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Abstract. In this paper, we introduce closed operators of exponential type, and use it to study the solution of the

homogeneous abstract Cauchy problem of the first order, usual and fractional.
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1. INTRODUCTION

Let X be a Banach space and I = [0,∞) . Let C(I) be the Banach space of all bounded

continuous real valued functions defined on I ,

and let C(I,X) be the set of all bounded continuous function from I to X .

Now , the first order nonhomogeneous Abstract Cauchy Problem is

 u′(t) = Au(t)+ f (t)

u(0) = x◦

 .....................(1)

Here, u is a differentiable function from I to X , and A is a densely defined closed linear

operators on X . Such equation appears in many applications in physics and applied sciences.
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The solution of such equation depends mainly on the operator A.

We will discuss in this paper the solution of (1),when f = 0.Further, and we will discuss

equation (1),when the derivative is replaced by fractional derivative.

So let us recall some basics of the conformable derivative.

In [3], the authors gave a new definition of fractional derivative which is a natural extension

to the usual first derivative as follows:

Given a function f : [0,∞)−→ R. Then for all t > 0, α ∈ (0,1), let

Dα( f )(t) = lim
ε→0

f (t + εt1−α)− f (t)
ε

,

Dα f is called the conformable fractional derivative of f of order α.

Let f (α)(t) stands for Dα( f )(t). Hence f (α)(t) = lim
ε→0

f (t+εt1−α )− f (t)
ε

.

If f is α− differentiable in some (0,b), b > 0 , and lim
t→0+

f (α)(t) exists, then let

f (α)(0) = lim
t→0+

f (α)(t).

The conformable derivative satisfies all the classical properties of the usual first derivative.

Further, according to this derivative, the following statements are true, see [ 3].

1. Dα(t p) = pt p−α for all p ∈ R,

2. Dα(sin 1
α

tα) = cos 1
α

tα ,

3. Dα(cos 1
α

tα) =−sin 1
α

tα ,

4. Dα(e
1
α

tα

) = e
1
α

tα

.

The α−fractional integral of a function f starting from a≥ 0 is :

Ia
α( f )(t) = Ia

1 (t
α−1 f ) =

∫ t

a

f (x)
x1−α

dx,

In this paper we will study the Abstract Cauchy Problem :

 u(α)(t) = Au(t)

u(0) = x◦

 .....................(2)

We refer [ 1] and [ 3] for more on conformable fractional derivative, and to [ 4] for the theory

of semigroups of operators and the Abstract Cauchy Problem.
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2. EXPONENTIAL TYPE OPERATORS

In this section we introduce a class of operators to be called of exponential type.

Definition 2.1. Let A : Dom(A)⊆ X → X , be a densely defined linear operator. The operator

A is called of exponential type if

(i) The operator B(t) = etA exists and well defined for all x ∈ Dom(A), in the sense:

B(t)x =
∞

∑
n=0

tn

n!A
nx converges absolutely for all x ∈ Dom(A). That is

∞

∑
n=0

tn

n! ‖A
nx‖< ∞.

(ii) C(x,A) = {x,Ax,A2x, .....} ⊆ Dom(A).

Examples. (1) Clearly every bounded linear operator on a Banach space X is of exponential

type.

(2) Consider the operator T : `2→ `2 defined by T (δ n) = n δ 1. Clearly T is densely defined.

Further:

T (a1δ 1 + ....ak δ k) = (
k

∑
n=1

iai)δ 1

Hence T 2x = T x. In fact T nx = T x, for any x which can be written as a finite linear combi-

nation of the basis elements {δ 1, ....δ n, .......}

Hence

‖Anx‖ ≤ k(k+1)
2

sup
1≤ j≤k

∣∣a j
∣∣

Now
∞

∑
n=0

tn

n!
‖Anx‖ ≤ sup

1≤ j≤k

∣∣a j
∣∣ ∞

∑
n=0

tn

n!
k(k+1)

2
< ∞

Thus, T is of exponential type.

Theorem 2.1. Let A : Dom(A) ⊆ X → X be of exponential type. Then d
dt B(t)x = d

dt etAx =

AetAx = AB(t)x for x ∈ Dom(A)

Proof. B(t)x = B(t)x =
∞

∑
n=0

tn

n!A
nx . Then using classical tools we get

d
dt

B(t)x =
∞

∑
n=1

n
tn−1

n!
Anx

=
∞

∑
n=1

A
tn−1

(n−1)!
An−1x
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= A
∞

∑
n=1

tn−1

(n−1)!
An−1x

= A
∞

∑
n=0

tn

n!
Anx

= AB(t)x

This ends the proof.

Theorem 2.2. Let A : Dom(A) ⊆ X → X be of exponential type, and u : [0,∞)→ X be

differentiable.

Then

 u′(t) = Au(t)

u(0) = x◦

 has a unique solution.

Proof. It follows from Theorem 2.1 that u1(t) = etAx0 is a solution.

Assume if possible that u2 is another solution. Then u′2(t) = Au2(t). But then

u′2(t)−u′1(t) = A(u2(t)−u1(t))

But this implies that u2(t)−u1(t) = etAy. Since u2(0)−u1(0) = x0− x0 = 0, it follows that

y = 0, and hence u2(t) = u1(t).

3. FRACTIONAL ABSTRACT CAUCHY PROBLEM

Let us write Dα( f )(t) for f (α)(t) = lim
ε→0

f (t+εt1−α )− f (t)
ε

. In this section we are interested in

discussing

 u(α)(t) = Au(t)

u(0) = x◦

 .

Let us recall that, [ 2]:

T : [0,∞)→ L(X), the space of bounded linear operators on X , is called an α-fractional

semigroup of operators if T (0) = I and T (s+ t)
1
α = T (s

1
α )T (t

1
α ).

The generator of the semigroup T (t) is just the α−conformable derivative of T (t) at t = 0.

We refer to [ 2] for more results on fractional semigroups of operators.

Now we have:

Theorem 3.1. Let A : Dom(A) ⊆ X → X be of exponential type. Then T (t)x = e
tα
α

Ax is an

α−fractional semigroup with A as the generator.

Proof. That T (t)x = e
tα
α

Ax is an α−fractional semigroup is straight forward computations.
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Consider DαT (t)x = Dα

∞

∑
n=0

( tα
α
)n

n! Anx.

Using the same ideas in Theorem 2.1, we get

DαT (t)x = AT (t)x = e
tα
α

Ax.............(2)

Note that we used Dα(e
1
α

tα

) = e
1
α

tα

.

Taking the limit as t→ 0, we get DαT (0)x = A. That ends the proof.

Now we discuss the fractional Abstract Cauchy Problem

 u(α)(t) = Au(t)

u(0) = x◦

 ............(3)

Theorem 3.2. If A is of exponential type, then (3) has a unique solution.

Proof. By (2) in Theorem 3.1, we get u1(t) = e
tα
α

Ax0 as a solution of (3).

Using the same idea as in Theorem 2.2, we get our result.
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