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1. Introduction

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [5], we say

that U dominates an element d of S if for every semigroup T and for all homomorphisms

α, β : S → T , uα = uβ for all u ∈ U implies dα = dβ. The set of all elements of S

dominated by U is called the dominion of U in S, and we denote it by Dom(U, S). It

may easily be seen that Dom(U, S) is a subsemigroup of S containing U . A semigroup U

is said to be saturated if Dom(U, S) 6= S for every properly containing semigroup S, and

epimorphically embedded or dense in S if Dom(U, S) = S.
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A morphism α : S → T in the category of all semigroups is called an epimorphism

(epi for short) if for all morphisms β, γ, αβ = αγ implies β = γ. Every onto morphism is

epi, but the converse is not true in general. It may easily be checked that α : S → T is

epi if and only if the inclusion map i : Sα → T is epi and the inclusion map i : U → S

is epi if and only if Dom(U, S) = S. A variety V of semigroups is said to be saturated if

all its members are saturated and epimorphically closed or closed under epis if whenever

S ∈ V and ϕ : S → T is epi in the category of all semigroups, then T ∈ V or equivalently

whenever U ∈ V and Dom(U, S) = S, then S ∈ V .

An identity µ is said to be preserved under epis in conjunction with an identity τ if

whenever S satisfies τ and µ, and ϕ : S → T is an epimorphism in the category of all

semigroups, then T also satisfies τ and µ; or equivalently, whenever U satisfies τ and µ

and Dom(U, S) = S, then S also satisfies τ and µ.

An identity of the form

x1x2 · · ·xn = xi1xi2 · · · xin (n ≥ 2) (1)

is called a permutation identity, where i is any permutation of the set {1, 2, 3, . . . , n} and

ik (1 ≤ k ≤ n) is the image of k under the permutation i. A permutation identity of the

form (1) is said to be nontrivial if the permutation i is different from the identity per-

mutation. Further, a nontrivial permutation identity x1x2 · · ·xn = xi1xi2 · · ·xin is called

seminormal if i1 = 1 and in = n. A semigroup S satisfying a nontrivial permutation

identity is said to be permutative while a variety V of semigroups is said to be permu-

tative if it admits a nontrivial permutation identity. For any word u, the content of u

(necessarily finite) is the set of all variables appearing in u and is denoted by C(u). An

identity u = v is said to be heterotypical if C(u) 6= C(v); otherwise homotypical. A variety

V of semigroups is said to be heterotypical if it admits a heterotypical identity.

Khan [8], jointly with Higgins, has shown that any semigroup variety satisfying a

permutation identity x1x2 · · · xn = xi1xi2 · · ·xin , where i1 6= 1 or in 6= n, is epimorphical-

ly closed. Higgins [3] found an example of an identity whose both sides contain repeated
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variables and is not preserved under epis in conjunction with the identity xyzt = xzyt

(a seminormal identity). Thus the problem of finding those semigroup identities whose

both sides contain repeated variables and are preserved under epis in conjunction with a

seminormal identity appears worthwhile.

A necessary condition for a heterotypical variety to be saturated is that it admits

a heterotypical identity of which atleast one side has no repeated variable (see Higgins

[2], and Khan [6] for sufficient condition). Since every saturated variety of semigroups

is epimorphically closed, all heterotypical identities of which atleast one side has no re-

peated variable are preserved under epis in conjunction with any non trivial permutation

identity. In [8], Khan found some homotypical as well as heterotypical identities contain-

ing repeated variables on both sides that are preserved under epis in conjunction with

any seminormal identity. Recently in [10], Khan and Shah have found some suffecient

condition on homotypical identities containing repeated variables on both sides that are

preserved under epis in conjunction with a seminormal identity. It is, therefore, natural

to find all those heterotypical identities whose both sides contain repeated variables and

are preserved under epis in conjunction with a seminormal identity.

In the present paper, we enlarge the class of heterotypical identities whose both sides

contain repeated variables and are preserved under epis in conjunction with a seminormal

identity. However, a complete determination of all such heterotypical identities to be pre-

served under epis in conjunction with a seminormal identity remains still an open problem.

2. Preliminaries

Now, we quote some results that will be used in rest of the paper. We shall be using

standard notation and refer the reader to Clifford and Preston [1] and Howie [4] for any

unexplained symbols and terminology. Further, in what follows, we will often speak of a

semigroup satisfying a semigroup identity to mean that the semigroup in question satisfies

an identity of that type.
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Result 2.1 ([7, Proposition 3.1]). Let S be any permutative semigroup satisfying (1) with

n ≥ 3.

(i) For each g ∈ {2, 3, . . . , n} such that xg−1xg is not a subword of xi1xi2 · · ·xin, S

also satisfies the permutation identity

x1x2 · · ·xg−1xyxg · · ·xn = x1x2 · · ·xg−1yxxg · · ·xn.

(ii) If x1 6= xi1, then S also satisfies the permutation identity

xyx1x2 · · ·xn = yxx1x2 · · ·xn.

In the following result and elsewhere in the paper S(m), for any positive integer m and

semigroup S, will denote the set of all m-fold products of elements of S.

Result 2.2 ([7, Proposition 6.3]). Let S be any semigroup satisfying (1) with n ≥ 3.

Then for each g ∈ {2, 3, . . . , n} such that xg−1xg is not a subword of xi1xi2 · · ·xin, for all

m ≥ g − 1, p ≥ n− g + 1 and for all u ∈ S(m), v ∈ S(p), we have

ux1x2v = ux2x1v, for all x1, x2 ∈ S.

In particular, S(k) satisfies the normality identity for all k ≥ max(g − 1, n− g + 1).

Result 2.3 ([8, Theorem 3.1]). All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag

Theorem.

Result 2.4 ([5, Theorem 2.3] or [4, Theorem VII.2.13]). Let U be a subsemigroup of a

semigroup S and let d ∈ S. Then d ∈ Dom(U, S) if and only if d ∈ U or there exists a

series of factorizations of d as follows:

d = a0t1 = y1a1t1 = y1a2t2 = y2a3t2 = · · · = yma2m−1tm = yma2m, (2)

where m ≥ 1, ai ∈ U (i = 0, 1, . . . , 2m), yi, ti ∈ S (i = 1, 2, . . . ,m), and

a0 = y1a1, a2m−1tm = a2m,

a2i−1ti = a2iti+1, yia2i = yi+1a2i+1 (1 ≤ i ≤ m− 1).
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Such a series of factorization is called a zigzag in S over U with value d, length m and

spine a0, a1, . . . , a2m.

In whatever follows, we refer to the equations in Result 2.4 as the zigzag equations.

Result 2.5 ([7, Result 3]). Let U be any subsemigroup of a semigroup S and let d ∈

Dom(U, S) \ U . If (2) is a zigzag of minimal length m over U with value d, then

yj, tj ∈ S \ U for all j = 1, 2, . . . ,m.

Result 2.6 ([9, Proposition 2.1]). Let S be any permutative semigroup satisfying (1) with

n ≥ 3. Then for each g ∈ {2, 3, . . . , n} such that xg−1xg is not a subword of xi1xi2 · · ·xin,

for all m ≥ g − 1, p ≥ n− g + 1 and for all u ∈ S(m), v ∈ S(p), we have

ux1x2 · · ·x`v = uxλ1xλ2 · · ·xλ`v

for all x1, x2, . . . , x` ∈ S (` ≥ 2), where λ is any permutation of the set {1, 2, . . . , `}.

In the following results, let U and S be any semigroups with U dense in S.

Result 2.7 ([7, Result 4]). For any d ∈ S \U and k any positive integer, if (2) is a zigzag

of minimal length over U with value d, then there exist b1, b2, . . . , bk ∈ U and dk ∈ S \ U

such that d = b1b2 · · · bkdk.

Result 2.8 ([7, Corollary 4.2]). If U be permutative, then

sx1x2 · · ·xkt = sxj1xj2 · · ·xjkt

for all x1, x2, . . . , xk ∈ S, s, t ∈ S \ U and any permutation j of the set {1, 2, . . . , k}.

The following corollary easily folllows by Result 2.8

Corollary 2.9 ([9, Corollary 1.8]). For any d ∈ S and positive integer k, if d =

b1b2 · · · bkdk for some b1, b2, . . . , bk ∈ U and dk ∈ S \ U such that b1 = y1
′
c1 for some y1

′

in S \ U , c1 ∈ U , then dp = bp1b
p
2 · · · b

p
kd

p
k for any positive integer p.

The symmetrical statement in the following result is in addition to the original state-

ment.
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Result 2.10 ([8, Proposition 4.6]). Assume that U is permutative. If d ∈ S \ U and

(2) is a zigzag of length m over U with value d such that y1 ∈ S \ U , then dk = ak0t
k
1

for each positive integer k; in particular, the conclusion holds if (2) is of minimal length.

Symmetrically, if d ∈ S \U and (2) is a zigzag of length m over U with value d such that

tm ∈ S \ U , then dk = ykma
k
2m for each positive integer k; in particular, the conclusion

holds if (2) is of minimal length.

Result 2.11 ([9, Proposition 2.2]). Let U be any semigroup satisfying (1) with n ≥ 3.

Then for each g ∈ {2, 3, . . . , n} such that xg−1xg is not a subword of xi1xi2 · · ·xin, for all

m ≥ g − 1 and for all u ∈ S(m), v ∈ S \ U , we have

ux1x2 · · ·x`v = uxλ1xλ2 · · · xλ`v

for all x1, x2, . . . , x` ∈ S (` ≥ 2), where λ is any permutation of the set {1, 2, . . . , `}.

Symmetrically, for all p ≥ h− 1 such that xn−hxn−(h−1) is not a subword of xi1xi2 · · ·xin
and for all v ∈ S(p), u ∈ S \ U , we have

ux1x2 · · ·x`v = uxλ1xλ2 · · · xλ`v

for all x1, x2, . . . , x` ∈ S (` ≥ 2), where λ is any permutation of the set {1, 2, . . . , `}.

3. Main results

Throughout the paper, we shall assume that U is any permutative semigroup satisfying

a seminormal permutation identity and is dense in the semigroup S.

To avoid introduction of new symbols, we shall treat, wherever is appropriate, x1, . . . ,xr,

y1,y2, . . . ,ys,w1,w2, . . . ,w`, z1, z2, . . . , zp etc. as variables as well as the members of a

semigroup without explicit mention of distinction. Further for any word u and any vari-

able x of u, |x|u will denote the number of occurrences of x in the word u.

Lemma 3.1. Let u and v be any words in w1, w2, . . . , w` and z1, z2, . . . , zp respective-

ly. Let p1, p2, . . . , pr, q1, q2, . . . , qs are any positive integers such that p1 ≤ p2 ≤ · · · ≤ pr;

qs ≤ · · · ≤ q2 ≤ q1(r, s ≥ 1). If U satisfies the semigroup identity
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xp11 · · ·xprr u(w1, . . . , w`)y
q1
1 · · · yqss = xp11 · · ·xprr v(z1, . . . , zp)y

q1
1 · · · yqss (3)

then (3) is also satisfied for all x1, x2, . . . , xr, y1, y2, . . . , ys ∈ S and w1, w2, . . . , w`, z1,

z2, . . . , zp in U .

Proof. Since U satisfies a seminormal identity, by Result 2.3, S also satisfies a semi-

normal identity. Now we shall show that the identity (3) satisfied by U is also satisfied

when x1, x2, . . . , xr, y1, y2, . . . , ys ∈ S and z1, z2, . . . , zp, w1, w2, . . . , w` ∈ U .

Case (i): First, take any x1, x2, . . . , xr ∈ S and y1, . . . , ys, w1, . . . , w`, z1, . . . , zp ∈ U.

If x1, x2, . . . , xr ∈ U , then (3) holds trivially. So assume without loss of generality that

x1 ∈ S \ U . Let (2) be a zigzag of minimal length m over U with value x1. Then

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= yp1m a
p1
2mx

p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

(by the zigzag equations and Result 2.10)

= yp1m a
p1
2mx

p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · yqss (as U satisfies (3) )

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · yqss .

(by the zigzag equations and Result 2.10)

We, now, assume inductively that the result is true for all x1, . . . , xk−1 ∈ S and xk, . . . , xr

in U . We shall prove that the result is also true for all x1, . . . , xk ∈ S and xk+1, . . . , xr ∈ U .

Again if xk ∈ U , then the result follows by the inductive hypothesis. So assume that

xk ∈ S \ U . Let (2) be a zigzag of minimal length in S over U with value xk. Now,

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·x

pk−1

k−1 y
pk
m a

pk
2mx

pk+1

k+1 · · ·xprr u(w1, w2, . . . , w`)y
q1
1 y

q2
2 · · · yqss

(by Result 2.10 and zigzag equations)

= wy
(m)
m

pk
b
(m)
1

pk · · · b(m)
k−1

pk
apk2mx

pk+1

k+1 · · ·xprr u(w1, w2, . . . , w`)y
q1
1 y

q2
2 · · · yqss

(by Results 2.4 and 2.5 for some b
(m)
1 , . . . , b

(m)
k−1 ∈ U and y

(m)
m ∈ S\U as ym
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in S\U and a2m = a2m−1tm with tm ∈ S\U and where w = xp11 x
p2
2 · · ·x

pk−1

k−1 )

= wy
(m)
m

pk
v(m)b

(m)
1

p1 · · · b(m)
k−1

pk−1

apk2mx
pk+1

k+1 · · ·xprr u(w1, w2, . . . , w`)y
q1
1 y

q2
2 · · · yqss

(by Result 2.5 as y
(m)
m , tm ∈ S\U and where v(m) = b

(m)
1

pk−p1 · · · b(m)
k−1

pk−pk−1

)

= wy
(m)
m

pk
v(m)b

(m)
1

p1 · · · b(m)
k−1

pk−1

apk2mx
pk+1

k+1 · · ·xprr v(z1, z2, . . . , zp)y
q1
1 y

q2
2 · · · yqss

(as U satisfies (3))

= wy
(m)
m

pk
b
(m)
1

pk · · · b(m)
k−1

pk
apk2mx

pk+1

k+1 · · · xprr v(z1, z2, . . . , zp)y
q1
1 y

q2
2 · · · yqss

(by Result 2.5 and the definition of v(m))

= xp11 x
p2
2 · · ·x

pk−1

k−1 y
pk
m a

pk
2mx

pk+1

k+1 · · ·xprr v(z1, z2, . . . , zp)y
q1
1 y

q2
2 · · · yqss

(as y
(m)
m

pk
b
(m)
1

pk · · · b(m)
k−1

pk
= ypkm and w = xp11 x

p2
2 · · ·x

pk−1

k−1 )

= xp11 x
p2
2 · · ·x

pk−1

k−1 x
pk
k x

pk+1

k+1 · · ·xprr v(z1, z2, . . . , zp)y
q1
1 y

q2
2 · · · yqss

(by Result 2.10 and zigzag equations)

as required.

Case(ii): Now we show that (3) is satisfied for all x1, x2, . . . , xr, y1, y2, . . . , ys ∈ S and

w1, w2, . . . , w`, z1, z2, . . . , zp ∈ U. Again, we can assume without loss of generality that

y1 ∈ S \ U . Let (2) be a zigzag of minimal length m over U with value y1, we have

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)a

q1
0 t

q1
1 y

q2
2 · · · yqss

(by the zigzag equations and Result 2.10)

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)a

q1
0 c

(1)
2

q1 · · · c(1)s
q1
t
(1)
1

q1
yq22 · · · yqss (4)

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)a

q1
0 c

(1)
2

q2 · · · c(1)s
qs
w(1)t

(1)
1

q1
yq22 · · · yqss (5)
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= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)a

q1
0 c

(1)
2

q2 · · · c(1)s
qs
w(1)t

(1)
1

q1
yq22 · · · yqss

(as U satisfies (3))

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)a

q1
0 c

(1)
2

q1 · · · c(1)s
q1
t
(1)
1

q1
yq22 · · · yqss

(by Result 2.5 and definition of w(1))

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)a

q1
0 t

q1
1 y

q2
2 · · · yqss

(by Result 2.5 as c
(1)
2

q1 · · · c(1)s
q1
t
(1)
1

q1
= tq11 )

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · yqss

(by the zigzag equations and Result 2.10)

as the equalities (4) and (5) follow by Results 2.4 and 2.5 for some c
(1)
2 , . . . , c

(1)
s in

U and t
(1)
1 ∈ S \ U as y1, t1 ∈ S \ U and where w(1) = c

(1)
2

q1−q2 · · · c(1)s
q1−qs

respective-

ly.

Now, we assume inductively that the result is true for all y1, . . . , yk−1 ∈ S and yk, . . . , ys

in U . We shall prove that the result is also true for all y1, . . . , yk−1, yk ∈ S and yk+1, . . . , ys

in U . Again if yk ∈ U , then the result follows by the inductive hypothesis. So assume

that yk ∈ S \ U . Let (2) be a zigzag of minimal length m in S over U with value yk.

Now as the equalities (6) and (7) follow by Results 2.4 and 2.5 for some c
(1)
k+1, . . . , c

(1)
s in

U and t
(1)
1 ∈ S \ U as y1, t1 ∈ S \ U and where v = y

qk+1

k+1 · · · yqss , and by Result 2.5 as

a0 = y1a1, y1, t
(1)
1 ∈ S\U and where w(1) = c

(1)
k+1

qk−qk+1 · · · c(1)s
qk−qs

respectively, we have
xp11 x

p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · y

qk−1

k−1 a
qk
0 t

qk
1 y

qk+1

k+1 · · · yqss
(by Result 2.10 and zigzag equations)

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · y

qk−1

k−1 a
qk
0 c

(1)
k+1

qk · · · c(1)s
qk
t
(1)
1

qk
v (6)

= xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · y

qk−1

k−1 a
qk
0 c

(1)
k+1

qk+1 · · · c(1)s
qs
w(1)t

(1)
1

qk
v (7)
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= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · y

qk−1

k−1 a
qk
0 c

(1)
k+1

qk+1 · · · c(1)s
qs
w(1)t

(1)
1

qk
v

(by the inductive hypothesis )

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · y

qk−1

k−1 a
qk
0 c

qk
k+1 · · · cqks t

(1)
1

qk
v

(by Result 2.5 and the definition of w(1))

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 · · · y

qk−1

k−1 a
qk
0 t

qk
1 y

qk+1

k+1 · · · yqss
(by Result 2.5 as c

(1)
k+1

qk · · · c(1)s
qk
t
(1)
1

qk
= tqk1 and the definition of v)

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · y

qk−1

k−1 y
qk
k y

qk+1

k+1 · · · yqss
(by Result 2.10 and zigzag equations)

as required. This completes the proof of the lemma. �

Following [10], for any seminormal identity (1), let g0 = minP , the minimum of P , where

P = {2 ≤ g ≤ n− 2 : xg−1xg is not a subword of xi1xi2 · · · xin}.

Similarly, let h0 = minQ, where

Q = {1 ≤ h ≤ n− g0 − 1 : xn−hxn−(h−1) is not a subword of xi1xi2 · · · xin}.

In whatever follows, g0 and h0 will stand as defined above. We shall also assume

that p1,p2, . . . ,pr, q1,q2, . . . ,qs be any positive integers such that

p1 + · · ·+ pr ≥ g0 − 1,q1 + · · ·+ qs ≥ h0 − 1,

p1 ≤ · · · ≤ pr and qs ≤ · · · ≤ q1(r, s ≥ 1) without further mention.

The following corollary directly follows from Result 2.11 and Lemma 3.1.

Corollary 3.2. Let m1,m2, . . . ,m`, n1, n2, . . . , np be any positive integers. If U satisfies

the identity

xp11 x
p2
2 · · ·xprr w

m1
1 · · ·w

m`
` yq11 y

q2
2 · · · yqss = xp11 x

p2
2 · · ·xprr w

mj1
j1
· · ·wmj`j`

yq11 y
q2
2 · · · yqss
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= xp11 x
p2
2 · · ·xprr z

n1
1 · · · znpp y

q1
1 y

q2
2 · · · yqss = xp11 x

p2
2 · · ·xprr z

nλ1
λ1
· · · znλpλp

yq11 y
q2
2 · · · yqss (8)

where j and λ are any permutations of {1, 2, . . . , `} and {1, 2, . . . , p} respectively, then (8)

is satisfied for all x1, x2, . . . , xr, y1, y2, . . . , ys ∈ S and w1, w2, . . . , w`, z1, z2, . . . , zp ∈ U .

The following corollary follows easily by Result 2.11 as p1 + p2 + · · · + pr ≥ g0 − 1 and

q1 + q2 + · · ·+ qs ≥ h0 − 1.

Corollary 3.3. Let S be any permutative semigroup satisfying a seminormal identity. Let

u be any word in the variables z1, z2, . . . , z` and let zj ∈ C(u), for some j ∈ {1, 2, . . . , `},

be such that zj ∈ S. If zj = xa = by, for all x, y, a, b ∈ S, then

xp11 x
p2
2 · · · xprr u(z1, z2, . . . , zj, . . . , z`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·xprr (x)|zj |uu(z1, z2, . . . , zj−1, a, zj+1, . . . , z`)y

q1
1 y

q2
2 · · · yqss

[xp11 x
p2
2 · · · xprr u(z1, z2, . . . , zj, . . . , z`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·xprr u(z1, z2, . . . , zj−1, b, zj+1, . . . , z`)(y)|zj |uyq11 y

q2
2 · · · yqss ].

Further, if zj = s1cs2 for all s1, c, s2 ∈ S, then

xp11 x
p2
2 · · ·xprr u(z1, z2, . . . , zj, . . . , z`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · · xprr (sk1)

|zj |u(sk2)
|zj |uu(z1, z2, . . . , zj−1, c, zj+1, . . . , z`)y

q1
1 y

q2
2 · · · yqss

[xp11 x
p2
2 · · · xprr u(z1, z2, . . . , zj, . . . , z`)y

q1
1 y

q2
2 · · · yqss

= xp11 x
p2
2 · · ·xprr u(z1, z2, . . . , zj−1, c, zj+1, . . . , z`)(sk1)

|zj |u(sk2)
|zj |uyq11 y

q2
2 · · · yqss ],

where k is any permutation on the set {1,2}.

Proposition 3.4. Let u and v be any words in w1, w2, . . . , w` and z1, z2, . . . , zp respectively

and let the identity

xp11 · · ·xprr u(w1, . . . , w`)y
q1
1 · · · yqss = xp11 · · ·xprr v(z1, . . . , zp)y

q1
1 · · · yqss

holds for all x1, x2, . . . , xr, y1, y2, . . . , ys ∈ S and w1, w2, . . . , w`, z1, z2, . . . , zp in U .

Then the identity

xpu(w1, . . . , w`)y
q1
1 · · · yqss = xpv(z1, . . . , zp)y

q1
1 · · · yqss
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[xp11 · · ·xprr u(w1, . . . , w`)y
q = xp11 · · ·xprr v(z1, . . . , zp)y

q]

holds for all x ∈ S \ U , y1, . . . , ys ∈ S,w1, . . . , w`, z1, . . . , zp in U , and positive integer

p ≥ pr [for all y ∈ S \ U , x1, . . . , xr ∈ S, w1, . . . , w`, z1, . . . , zp in U , and positive integer

q ≥ q1].

Proof. We have

xpu(w1, w2, . . . , w`)y
q1
1 · · · yqss

= xp−prxpru(w1, w2, . . . , w`)y
q1
1 · · · yqss

= xp−prx
′pr
apr1 . . . aprr u(w1, w2, . . . , w`)y

q1
1 · · · yqss

(by Result 2.7 and Corollary 2.9 for some a1, . . . , ar ∈ U and

x
′ ∈ S\U as ar = brz

′
r for some z

′
r ∈ S\U, br ∈ U)

= xp−prx
′pr
wap11 . . . aprr u(w1, w2, . . . , w`)y

q1
1 · · · yqss

(by Corollary 2.9 as ar = brz
′
r and where w = apr−p11 · · · apr−pr−1

r−1 )

= xp−prx
′pr
wap11 . . . aprr v(z1, z2, . . . , zp)y

q1
1 · · · yqss

= xp−prx
′pr
apr1 . . . aprr v(z1, z2, . . . , zp)y

q1
1 · · · yqss (by defenition of w)

= xp−prxprv(z1, z2, . . . , zp)y
q1
1 · · · yqss

(by Result 2.7 and Corollary 2.9 as xpr = x
′pr
apr1 . . . aprr )

= xpv(z1, z2, . . . , zp)y
q1
1 · · · yqss

as required. Dual statement may be proved on the similar lines. �

Theorem 3.5. Let u and v be any words in w1, w2, . . . , w` and z1, z2, . . . , zp respec-

tively such that ∀ i ∈ {1, 2, . . . , `} and ∀ j ∈ {1, 2, . . . , p}, min{|wi|u, |zj|v} ≥ min{pr, q1}.

Then all heterotypical identities of the form
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xp11 · · ·xprr u(w1, . . . , w`)y
q1
1 · · · yqss = xp11 · · ·xprr v(z1, . . . , zp)y

q1
1 · · · yqss (9)

are preserved under epis in conjunction with a seminormal identity.

Proof. We shall prove the theorem for Case when min{pr, q1} = pr, the proof in

other case follows along similar lines. As U satisfy a seminormal identity, by Result

2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (9), then

so does S. So let x1, x2, . . . , xr, y1, y2, . . . , ys, w1, w2, . . . , w`, z1, z2, . . . , zp in S. If all of

w1, w2, . . . , w`, z1, z2, . . . , zp are from U , then the result holds by Lemma 3.1. So, assume

that not all of w1, w2, . . . , w`, z1, z2, . . . , zp are from U . Now to show that the identity (9)

is satisfied by S, we shall first prove that

xp11 · · ·xprr u(w1, . . . , w`)y
q1
1 · · · yqss = xp11 · · ·xprr v(v1, . . . , vp)y

q1
1 · · · yqss (10)

for all x1, x2, . . . , xr, y1, y2, . . . , ys, w1, w2, . . . , w` ∈ S and v1, v2, . . . , vp ∈ U . We prove the

equality (10) by induction on the number k of arguments w1, w2, . . . , wk in S, by assum-

ing that the remaining arguments wk+1, . . . , w` ∈ U . So, first, assume that w1 ∈ S and

w2, . . . , w` ∈ U . When w1 ∈ U , equality (10) is satisfied by Lemma 3.1. So, let w1 ∈ S\U .

Let (2) be a zigzag of minimal length m over U with value w1. Letting x = xp11 x
p2
2 · · ·xprr

and y = yq11 y
q2
2 · · · yqss , we have

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xu(yma2m, w2, . . . , w`)y (by the zigzag equations)

= x(ym)|w1|uu(a2m, w2, . . . , w`)y (by Corollary 3.3)

= x(ym)|w1|uv(v1, v2, . . . , vp)y (by Proposition 3.4 as ym ∈ S \ U and |w1|u ≥ pr)

= x(ym)|w1|uu(a2m−1, w2, . . . , w`)y

(by Proposition 3.4 as ym ∈ S \ U and |w1|u ≥ pr)

= xu(yma2m−1, w2, . . . , w`)y (by Corollary 3.3)
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= xu(ym−1a2m−2, w2 . . . , w`)y (by the zigzag equations)

= x(ym−1)
|w1|uu(a2m−2, w2, . . . , w`)y (by Corollary 3.3)

...

= x(y1)
|w1|uu(a2, w2, . . . , w`)y

= x(y1)
|w1|uv(v1, v2, . . . , vp)y (by Proposition 3.4 as y1 ∈ S \ U and |w1|u ≥ pr)

= x(y1)
|w1|uu(a1, w2, . . . , w`)y (by Proposition 3.4 as y1 ∈ S \ U and |w1|u ≥ pr)

= xu(y1a1, w2, . . . , w`)y (by Corollary 3.3)

= xu(a0, w2, . . . , w`)y (by the zigzag equations)

= xp11 x
p2
2 · · ·xprr v(v1, v2, . . . , vp)y

q1
1 y

q2
2 · · · yqss

(by Lemma 3.1 and as x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss )

as required.

Next, assume inductively that the equality (10) holds for all x1, x2, . . . , xr, y1, y2, . . . , ys,

w1, w2, . . . , wk−1 in S and wk, wk+1, . . . , w` in U . From this we shall prove that the e-

quality (10) also holds for all x1, x2, . . . , xr, y1, y2, . . . , ys, w1, w2, . . . , wk−1, wk in S and

wk+1, . . . , w` ∈ U . If wk ∈ U , then the equality (10) follows by the inductive hypothesis.

So, assume that wk ∈ S \ U . Let (2) be a zigzag of minimal length m over U with value

wk. Now, for any v1, v2, . . . vp ∈ U , we have

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , wk−1, wk, wk+1, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xu(w1, w2, . . . , wk−1, yma2m, wk+1, . . . , w`)y (by the zigzag equations)

= x(ym)|wk|uu(w1, w2, . . . , wk−1, a2m, wk+1, . . . , w`)y (by Corollary 3.3)
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= x(ym)|wk|uv(v1, v2, . . . , vp)y(by the inductive hypothesis and Proposition 3.4 as

ym ∈ S \ U and |wk|u ≥ pr)

= x(ym)|wk|uu(w1, w2, . . . , wk−1, a2m−1, wk+1, . . . , w`)(by the inductive hypothesis

and Proposition 3.4 as ym ∈ S \ U and |wk|u ≥ pr)

= xu(w1, w2, . . . , wk−1, yma2m−1, wk+1, . . . , w`)y (by Corollary 3.3)

= xu(w1, w2, . . . , wk−1, ym−1a2m−2, wk+1, . . . , w`) (by the zigzag equations)

= x(ym−1)
|wk|uu(w1, w2, . . . , wk−1, a2m−2, wk+1, . . . , w`)y (by Corollary 3.3)

...

= xy
|wk|u
1 u(w1, w2, . . . , wk−1, a2, wk+1, . . . , w`)y

= xy
|wk|u
1 v(v1, v2, . . . , vp)y(by the inductive hypothesis and Proposition 3.4 as

y1 ∈ S \ U and |wk|u ≥ pr)

= xy
|wk|u
1 u(w1, w2, . . . , wk−1, a1, wk+1, . . . , w`)y

(by the inductive hypothesis as y1 ∈ S \ U and |wk|u ≥ pr)

= xu(w1, w2, . . . , wk−1, y1a1, wk+1, . . . , w`)y (by Corollary 3.3)

= xu(w1, w2, . . . , wk−1, a0, wk+1, . . . , w`)y (by the zigzag equations)

= xp11 x
p2
2 · · ·xprr v(v1, v2, . . . , vp)y

q1
1 y

q2
2 · · · yqss

(by the inductive hypothesis and as x = xp11 x
p2
2 · · · xprr and y = yq11 y

q2
2 · · · yqss )

as required.
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Similarly, we may prove that

xp11 · · · xprr v(z1, . . . , zp)y
q1
1 · · · yqss = xp11 · · ·xprr u(u1, . . . , u`)y

q1
1 · · · yqss (11)

for all x1, x2, . . . , xr, y1, y2, . . . , ys, z1, z2, . . . , zp ∈ S and u1, u2, . . . , u` ∈ U .

Now, using Lemma 3.1 and equations (10) and (11), we have

xp11 x
p2
2 · · ·xprr u(w1, w2, . . . , w`)y

q1
1 y

q2
2 · · · yqss

= xv(v1, v2, . . . , vp)y

= xu(u1, u2, . . . , u`)y

= xp11 x
p2
2 · · ·xprr v(z1, z2, . . . , zp)y

q1
1 y

q2
2 · · · yqss .

(as x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss )

This completes the proof of Theorem. �

Proposition 3.6. Let u and v be any words in w1, . . . , w`, z1, . . . , zp (`, p ≥ 1) and

w1, . . . , w` (` ≥ 1) respectively such that ∀ i ∈ {1, 2, . . . , `}, min{|wi|u, |wi|v} ≥ min{pr, q1}.

If U satisfies

xp11 · · ·xprr u(w1, . . . , w`, z1, . . . , zp)y
q1
1 · · · yqss = xp11 · · ·xprr v(w1, . . . , w`)y

q1
1 · · · yqss , (12)

then (12) is also satisfied for all x1, . . . , xr, y1, . . . , ys, w1, . . . , w` ∈ S and for all z1, . . . , zp

in U .

Proof. We shall prove the theorem for the case when min{pr, q1} = pr, the proof in

other case follows along similar lines. As U satisfy a seminormal identity, by Result

2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (12), then

(12) is also satisfied for all x1, . . . , xr, y1, . . . , ys, w1, . . . , w` in S and z1, . . . , zp ∈ U . If

x1, . . . , xr, y1, . . . , ys ∈ S and all of w1, . . . , w`, z1, . . . , zp ∈ U , then (12) holds by Lem-

ma 3.1. So, assume first that not all of w1, . . . , w` are from U . We prove the equality
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(12) by induction on the number k of arguments w1, . . . , wk of the word u in S, as-

suming that the remaining arguments wk+1, . . . , w` ∈ U . So assume that w1 ∈ S and

w2, . . . , w` are from U . When w1 ∈ U , then (12) is satisfied by Lemma 3.1. So assume

that w1 ∈ S \ U . Let (2) be a zigzag of minimal length m over U with value w1. Letting

x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss , we have

xp11 x
p2
2 · · ·xprr u(w1, . . . , w`, z1, . . . , zp)y

q1
1 y

q2
2 · · · yqss

= xu(yma2m, w2, . . . , w`, z1, . . . , zp)y (by the zigzag equations)

= x(ym)|w1|uu(a2m, w2, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(ym)|w1|uv(a2m, w2, . . . , w`)y

(by Proposition 3.4 as ym ∈ S \ U and |w1|u ≥ pr)

= x(ym)|w1|uv(a2m−1tm, w2, . . . , w`)y (by the zigzag equations)

= x(ym)|w1|u(tm)|w1|vv(a2m−1, w2, . . . , w`)y (by Corollary 3.3)

= x(ym)|w1|u(tm)|w1|vu(a2m−1, w2, . . . , w`, z1, . . . , zp)y

(by Proposition 3.4 as tm ∈ S \ U and |w1|v ≥ pr)

= x(tm)|w1|vu(yma2m−1, w2, . . . , w`, z1, . . . , zp)y(by Corollary 3.3)

= x(tm)|w1|vu(ym−1a2m−2, w2, . . . , w`, z1, . . . , zp)y (by the zigzag equations)
...

= x(t2)
|w1|vu(y1a2, w2, . . . , w`, z1, . . . , zp)y

= x(y1)
|w1|u(t2)

|w1|vu(a2, w2, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)
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= x(y1)
|w1|u(t2)

|w1|vv(a2, w2, . . . , w`)y

(by Proposition 3.4 as t2 ∈ S \ U and |w1|v ≥ pr)

= x(y1)
|w1|uv(a2t2, w2, . . . , w`)y (by Corollary 3.3)

= x(y1)
|w1|uv(a1t1, w2, . . . , w`)y (by the zigzag equations)

= x(y1)
|w1|u(t1)

|w1|vv(a1, w2, . . . , w`)y (by Corollary 3.3)

= x(y1)
|w1|u(t1)

|w1|vu(a1, w2, . . . , w`, z1, . . . , zp)y

(by Proposition 3.4 as t1 ∈ S \ U and |w1|v ≥ pr)

= x(t1)
|w1|vu(y1a1, w2, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(t1)
|w1|vu(a0, w2, . . . , w`, z1, . . . , zp)y (by the zigzag equations)

= x(t1)
|w1|vv(a0, w2, . . . , w`)y (by Proposition 3.4 as t1 ∈ S \ U and |w1|v ≥ pr)

= xv(a0t1, w2, . . . , w`)y (by Corollary 3.3)

= xp11 x
p2
2 · · ·xprr v(w1, . . . , w`)y

q1
1 y

q2
2 · · · yqss

(by the zigzag equations and as x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss )

as required.

Next, assume inductively that (12) holds for all x1, . . . , xr, y1, . . . , ys in S and all of

w1, . . . , wk−1 ∈ S, and wk, wk+1, . . . w`, z1, . . . , zp ∈ U . From this, we shall prove that (12)

holds for all x1, . . . , xr, y1, . . . , ys ∈ S, w1, . . . , wk−1, wk ∈ S and wk+1, . . . w`, z1, . . . , zp in

U . If wk ∈ U , then the equality (12) follows by the inductive hypothesis. So, assume that

wk ∈ S \ U . Let (2) be a zigzag of minimum length m over U with value wk. Now, we
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have

xp11 x
p2
2 · · ·xprr u(w1, . . . , wk, . . . , w`, z1, . . . , zp)y

q1
1 y

q2
2 · · · yqss

= xu(w1, . . . , yma2m, wk+1, . . . , w`, z1, . . . , zp)y (by the zigzag equations)

= x(ym)|wk|uu(w1, . . . , a2m, wk+1, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(ym)|wk|uv(w1, . . . , a2m, wk+1, . . . , w`)y

(by the inductive hypothesis and Proposition 3.4 as ym ∈ S \ U, |wk|u ≥ pr)

= x(ym)|wk|uv(w1, . . . , a2m−1tm, wk+1, . . . , w`)y (by the zigzag equations)

= x(ym)|wk|u(tm)|wk|vv(w1, . . . , a2m−1, wk+1, . . . , w`)y (by Corollary 3.3)

= x(ym)|wk|u(tm)|wk|vu(w1, . . . , a2m−1, wk+1, . . . , w`, z1, . . . , zp)y

(by the inductive hypothesis and Proposition 3.4 as tm ∈ S \ U, |wk|v ≥ pr)

= x(tm)|wk|vu(w1, . . . , yma2m−1, wk+1, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(tm)|wk|vu(w1, . . . , ym−1a2m−2, wk+1, . . . , w`, z1, . . . , zp)y

(by the zigzag equations)
...

= x(t2)
|wk|vu(w1, . . . , y1a2, wk+1, . . . , w`, z1, . . . , zp)y

= x(y1)
|wk|u(t2)

|wk|vu(w1, . . . , a2, wk+1, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(y1)
|wk|u(t2)

|wk|vv(w1, . . . , a2, wk+1, . . . , w`)y

(by the inductive hypothesis and Proposition 3.4 as t2 ∈ S \ U, |wk|v ≥ pr)

= x(y1)
|wk|uv(w1, . . . , a2t2, wk+1, . . . , w`)y (by Corollary 3.3)
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= x(y1)
|wk|uv(w1, . . . , a1t1, wk+1, . . . , w`)y (by the zigzag equations)

= x(y1)
|wk|u(t1)

|wk|vv(w1, . . . , a1, wk+1, . . . , w`)y (by Corollary 3.3)

= x(y1)
|wk|u(t1)

|wk|vu(w1, . . . , a1, wk+1, . . . , w`, z1, . . . , zp)y

(by the inductive hypothesis and Proposition 3.4 as t1 ∈ S \ U, |wk|v ≥ pr)

= x(t1)
|wk|vu(w1, . . . , y1a1, wk+1, . . . , w`, z1, . . . , zp)y (by Corollary 3.3)

= x(t1)
|wk|vu(w1, . . . , a0, wk+1, . . . , w`, z1, . . . , zp)y (by the zigzag equations)

= x(t1)
|wk|vv(w1, . . . , a0, wk+1, . . . , w`)y

(by the inductive hypothesis and Proposition 3.4 as t1 ∈ S \ U, |wk|v ≥ pr)

= xv(w1, . . . , a0t1, wk+1, . . . , w`)y (by Corollary 3.3)

= xp11 x
p2
2 · · ·xprr v(w1, . . . , wk, . . . , w`)y

q1
1 y

q2
2 · · · yqss

(by the zigzag equations and as x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss )

as required.

This completes the proof of the proposition. �

Proposition 3.7. Let U be a semigroup satisfying a seminormal identity and dense in S.

Let u and v be any words in w1, w2, . . . , w`, z1, z2 . . . , zp (`, p ≥ 1) and w1, w2 . . . , w` (` ≥

1) respectively such that for each i ∈ {1, . . . , `} and j ∈ {1, . . . , p}, min{|wi|u, |wi|v, |zj|u}

≥ min{pr, q1}. If U satisfies

xp11 · · ·xprr u(w1, . . . , w`, z1, . . . , zp)y
q1
1 · · · yqss = xp11 · · ·xprr v(w1, . . . , w`)y

q1
1 · · · yqss (13)

then so does S.
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Proof. We shall prove the theorem in the Case when min{pr, q1} = pr, the proof in

other case follows along similar lines. As U satisfy a seminormal identity, by Result 2.3,

S also satisfy a seminormal identity. We shall show that if U satisfies (13), then so does

S. If x1, . . . , xr, y1, . . . , ys in S and all of w1, . . . , w`, z1, . . . , zp ∈ U , then (13) holds by

Lemma 3.1, and if all of x1, . . . , xr, y1, . . . , ys, w1, . . . , w` ∈ S and z1, . . . , zp ∈ U , then (13)

holds by Proposition 3.6. So assume that not all of z1, . . . , zp ∈ U . We prove the equality

(13) by induction on the number k of arguments z1, . . . , zk of u in S, assuming that the

remaining arguments zk+1, . . . , zp in U . First assume that z1 ∈ S and z2, . . . , zp ∈ U .

When z1 ∈ U , then (13) is satisfied by Proposition 3.6. So assume that z1 ∈ S \ U .

By Result 2.4, let (2) be a zigzag of minimal length m over U with value z1. Letting

x = xp11 x
p2
2 · · ·xprr and y = yq11 y

q2
2 · · · yqss , we have

xp11 x
p2
2 · · ·xprr u(w1, . . . , w`, z1, . . . , zp)y

q1
1 y

q2
2 · · · yqss

= xu(w1, . . . , w`, yma2m, z2, . . . , zp)y (by the zigzag equations)

= x(ym)|z1|uu(w1, . . . , w`, a2m, z2, . . . , zp)y (by Corollary 3.3)

= x(ym)|z1|uv(w1, . . . , w`)y (by Proposition 3.6 as |z1|u ≥ pr)

= x(ym)|z1|uu(w1, . . . , w`, a2m−1, z2, . . . , zp)y (by Proposition 3.6 as |z1|u ≥ pr)

= xu(w1, . . . , w`, yma2m−1, z2, . . . , zp)y (by Corollary 3.3)

= xu(w1, . . . , w`, ym−1a2m−2, z2, . . . , zp)y (by the zigzag equations)

= x(ym−1)
|z1|uu(w1, . . . , w`, a2m−2, z2, . . . , zp)y (by Corollary 3.3)

= x(ym−1)
|z1|uv(w1, . . . , w`)y (by Proposition 3.6 as |z1|u ≥ pr)
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= x(ym−1)
|z1|uu(w1, . . . , w`, a2m−3, z2, . . . , zp)y (by Proposition 3.6 as |z1|u ≥ pr)

...

= x(y1)
|z1|uu(w1, . . . , w`, a2, z2, . . . , zp)y

= x(y1)
|z1|uv(w1, . . . , w`)y (by Proposition 3.6 as |z1|u ≥ pr)

= x(y1)
|z1|uu(w1, . . . , w`, a1, z2, . . . , zp)y (by Proposition 3.6 as |z1|u ≥ pr)

= xu(w1, . . . , w`, y1a1, z2, . . . , zp)y (by Corollary 3.3)

= xu(w1, . . . , w`, a0, z2, . . . , zp)y (by the zigzag equations)

= xp11 x
p2
2 · · ·xprr v(w1, . . . , w`)y

q1
1 y

q2
2 · · · yqss

(by Proposition 3.6 and as x = xp11 x
p2
2 · · · xprr and y = yq11 y

q2
2 · · · yqss ) as required.

Next, assume inductively that (13) holds for all zk, zk+1, . . . , zp ∈ U and x1, x2, . . . , xr, y1,

y2, . . . , ys, w1, . . . , w`, z1, . . . , zk−1 ∈ S. From this, we shall prove that (13) holds for all

x1, . . . , xr, y1, . . . , ys, w1, . . . , w`, z1, . . . , zk−1, zk in S and zk+1, . . . , zp in U . If zk ∈ U , then

the equality (13) follows by the inductive hypothesis. So, assume that zk ∈ S \ U . Let

(2) be a zigzag of minimal length m over U with value zk. Now

xp11 x
p2
2 · · ·xprr u(w1, . . . , w`, z1, . . . , zk, . . . , zp)y

q1
1 y

q2
2 · · · yqss

= xu(w1, . . . , w`, z1, . . . , yma2m, zk+1, . . . , zp)y (by the zigzag equations)

= x(ym)|zk|uu(w1, . . . , w`, z1, . . . , a2m, zk+1, . . . , zp)y (by Corollary 3.3)

= x(ym)|zk|uv(w1, . . . , w`)y (by the inductive hypothesis as |zk|u ≥ pr)



ON EPIMORPHISMS AND SEMINORMAL IDENTITIES 23

= x(ym)|zk|uu(w1, . . . , w`, z1, . . . , a2m−1, zk+1, . . . , zp)y

(by the inductive hypothesis as |zk|u ≥ pr)

= xu(w1, . . . , w`, z1, . . . , yma2m−1, zk+1, . . . , zp)y (by Corollary 3.3)

= xu(w1, . . . , w`, z1, . . . , ym−1a2m−2, zk+1, . . . , zp)y (by the zigzag equations)

= x(ym−1)
|zk|uu(w1, . . . , w`, z1, . . . , a2m−2, zk+1, . . . , zp)y (by Corollary 3.3)

= x(ym−1)
|zk|uv(w1, . . . , w`)y (by the inductive hypothesis as |zk|u ≥ pr)

= x(ym−1)
|zk|uu(w1, . . . , w`, z1, . . . , a2m−3, zk+1, . . . zp)y

(by the inductive hypothesis as |zk|u ≥ pr)
...

= x(y1)
|zk|uu(w1, . . . , w`, z1, . . . , a2, zk+1, . . . , zp)y

= x(y1)
|zk|uv(w1, . . . , w`)y (by the inductive hypothesis as |zk|u ≥ pr)

= x(y1)
|zk|uu(w1, . . . , w`, z1, . . . , a1, zk+1, . . . , zp)y

(by the inductive hypothesis as |zk|u ≥ pr)

= xu(w1, . . . , w`, z1, . . . , y1a1, zk+1, . . . , zp)y (by Corollary 3.3)

= xu(w1, . . . , w`, z1, . . . , a0, zk+1, . . . , zp)y (by the zigzag equations)

= xp11 x
p2
2 · · ·xprr v(w1, . . . , w`)y

q1
1 y

q2
2 · · · yqss

(by the inductive hypothesis and as x = xp11 x
p2
2 · · · xprr and y = yq11 y

q2
2 · · · yqss )

as required. Thus the proof of the Proposition is completed. �
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Now combining Propositions 3.6 and 3.7, we get the following.

Theorem 3.8. All heterotypical identities of the forms

xp11 · · ·xprr u(w1, . . . , w`, z1, . . . , zp)y
q1
1 · · · yqss = xp11 · · ·xprr v(w1, . . . , w`)y

q1
1 · · · yqss ,

where u and v be any words in w1, . . . , w`, z1, . . . , zp(`, p ≥ 1) and w1, . . . , w`(` ≥ 1) such

that for each i ∈ {1, . . . , `} and j ∈ {1, . . . , p}, min{|wi|u, |wi|v, |zj|u} ≥ min{pr, q1} are

preserved under epis in conjunction with a seminormal identity.
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