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Abstract. A semigroup together with compatible partial order is called an ordered semigroup. In this paper we

discuss various partial orders on matrix semigroups with respect to which the matrix semigroups are ordered.
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1. INTRODUCTION AND PRELIMINARIES

A semigroup (S, ·) is a non empty set together with an assosiative binary operation ·. Obvi-

ously every group is a semigroup, however there are semigroups which fails to be a group such

as integers under usual multiplicaton, natural numbers under adition and the like. More familiar

examples of semigroups are

(1) Full transformation semigroup T (X) of all transformations on a set X with composition

of transformations as binary operation.

(2) All square matrices over a field F [ring R] Mn(F) [Mn(R)] with the usual multiplication

of matrices as binary operation.
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As a mathematical structure semigroups attracted much attention and has grown to an extend

that it pocesses a vivd and deep structure theory. Regular semigroups and inverse semigroups

include the class of semigroups which are well developed. An element a in a semigroup S is

said to be von Neumann regular if there exists an alement x ∈ S such that axa = a. A semigroup

S is said to be regular if every element a ∈ S are regular. A regular semigroup in which the

idempotent elements ( those elements e in a semigroup S such that e · e = e) commutes are

called inverse semigroups.

Definition 1. Let S be a semigroup and a ∈ S.

(1) A particular solution to axa = a is called the inner inverse of a and is denoted by a−.

(2) A solution of the equation xax = x is called the outer inverse of a and is denoted by a=

(3) An inner inverse of a that is also an outer inverse is called a reflexive inverse and is

denoted by a+.

The set of all inner (resp. outer, reflexive ) inverses of a is denoted by a{1} (resp. a{12},

a{123}) inverses.

Definition 2. A semigroup S is said to be weakly separative if, for any a,b ∈ S,

asa = asb = bsa = bsb⇒ a = b.

Lemma 1. Every regular semigroup (in the sense of von Neumann) is weakly separative.

Proof. Let S be regular. For a,b ∈ S, we have axa = a and byb = b for some x,y ∈ S. Assume

that asa = asb = bsa = bsb for all s ∈ S. In particular, a = axa = ax and ayb = byb = b so that

a = axb = ax(byb) = (axb)yb = ayb = b. �

Example 1.

(1) The set of all transformations on a set X with composition of maps is a regular semigroup

called the full transformation semigroup.

(2) All n×n matrices Mn over a field F or a ring R are regualr semigroups with respect to usual

mutliplication of matrices.
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However, here it should be noted that the usual matrix product is not the only matrix product

with respect to which Mn is a semigroup. In fact there are other interseting matrix products such

as

(1) Kronecker product (Tensor product)

(2) Hadamard product (Schur product)

with respect to which Mn is a semigroup.

Consider A = [ai j],B = [bi j] ∈ Mn, then their Kronecker product A⊗B is defined to be the

n2×n2 matrix partitioned into n2 blocks with the (i, j)th block as the n×n matrix ai jB, i.e.,

A⊗B =


a11B a12B · · · a1nB

a21B a22B · · · a2nB

· · · · · ·

an1B an2B · · · annB

 .

Clearly (A⊗B)⊗C = A⊗ (B⊗C) for all A,B,C ∈Mn, thus (M,⊗) is a semigroup.

The Hadamard product or Schur product of A,B ∈ Mn is defined by the entrywise product

A◦B = (ai jbi j) that is,

A◦B =


a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n

· · · · · ·

an1bn1 an2bn2 · · · annbnn


Since A◦ (B◦C) = (A◦B)◦C for all A,B,C ∈Mn(F), we have (Mn,◦) is a semigroup with

respect to the multiplication ◦.

A Partial order on a semigroup S is a binary relation≤ on S which is reflexive, antisymmetric

and transitive.

Definition 3. An ordered semigroup (S, ·,≤) is a semigroup (S, ·) together with a compatible

partial order ”≤ ” on S such that for any x,y,z ∈ S,

x≤ y⇒ xz≤ xz and zx≤ zy.
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Example 2. The set of all relations on a set X denoted by B(X) is an ordered semigroup with

the composition of relations as the binary operation and inclusion as the compatible partial

order on B(X).

Generally, any semigroup(S, ·) can be considered as an ordered semigroup with respect to the

order ≤ as the identity relation on S, that is

x≤ y⇐⇒ x = y.

If P is any partial order on a semigroup S then the relation

P1 = {(x,y) |(axb,ayb) ∈ P for all(a,b) ∈ S}

is the largest compatible partial order contained in P. Thus, every semigroup can be endowed

with a partial order so that S becomes an ordered semigroup.

Lemma 2. Let (S, ·,≤) be an ordered semigroup. For every s ∈ S define a binary composition

ρ on S by

xρy = xsy for all x,y ∈ S

Then, (S,ρ) is a semigroup such that (S,ρ,≤) is an ordered semigroup and is called the s-

invariant of S.

Definition 4. Let (S, ·,≤) be an ordered semigroup. A non empty subset A∈ S is a subsemigroup

of S if for any a,b ∈ A implies ab ∈ A.

2. ORDERED MATRIX SEMIGROUPS

In the following we proceed to describe ordered semigroup n×n matrices. At the outset it is

seen that the semigroup Mn(R) square matrices over real nuumbers with order defined by, for

A,B ∈Mn(R) with A = [ai j],B = [bi j], 1≤ i≤ n, 1≤ j ≤ n, then

A≤ B⇒ ai j ≤ bi j for all i and j

fails to be an ordered semigroup. However for Mn(Z+) of all n×n matrices with non negative

integer entries we have the following lemma.
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Lemma 3. Consider the semigroup Mn((Z+)) of all n× n matrices with non negative integer

entries. For A,B ∈Mn(Z+) with A = [ai j],B = [bi j], 1≤ i≤ n, 1≤ j ≤ n, define the relation ≤

by

A≤ B⇒ ai j ≤ bi j for all i and j

is a partial order with respect to which Mn(Z+) is an ordered semigroup.

Proof. Clearly the order ≤ is reflexive as, ai j ≤ ai j for all i and j. Suppose A ≤ B and B ≤ A,

ie., ai j ≤ bi j and bi j ≤ ai j for all i and j.This gives ai j = bi j and hence anti symmetric. If A≤ B

andB≤C, then ai j ≤ bi j and bi j ≤ ci j. This implies ai j ≤ ci j,ie, A≤C, hence transitive.Thus ≤

is a partial order.

To prove the compatibility, suppose A≤ B. ie,ai j ≤ bi j. For C = [ci j] ∈M,

(CA)i j = ∑cikak j ≤∑cikbk j = (CB)i j for1≤ k ≤ n

thus CA≤CB. Similarly it is seen that AC ≤ BC, ie., ≤ is compatible. �

2.1. Conrad order on Regular matrix semigroups. In (cf. [2]) Abian described a partial

order on a semiprime ring R as follows

a≤ b⇐⇒ ab = a2 for all a,b ∈ R

Cornad modified this partial order on the semiprime ring R itself as

a≤ b⇐⇒ arb = ara for all r ∈ R.

Further he extended this partial order to define a relation ρ on a semigroup S by

aρb⇔ asa = asb = bsa for all s ∈ S

which turned out to be a partial order for ’weakly separative’ semigroups.

Ler R a ring. Consider matrix semigroup Mn(R). Now we proceed to describe the relation ρ

on Mn(R) as follows, for A,B ∈Mn(R).,

AρB⇔ ASA = ASB = BSA ∀ S ∈ Mn(R)

and this relation ρ is called the Conrad relation on Mn(R)
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Lemma 4. The Conrad relation on Mn(R) is a partial order with respect to which Mn(R) is an

ordered semigroup.

Proof. It is easy to see that the relation ρ on Mn(R) is reflexive. For transitivity, suppose AρB

and BρC, then ASA = ASB = BSA and BSB = BSC = CSB for all S ∈Mn(F). For P ∈Mn(R),

we obtain (ASC)P(ASC) = (ASC)P(ASB) = (ASC)P(BSA) = (ASC)P(CSA)⇒ ASC = CSA.

Similarly, (ASC)P(ASC) = (ASC)P(ASB) = (ASC)P(BSA) = (ASC)P(CSA) ⇒ ASC = CSA.

This gives ASC =CSA = ASA, ie, AρC.

Burgess and Raphael proved that ρ is a partial order on a semigroup S if and only if it is

weakly separative. Since Mn(R) is a regular semigroup, obviously Mn(R) is weakly seperative

and hence ρ is a partial order. Suppose AρB and CρD. Then, ASB = BSA = BSB and CSC =

CSD = DSC ∀S ∈ Mn(F). Then,(AC)S(BD) = (AC)S(AC) = (BD)S(AC)⇒ ACρBD, hence

the compatibility and (Mn(R),ρ) is an ordered matrix semigroup. �

2.2. More partial orders on Mn(R). Let R be any ring. Jerzy K Baksalary and Sujit Kumar

Mitra introduced the following two orderings on Mn(R)

For A,B ∈Mn(R), two orders defined by

A?≤ B⇔ A?A = A?B and R(A)⊆ R(B)

where A∗ stands for the conjugate transpose of A and R(A) is the range space of A. In a similar

way another order is given by

A≤ ?B⇔ AA? = BA? andR(A∗)⊆ R(B?).

These orders are called the left star order and the right star order respectively.

Lemma 5. The left star order and the right star order are partial orders on Mn(R)

Proof. Clearly A? ≤ A. Suppose A? ≤ B and B? ≤ A. Then A?A = A?B, R(A) ⊆ R(B), B?B =

B?A and R(B) ⊆ R(A). This gives R(A) = R(B). Let A† be the Moore-Penrose inverse of A

( ie., the unique matrix satisfying AA†A = A, and A†AA† = A† ). Then AA† = (AA†)? and

A†A = (A†A)? and

A = AA†A = (AA†)?A = (A†)?(A?A = (A†)?A?B = (AA†)?B = AA†B = B
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hence the relation ′?≤′ is antisymmetric.

For transitivity, let A? ≤ B and B? ≤ C. Then, A?A = A?B, R(A) ⊆ R(B),B?B = B?C and

R(B) ⊆ R(C), from this we get R(A) ⊆ R(C). Now, A?A = A?B = A?(BB†B) = A?(BB†)?B =

(A?(B†)?B?)B = A?(B†)?(B?B) = A?(B†)?(B?C) = (BB†A)?C = A?C. Thus A?A = A?C with

R(A)⊆ R(C) implying that A?≤C∗.

Similarly it can be seen that the right star order ”≤ ?” is a partial order on Mn(R). �

Lemma 6. Mn(R) is an ordered semigroup under the left star ordering.

Proof. It is already seen that the left star order is a partial order on Mn(R). Consider A,B,C,D∈

Mn(F) such that A?≤ B and C?≤ D, then A?A = A?B, R(A)⊆ R(B), C?C =C?D and R(C)⊆

R(D).

Further

(AC)?AC =C?(A?A)C =C?(A?B)C = (AC)?B(CC†C) = (AC)?B(CC†)?C

= (AC)?B(C†)?(?C)

= (AC)?B(C†)?(C?D)

= (AC)?B(CC†)? = (AC)?B(CC†D)

= (AC)?BD.

and since R(C) ⊆ R(D), we have R(AC) ⊆ R(BD). Thus AC? ≤ BD and hence (Mn(R), ·,? ≤)

is an ordered matrix semigroup.

Similarly we can prove that (Mn(R), ·,≤ ?) is an ordered semigroup. �

2.3. Positive semidefinite matrices (PSD). From here onwards we restrict to the matrices

Mn(C). A matrix A ∈ Mn(C) is said to be positive semi definite (positive definite) if v?Av ≥

0(v?Av > 0) for all v ∈ Cn. We write A ≥ 0(A > 0) to mean that A is positive semi definite

(positive definite).

In the following we list some properties of PSD matrice

(1) A is PSD if and only if it is Hermitian, ie., A = A?

(2) If A is a PSD, then all its principal submatrices and all principal minors of A are PSD.
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(3) A is PSD if and only if A = M?M for some matrix M.

(4) A is PSD if and only if A = P?P for some upper triangular matrix P with non negative

diagonal entries only (Cholesky decomposition of A)

(5) A and B be congruent matrices then A is PSD⇔ B is PSD.

(6) A is PSD if and only if A = B2 for some PSD matrix B. Then the unique B = A1/2 is

called the positive square root of A.

(7) Schur product theorem: Let A and B be PSD matrices of size n. Then the Schur product

A◦B is also PSD.(but the conventional product neednot be PSD)

(8) Let A be Hermitian and PSD. Then there exists a sequence of PSD matrices A1,A2....

such that Ak→ A as k→ ∞. We can define Ak = A+ k−1I

It is easy to observe that the set of all n×n Hermitian matrices denoted by MH
n ⊂Mn(C). For

A,B ∈MH
n , A◦B is always Hermitian, ie., MH

n is a subsemigroup of Mn(C).

2.4. Loewner partial order on MH
n . Every partial order � on a real linear space S can be

defined by A � B for all A,B ∈ S if their difference lies in a special closed convex cone. For

the Loewner order the elements of the real linear space are the n× n Hermitian matrices and

elements of the closed convex cone are the positive semi-definite matrices (PSD).

Also, the collection of all PSD matrices of order n is a semigroup under ’◦’ and is denoted

by M≥n . Then

M≥n = {K ∈Mn | K = LL∗ for someL ∈Mn}.

For A,B ∈M≥n , A◦B ∈M≥n and A◦ (B◦C) = (A◦B)◦C for all A,B,C ∈M≥n and hence M≥n is

a semigroup. Now we define the Loewner order � on MH
n by A � B if and only if f B−A is

Hermitian and positive semidefinite.

Lemma 7. The Loewner partial order � is a compatible partial order on MH
n .

Proof. Clearly 0� A means that A is PSD. For A ∈MH
n , A−A = 0 ∈M≥n implying that A� A.

Suppose A � B and B � A. Since A � B⇒ B− A ∈ M≥n , that is., B− A = KK∗ for some

K ∈Mn. Similarly, B� A⇒ A−B = LL? for some L ∈Mn. Since, A−B =−(B−A) we have

LL?+KK? = 0 which implies LL? = KK? = 0, ie., A−B = 0 = B−A⇒ A = B proving the

antisymmetry.
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For transitivity of �, consider A,B ∈M≥n such that A� B and B�C, then, B−A = KK? and

C−B = PP? for some L,P ∈Mn. Now, C−A = (C−B)+(B−A) ∈M≥n , being the sum of two

PSD matrices. Thus � is a partial order.

Let A � B and C � D. Then B−A = KK? and D−C = PP? for some L,P ∈ Mn. Now,

B ◦D−A ◦C = B ◦ (D−C)+ (B−A) ◦C = B ◦ (LL?)+ (KK?) ◦C ∈ Mn ≥ as the Hadamard

product and sum of two PSD matrices are PSD. This implies that A ◦C,� B ◦D, that is., � is

compatible under ◦. Thus (MH
n ,◦,�) is an ordered matrix semigroup. �

Ordered semigroups have many applications in the theory of computer arithmetics, formal

languages, error-correcting codes and the like. This class of semigroups is currently a hot topic

of research and have been studied by several authors.
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