.35.

By assumption, we have END(Γ1) = AUT (Γ1), for any Schützenberger graph Γ1 of 〈S1 ∗U S2〉,

where any host has precisely one lobe. By Lemma 4.28, any endomorphism of a host extends to

an endomorphism of Γ1. Thus END(∆∗) = AUT (∆∗), for any Schützenberger graph ∆∗ of 〈S1〉

or 〈S2〉. Now END(Σ) = AUT (Σ), by Lemma 4.33. The restriction of α to Σ extends uniquely to an

automorphism of Γ, by Corollary 4.29. Hence α ∈ AUT (Γ) and so END(Γ) = AUT (Γ). �

Notation 4.37. As defined in [2, Section 4], for f ,g ∈ E(U), we write f ≺i g if f Dh≤ g in Si, for

some h ∈ E(Si), for i = 1,2. Then let ≺ denote the transitive closure of ≺1 and ≺2.

An inverse semigroup is completely semisimple if two distinct idempotents in any D-class are not

comparable, under the natural partial order. From [2, Lemma 10], an inverse semigroup is completely

semisimple if and only if the endomorphism monoid and the automorphism group coincide, for every

Schützenberger automaton. The following result is true for any amalgamated free product S1 ∗U S2, not

just when U is lower bounded in S1 and S2.

Lemma 4.38. If S1 ∗U S2 is completely semisimple then S1 and S2 are both completely semisimple

with ≺ ∩�1⊆≺1 and ≺ ∩�2⊆≺2, for any amalgam [S1,S2;U ] of inverse semigroups.

Proof. Since the semigroups S1 and S2 are embedded into S1 ∗U S2 they must be completely semisimple.

Let f ,g ∈ E(U) with f ≺ g and f �1 g. Then there exist idempotents f1, f2, . . . , fn ∈ E(U), for
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some n≥ 2, where f1 = f , fn = g and fk ≺i fk+1, for some i ∈ {1,2}, for each 1≤ k ≤ n−1.

Thus we have fk = sks−1
k and s−1

k sk ≤ fk+1 in Si, for some sk ∈ Si and some i ∈ {1,2}. Also,

we have fn = sns−1
n and s−1

n sn ≤ f1 in S1, for some sn ∈ S1. Putting t = s1s2 · · ·sn−1sn, we have

f1RtL t−1t ≤ s−1
n sn ≤ f1 in S1 ∗U S2. Thus t−1t = s−1

n sn = f1, since S1 ∗U S2 is completely

semisimple. Hence f1D fn in S1. Therefore ≺ ∩�1⊆≺1. Similarly, we have ≺ ∩�2⊆≺2. �

From Lemma 4.27, a host of a Schützenberger graph of 〈S1 ∗U S2〉 with precisely one lobe is

isomorphic to a Schützenberger graph of 〈S1〉 or 〈S2〉. The following result generalises [2, Theorem 4].

Theorem 4.39. Let U denote a lower bounded inverse subsemigroup of two completely semisimple

inverse semigroups S1 and S2. Suppose the host of any Schützenberger graph of 〈S1 ∗U S2〉 has lobes

isomorphic to Schützenberger graphs of 〈S1〉 or 〈S2〉. Then S1 ∗U S2 is completely semisimple if and

only if ≺ ∩�1⊆≺1 and ≺ ∩�2⊆≺2.

Proof. If S1 ∗U S2 is completely semisimple then ≺ ∩�1⊆≺1 and ≺ ∩�2⊆≺2, by Lemma 4.38.

Suppose we have ≺ ∩�1⊆≺1 and ≺ ∩�2⊆≺2. We show that END(Γ) = AUT (Γ), for any

Schützenberger graph Γ of 〈S1 ∗U S2〉 with n(Γ) = 1. Then we will have END(Γ) = AUT (Γ), for

any Schützenberger graph Γ of 〈S1 ∗U S2〉, by Lemma 4.36.

Let M denote a lobe of Γ that is also a host. Let α ∈ END(Γ) and let M′ denote the lobe of Γ

containing (M)α . If M′ = M then α restricts to an endomorphism β on M. The lobe M is isomorphic

to a Schützenberger graph of 〈S1〉 or 〈S2〉. Since S1 and S2 are completely semisimple, we then

have β ∈ AUT (M). Then α is the unique automorphism of Γ that extends β , by Corollary 4.29.

Suppose M′ 6= M. There is a non-trivial reduced lobe path M = ∆(1),∆(2), . . . ,∆(n−1),∆(n) = M′

in Γ. Let vk denote some intersection common to ∆(k) to ∆(k+1), for 1≤ k ≤ n−1. Put vn = (v1)α .

Since M is a host of Γ, the lobe ∆(k+1) feeds off ∆(k), for 1≤ k ≤ n−1. Let vk→sk vk+1 be a path

in ∆(k+1), for 1≤ k ≤ n−1. Let ∆(1) and ∆(n) be colored by i ∈ {1,2} and put j = 3− i. We have

(v1,∆
(1),v1)∼= A (Si,e), for some e ∈ E(Si), and we have a loop vn→e vn in ∆(n).

Since ∆(n) feeds of ∆(n−1), there is a loop vn−1→ fn−1 vn−1 in ∆(n), for some fn−1 ∈ E(U)

with fn−1 ≤ sn−1es−1
n−1 in Si. Next, since ∆(n−1) feeds of ∆(n−2), there is a loop vn−2→ fn−2 vn−2

in ∆(n−1), for some fn−2 ∈ E(U) with fn−2 ≤ sn−2 fn−1s−1
n−2 in S j. Continuing in this manner,

we obtain idempotents f1, f2, . . . , fn−2 ∈ E(U) with fk ≤ sk fk+1s−1
k in the factor, S1 or S2, that
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sk belongs to, and so fkR fksk fk+1L fk+1s−1
k fksk ≤ fk+1, for 1≤ k ≤ n−2. Also, we have

fn−1R fn−1sn−1eL es−1
n−1 fn−1sn−1 ≤ e≤ f1 in Si.

Now f1 ≺ j f2 ≺i · · · ≺ j fn−1 ≺i f1 and so f1 � j f2 �i · · · � j fn−1 �i f1, since ≺ ∩�i⊆≺i

and ≺ ∩�i⊆≺i. Then, for 1≤ k ≤ n−2, we have fkDs−1
k fksk = fk+1 in the factor, S1 or S2,

that sk belongs to, and fn−1Ds−1
n−1 fn−1sn−1 = e = f1 in Si, since S1 and S2 are completely

semisimple. Since e = f1 and ∆(2) feeds off ∆(1), it follows that (v1,∆
(2),v1)∼= A (S j, f1)

and ∆(2) is also a host of Γ. Next, since e j(v2) = s−1
1 f1s1 = f2 and ∆(3) feeds off ∆(2), we

have (v2,∆
(3),v2)∼= A (Si, f2) and ∆(3) is also a host of Γ. We may continue in this manner

and thus obtain (vn−1,∆
(n),vn−1)∼= A (Si, fn−1) and ∆(n) is also a host of Γ. It then follows

that ei(vn) = s−1
n−1 fn−1sn−1 = e.

Hence α induces an isomorphism β from ∆(1) onto ∆(n). Since any two homomorphisms of an

inverse word graph that agree on a vertex are equal, the map α is the unique automorphism of Γ that

extends β , by Corollary 4.29. Therefore END(Γ) = AUT (Γ), as required. �

Theorem 4.40. Let U denote a lower bounded inverse subsemigroup of finitely presented inverse

semigroups S1 and S2. Then 〈S1 ∗U S2〉 has decidable word problem if the following hold, where

(ii)-(vi) relate to Algorithm 4.20:

(i) The presentations 〈S1〉 and 〈S2〉 have decidable word problem.

(ii) It is decidable whether or not Construction 4.5 needs to be applied and having decidable

language is preserved by this construction.

(iii) Having decidable language is preserved by taking the direct limit of all automata obtained by

finitely many applications of Construction 4.5.

(iv) It is decidable whether or not Construction 4.12 needs to be applied and having decidable

language is preserved by this construction.

(v) Having decidable language is preserved by taking the assimilated form.

(vi) It is decidable whether or not any vertex is a bud, given a path from the initial root to the vertex,

and having decidable language is preserved by Construction 4.17.

Proof. Let w be a word where the subwords wk alternate between a word over the generators of S1 and

a word over the generators of S2. Condition (i) implies that A (S1 ∗S2,w) has decidable language, by

Result 2.17. Conditions (i)-(v) imply that steps (i)-(v) of Algorithm 4.20 result in a finite-lobe
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subopuntoid subautomaton (α0,Γ0,β0) of A (S1 ∗U S2,w), with decidable language. Let z1z2 · · ·zn be

a word, where the subwords zk alternate between a word over the generators of S1 and a word over the

generators of S2.

It is decidable whether or not the vertex α0 is an intersection, since S1 and S2 are finitely presented,

and it is decidable whether or not α0 is a bud, by condition (vi). If α0 is an intersection or a

non-intersection that is not a bud of Γ0, then put (α1,Γ1,β1) = (α0,Γ0,β0). If α0 is a bud of Γ0 then

we can apply Construction 4.17 to obtain an automaton (α1,Γ1,β1), such that α1 is an intersection,

with decidable language, by condition (vii). By Lemmas 4.18 and 4.19, the automaton (α1,Γ1,β1) is

embedded into A (S1 ∗U S2,w) as a subopuntoid subautomaton.

Now (α1,Γ1,α1) has decidable language, since w ∈ L[(α1,Γ1,β1)]. Thus it is decidable whether

or not we have a path α1→z1 v1 in Γ1. If we do not have a path α1→z1 v1 in Γ1 then z1z2 · · ·zn

cannot be in L[A (S1 ∗U S2,w)]. Suppose we have a path α1→z1 v1 in Γ1. It is decidable whether or

not v1 is an intersection, since S1 and S2 are finitely presented, and it is decidable whether or not v1 is a

bud, from condition (vi). If v1 is an intersection of Γ1 then put (α2,Γ2,β2) = (α1,Γ1,β1). If v1 is a

non-intersection that is not a bud of Γ1 then z1z2 · · ·zn cannot be a word in L[A (S1 ∗U S2,w)]. If v1 is

a bud of Γ1 then we can apply Construction 4.17 to obtain (α2,Γ2,β2), such that the image of v1 is

an intersection, with decidable language, by condition (vi). Then (α2,Γ2,β2) is embedded into

A (S1 ∗U S2,w) as a subopuntoid subautomaton, from Lemmas 4.18 and 4.19.

Now (α2,Γ2,α2) has decidable language, since w ∈ L[(α2,Γ2,β2)]. Thus it is decidable whether

or not we have a path α2→z1z2 v2 in Γ2. If we do not have a path α2→z1z2 v2 in Γ2 then z1z2 · · ·zn

cannot be in L[A (S1 ∗U S2,w)]. Suppose we have a path α2→z1z2 v2 in Γ2. It is decidable whether or

not v2 is an intersection, since S1 and S2 are finitely presented, and it is decidable whether or not v2 is a

bud, from condition (vi). If v2 is an intersection of Γ2 then put (α3,Γ3,β3) = (α2,Γ2,β2). If v2 is a

non-intersection that is not a bud of Γ2 then z1z2 · · ·zn cannot be a word in L[A (S1 ∗U S2,w)]. If v2 is

a bud of Γ2 then we can apply Construction 4.17 to obtain (α3,Γ3,β3), such that the image of v2 is

an intersection, with decidable language, by condition (vii). Then (α3,Γ3,β3) is embedded into

A (S1 ∗U S2,w) as a subopuntoid subautomaton, from Lemmas 4.18 and 4.19.

We can continue in this manner. If we do not have a path αk→z1z2···zk vk in Γk, for some k,

then z1z2 · · ·zn cannot be a word in L[A (S1 ∗U S2,w)]. Suppose we have a path αn→z1z2···zn vn
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in Γn. Then z1z2 · · ·zn is a word in L[A (S1 ∗U S2,w)] if and only if vn = βn, since (αn,Γn,βn) is

embedded into A (S1 ∗U S2,w). Thus, since L[(αn,Γn,βn)] is decidable, it is decidable whether or

not z1z2 · · ·zn is a word in L[A (S1 ∗U S2,w)]. Hence the automaton A (S1 ∗U S2,w) has decidable

language. Therefore, from Result 2.4, the word problem for 〈S1 ∗U S2〉 is decidable. �

Cherubini, Meakin and Piochi [7] proved that the amalgamated free product of finite (and finitely

presented) inverse semigroups has decidable word problem. The following overlaps with this result.

Corollary 4.41. Let [S1,S2;U ] be an amalgam of inverse semigroups where S1 and S2 have finite

presentations with decidable word problems and U is finite and lower bounded in S1 and S2. Then

S1 ∗U S2 has decidable word problem.

Proof. The result is proved by showing that conditions (i)-(vi) of Theorem 4.40 hold. Let

w = w1w2 · · ·wn be a word, where the wk alternate between words over the generators of S1 and words

over the generators of S2. Now A = (α1,Γ1,β1) = A (S1 ∗S2,w) has decidable language. We have

paths α1→w1w2···wk vk in A , for 1≤ k ≤ n, where the vertices v1,v2, . . . ,vn−1 are the only possible

intersections of A . Since we have a path α1→w1w2···wk vk, the automaton (vk,Γ1,vk) has decidable

language, for 1≤ k ≤ n−1. Thus it is decidable whether or not w1( f ) or w2( f ) labels a loop at vk,

for each of the finitely many f ∈ E(U), for 1≤ k ≤ n−1. Hence it is decidable whether or not

Construction 4.5 needs to be applied to A .

If Construction 4.5 is applied to A then, by Results 2.5, 2.9 and 2.15, or using a proof similar to [1,

Lemma 2.2], the resulting automaton is an automaton of 〈S1 ∗S2〉, with decidable language. Since

E(U) is finite, there are finitely many automata in the directed system of all automata obtained from A ,

by finitely many applications of Construction 4.5. Hence the direct limit of this directed system is also

an automaton of 〈S1 ∗S2〉, with decidable language.

As we have paths α1→w1w2···wk vk, the automaton (v j,Γ1,vk) has decidable language, for

all 1≤ j,k ≤ n−1. Thus it is decidable whether or not w1(u) or w2(u) labels a path from v j to vk,

for any of the finitely many u ∈U and 1≤ j,k ≤ n−1. Hence it is decidable whether or not

Construction 4.12 needs to be applied to A . If Construction 4.12 is applied to A then, by Results 2.5,

2.9 and 2.15, or using a proof similar to [1, Lemma 3.6], it follows that the resulting automaton is an

automaton of 〈S1 ∗S2〉, with decidable language.
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If B = (α2,Γ2,β2) is the assimilated form of A then B = A /η , where η is the V -equivalence

generated by the related pairs. We have a path α2→z β2 in Γ2 if and only if there are paths

x1→z1 y1, x2→z2 y2, . . ., xm→zm ym in Γ, where m≥ 1, α1ηx1, y1ηx2, . . ., ym−1ηxm, ymηβ1 and

z1z2 · · ·zm = z. In which case, a1z1a2z2 · · ·amzmam+1 ∈ L[A ], where ak = (w1(u))−1 ·w2(u) or

ak = (w2(u))−1 ·w1(u), for some u ∈U , for each k. There are finitely many ways to write a given

word z as a concatenation z1z2 · · ·zm and U is finite. Thus it is decidable whether or not a given word z

belongs to L[B], by testing whether or not a1z1a2z2 · · ·amzmam+1 ∈ L[A ], for the finitely many such

expressions, as above. Hence B has decidable language.

Given a path α2→z v in B, the automaton (v,Γ2,v) has decidable language. Since U is finite, it

is then decidable whether or not the vertex v is a bud. If v is a bud belonging to a lobe colored

by i ∈ {1,2}, then Construction 4.17 can be performed by sewing on A (S j, f ) at v, where f is the

least idempotent of E(U) labeling a loop at v, and assimilating the two lobes containing the image of v.

If y ∈ L[(v,Γ2,v)×A (S j, f )] then y can be expressed as a concatenation of words alternating from

L[(v,Γ2,v)] and L[A (S j, f )]. Since (v,Γ2,v) and A (S j, f ) have decidable languages and there are

finite ways to write a given word y as a concatenation of subwords, the automaton (v,Γ2,v)×A (S j, f )

has decidable language. The automaton obtained by assimilating the two lobes containing the image of

v has decidable language, using a proof similar to that for the assimilated form. It follows that the

automaton resulting from Construction 4.17 has decidable language. �
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