

Available online at http://scik.org
J. Semigroup Theory Appl. 2013, 2013:1

ISSN 2051-2937

ON EPIMORPHISMS AND SEMINORMAL IDENTITIES

WAJIH ASHRAF* AND NOOR MOHAMMAD KHAN

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Abstract

Khan and Shah associated two natural numbers with a seminormal identity. Using these natural numbers, we further enlarge the class of heterotypical identities of which both sides contain repeated variables which are preserved under epis in conjunction with a seminormal permutation identity.

Keywords: Zigzag, epimorphism, dominion, preserved under epis, heterotypical identity, seminormal identity.

2000 AMS Subject Classification: 20M07

1. Introduction

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [5], we say that U dominates an element d of S if for every semigroup T and for all homomorphisms $\alpha, \beta: S \rightarrow T, u \alpha=u \beta$ for all $u \in U$ implies $d \alpha=d \beta$. The set of all elements of S dominated by U is called the dominion of U in S, and we denote it by $\operatorname{Dom}(U, S)$. It may easily be seen that $\operatorname{Dom}(U, S)$ is a subsemigroup of S containing U. A semigroup U is said to be saturated if $\operatorname{Dom}(U, S) \neq S$ for every properly containing semigroup S, and epimorphically embedded or dense in S if $\operatorname{Dom}(U, S)=S$.

[^0]A morphism $\alpha: S \rightarrow T$ in the category of all semigroups is called an epimorphism (epi for short) if for all morphisms $\beta, \gamma, \alpha \beta=\alpha \gamma$ implies $\beta=\gamma$. Every onto morphism is epi, but the converse is not true in general. It may easily be checked that $\alpha: S \rightarrow T$ is epi if and only if the inclusion map $i: S \alpha \rightarrow T$ is epi and the inclusion map $i: U \rightarrow S$ is epi if and only if $\operatorname{Dom}(U, S)=S$. A variety \mathcal{V} of semigroups is said to be saturated if all its members are saturated and epimorphically closed or closed under epis if whenever $S \in \mathcal{V}$ and $\varphi: S \rightarrow T$ is epi in the category of all semigroups, then $T \in \mathcal{V}$ or equivalently whenever $U \in \mathcal{V}$ and $\operatorname{Dom}(U, S)=S$, then $S \in \mathcal{V}$.

An identity μ is said to be preserved under epis in conjunction with an identity τ if whenever S satisfies τ and μ, and $\varphi: S \rightarrow T$ is an epimorphism in the category of all semigroups, then T also satisfies τ and μ; or equivalently, whenever U satisfies τ and μ and $\operatorname{Dom}(U, S)=S$, then S also satisfies τ and μ.

An identity of the form

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}(n \geq 2) \tag{1}
\end{equation*}
$$

is called a permutation identity, where i is any permutation of the set $\{1,2,3, \ldots, n\}$ and $i_{k}(1 \leq k \leq n)$ is the image of k under the permutation i. A permutation identity of the form (1) is said to be nontrivial if the permutation i is different from the identity permutation. Further, a nontrivial permutation identity $x_{1} x_{2} \cdots x_{n}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ is called seminormal if $i_{1}=1$ and $i_{n}=n$. A semigroup S satisfying a nontrivial permutation identity is said to be permutative while a variety \mathcal{V} of semigroups is said to be permutative if it admits a nontrivial permutation identity. For any word u, the content of u (necessarily finite) is the set of all variables appearing in u and is denoted by $C(u)$. An identity $u=v$ is said to be heterotypical if $C(u) \neq C(v)$; otherwise homotypical. A variety \mathcal{V} of semigroups is said to be heterotypical if it admits a heterotypical identity.

Khan [8], jointly with Higgins, has shown that any semigroup variety satisfying a permutation identity $x_{1} x_{2} \cdots x_{n}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, where $i_{1} \neq 1$ or $i_{n} \neq n$, is epimorphically closed. Higgins [3] found an example of an identity whose both sides contain repeated
variables and is not preserved under epis in conjunction with the identity $x y z t=x z y t$ (a seminormal identity). Thus the problem of finding those semigroup identities whose both sides contain repeated variables and are preserved under epis in conjunction with a seminormal identity appears worthwhile.

A necessary condition for a heterotypical variety to be saturated is that it admits a heterotypical identity of which atleast one side has no repeated variable (see Higgins [2], and Khan [6] for sufficient condition). Since every saturated variety of semigroups is epimorphically closed, all heterotypical identities of which atleast one side has no repeated variable are preserved under epis in conjunction with any non trivial permutation identity. In [8], Khan found some homotypical as well as heterotypical identities containing repeated variables on both sides that are preserved under epis in conjunction with any seminormal identity. Recently in [10], Khan and Shah have found some suffecient condition on homotypical identities containing repeated variables on both sides that are preserved under epis in conjunction with a seminormal identity. It is, therefore, natural to find all those heterotypical identities whose both sides contain repeated variables and are preserved under epis in conjunction with a seminormal identity.

In the present paper, we enlarge the class of heterotypical identities whose both sides contain repeated variables and are preserved under epis in conjunction with a seminormal identity. However, a complete determination of all such heterotypical identities to be preserved under epis in conjunction with a seminormal identity remains still an open problem.

2. Preliminaries

Now, we quote some results that will be used in rest of the paper. We shall be using standard notation and refer the reader to Clifford and Preston [1] and Howie [4] for any unexplained symbols and terminology. Further, in what follows, we will often speak of a semigroup satisfying a semigroup identity to mean that the semigroup in question satisfies an identity of that type.

Result 2.1 ([7, Proposition 3.1]). Let S be any permutative semigroup satisfying (1) with $n \geq 3$.
(i) For each $g \in\{2,3, \ldots, n\}$ such that $x_{g-1} x_{g}$ is not a subword of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, S also satisfies the permutation identity

$$
x_{1} x_{2} \cdots x_{g-1} x y x_{g} \cdots x_{n}=x_{1} x_{2} \cdots x_{g-1} y x x_{g} \cdots x_{n}
$$

(ii) If $x_{1} \neq x_{i_{1}}$, then S also satisfies the permutation identity

$$
x y x_{1} x_{2} \cdots x_{n}=y x x_{1} x_{2} \cdots x_{n} .
$$

In the following result and elsewhere in the paper $S^{(m)}$, for any positive integer m and semigroup S, will denote the set of all m-fold products of elements of S.

Result 2.2 ([7, Proposition 6.3]). Let S be any semigroup satisfying (1) with $n \geq 3$. Then for each $g \in\{2,3, \ldots, n\}$ such that $x_{g-1} x_{g}$ is not a subword of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, for all $m \geq g-1, p \geq n-g+1$ and for all $u \in S^{(m)}, v \in S^{(p)}$, we have

$$
u x_{1} x_{2} v=u x_{2} x_{1} v, \quad \text { for all } x_{1}, x_{2} \in S
$$

In particular, $S^{(k)}$ satisfies the normality identity for all $k \geq \max (g-1, n-g+1)$.
Result 2.3 ([8, Theorem 3.1]). All permutation identities are preserved under epis.
A most useful characterization of semigroup dominions is provided by Isbell's Zigzag Theorem.

Result 2.4 ([5, Theorem 2.3] or [4, Theorem VII.2.13]). Let U be a subsemigroup of a semigroup S and let $d \in S$. Then $d \in \operatorname{Dom}(U, S)$ if and only if $d \in U$ or there exists a series of factorizations of d as follows:

$$
\begin{equation*}
d=a_{0} t_{1}=y_{1} a_{1} t_{1}=y_{1} a_{2} t_{2}=y_{2} a_{3} t_{2}=\cdots=y_{m} a_{2 m-1} t_{m}=y_{m} a_{2 m} \tag{2}
\end{equation*}
$$

where $m \geq 1, a_{i} \in U(i=0,1, \ldots, 2 m), y_{i}, t_{i} \in S(i=1,2, \ldots, m)$, and

$$
\begin{aligned}
a_{0} & =y_{1} a_{1}, & a_{2 m-1} t_{m} & =a_{2 m}, \\
a_{2 i-1} t_{i} & =a_{2 i} t_{i+1}, & y_{i} a_{2 i} & =y_{i+1} a_{2 i+1}
\end{aligned} \quad(1 \leq i \leq m-1) . ~ \$
$$

Such a series of factorization is called a zigzag in S over U with value d, length m and spine $a_{0}, a_{1}, \ldots, a_{2 m}$.

In whatever follows, we refer to the equations in Result 2.4 as the zigzag equations.
Result 2.5 ([7, Result 3]). Let U be any subsemigroup of a semigroup S and let $d \in$ $\operatorname{Dom}(U, S) \backslash U$. If (2) is a zigzag of minimal length m over U with value d, then $y_{j}, t_{j} \in S \backslash U$ for all $j=1,2, \ldots, m$.

Result 2.6 ([9, Proposition 2.1]). Let S be any permutative semigroup satisfying (1) with $n \geq 3$. Then for each $g \in\{2,3, \ldots, n\}$ such that $x_{g-1} x_{g}$ is not a subword of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, for all $m \geq g-1, p \geq n-g+1$ and for all $u \in S^{(m)}, v \in S^{(p)}$, we have

$$
u x_{1} x_{2} \cdots x_{\ell} v=u x_{\lambda_{1}} x_{\lambda_{2}} \cdots x_{\lambda_{\ell}} v
$$

for all $x_{1}, x_{2}, \ldots, x_{\ell} \in S(\ell \geq 2)$, where λ is any permutation of the set $\{1,2, \ldots, \ell\}$.
In the following results, let U and S be any semigroups with U dense in S.

Result 2.7 ([7, Result 4]). For any $d \in S \backslash U$ and k any positive integer, if (2) is a zigzag of minimal length over U with value d, then there exist $b_{1}, b_{2}, \ldots, b_{k} \in U$ and $d_{k} \in S \backslash U$ such that $d=b_{1} b_{2} \cdots b_{k} d_{k}$.

Result 2.8 ([7, Corollary 4.2]). If U be permutative, then

$$
s x_{1} x_{2} \cdots x_{k} t=s x_{j_{1}} x_{j_{2}} \cdots x_{j_{k}} t
$$

for all $x_{1}, x_{2}, \ldots, x_{k} \in S, s, t \in S \backslash U$ and any permutation j of the set $\{1,2, \ldots, k\}$.
The following corollary easily folllows by Result 2.8

Corollary 2.9 ([9, Corollary 1.8]). For any $d \in S$ and positive integer k, if $d=$ $b_{1} b_{2} \cdots b_{k} d_{k}$ for some $b_{1}, b_{2}, \ldots, b_{k} \in U$ and $d_{k} \in S \backslash U$ such that $b_{1}=y_{1}{ }^{\prime} c_{1}$ for some $y_{1}{ }^{\prime}$ in $S \backslash U, c_{1} \in U$, then $d^{p}=b_{1}^{p} b_{2}^{p} \cdots b_{k}^{p} d_{k}^{p}$ for any positive integer p.

The symmetrical statement in the following result is in addition to the original statement.

Result 2.10 ([8, Proposition 4.6]). Assume that U is permutative. If $d \in S \backslash U$ and (2) is a zigzag of length m over U with value d such that $y_{1} \in S \backslash U$, then $d^{k}=a_{0}^{k} t_{1}^{k}$ for each positive integer k; in particular, the conclusion holds if (2) is of minimal length. Symmetrically, if $d \in S \backslash U$ and (2) is a zigzag of length m over U with value d such that $t_{m} \in S \backslash U$, then $d^{k}=y_{m}^{k} a_{2 m}^{k}$ for each positive integer k; in particular, the conclusion holds if (2) is of minimal length.

Result 2.11 ([9, Proposition 2.2]). Let U be any semigroup satisfying (1) with $n \geq 3$. Then for each $g \in\{2,3, \ldots, n\}$ such that $x_{g-1} x_{g}$ is not a subword of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$, for all $m \geq g-1$ and for all $u \in S^{(m)}, v \in S \backslash U$, we have

$$
u x_{1} x_{2} \cdots x_{\ell} v=u x_{\lambda_{1}} x_{\lambda_{2}} \cdots x_{\lambda_{\ell}} v
$$

for all $x_{1}, x_{2}, \ldots, x_{\ell} \in S(\ell \geq 2)$, where λ is any permutation of the set $\{1,2, \ldots, \ell\}$. Symmetrically, for all $p \geq h-1$ such that $x_{n-h} x_{n-(h-1)}$ is not a subword of $x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}$ and for all $v \in S^{(p)}, u \in S \backslash U$, we have

$$
u x_{1} x_{2} \cdots x_{\ell} v=u x_{\lambda_{1}} x_{\lambda_{2}} \cdots x_{\lambda_{\ell}} v
$$

for all $x_{1}, x_{2}, \ldots, x_{\ell} \in S(\ell \geq 2)$, where λ is any permutation of the set $\{1,2, \ldots, \ell\}$.

3. Main results

Throughout the paper, we shall assume that U is any permutative semigroup satisfying a seminormal permutation identity and is dense in the semigroup S.

To avoid introduction of new symbols, we shall treat, wherever is appropriate, $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{r}}$, $\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{s}}, \mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \ldots, \mathbf{w}_{\ell}, \mathbf{z}_{\mathbf{1}}, \mathbf{z}_{\mathbf{2}}, \ldots, \mathbf{z}_{\mathbf{p}}$ etc. as variables as well as the members of a semigroup without explicit mention of distinction. Further for any word \mathbf{u} and any variable \mathbf{x} of $\mathbf{u},|\mathbf{x}|_{\mathbf{u}}$ will denote the number of occurrences of \mathbf{x} in the word \mathbf{u}.

Lemma 3.1. Let u and v be any words in $w_{1}, w_{2}, \ldots, w_{\ell}$ and $z_{1}, z_{2}, \ldots, z_{p}$ respectively. Let $p_{1}, p_{2}, \ldots, p_{r}, q_{1}, q_{2}, \ldots, q_{s}$ are any positive integers such that $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$; $q_{s} \leq \cdots \leq q_{2} \leq q_{1}(r, s \geq 1)$. If U satisfies the semigroup identity

$$
\begin{equation*}
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \tag{3}
\end{equation*}
$$

then (3) is also satisfied for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}$, z_{2}, \ldots, z_{p} in U.

Proof. Since U satisfies a seminormal identity, by Result 2.3, S also satisfies a seminormal identity. Now we shall show that the identity (3) satisfied by U is also satisfied when $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $z_{1}, z_{2}, \ldots, z_{p}, w_{1}, w_{2}, \ldots, w_{\ell} \in U$.

Case (i): First, take any $x_{1}, x_{2}, \ldots, x_{r} \in S$ and $y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p} \in U$. If $x_{1}, x_{2}, \ldots, x_{r} \in U$, then (3) holds trivially. So assume without loss of generality that $x_{1} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value x_{1}. Then

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=y_{m}^{p_{1}} a_{2 m}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by the zigzag equations and Result 2.10)
$=y_{m}^{p_{1}} a_{2 m}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}($ as U satisfies (3))
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$.
(by the zigzag equations and Result 2.10)
We, now, assume inductively that the result is true for all $x_{1}, \ldots, x_{k-1} \in S$ and x_{k}, \ldots, x_{r} in U. We shall prove that the result is also true for all $x_{1}, \ldots, x_{k} \in S$ and $x_{k+1}, \ldots, x_{r} \in U$. Again if $x_{k} \in U$, then the result follows by the inductive hypothesis. So assume that $x_{k} \in S \backslash U$. Let (2) be a zigzag of minimal length in S over U with value x_{k}. Now,

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}} y_{m}^{p_{k}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by Result 2.10 and zigzag equations)

$$
=w y_{m}^{(m)^{p_{k}}} b_{1}^{(m)^{p_{k}}} \cdots b_{k-1}^{(m)}{ }^{p_{k}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Results 2.4 and 2.5 for some $b_{1}^{(m)}, \ldots, b_{k-1}^{(m)} \in U$ and $y_{m}^{(m)} \in S \backslash U$ as y_{m}
in $S \backslash U$ and $a_{2 m}=a_{2 m-1} t_{m}$ with $t_{m} \in S \backslash U$ and where $\left.w=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}}\right)$

$$
=w y_{m}^{(m)^{p_{k}}} v^{(m)} b_{1}^{(m)^{p_{1}}} \cdots b_{k-1}^{(m)}{ }^{p_{k-1}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
=w y_{m}^{(m)^{p_{k}}} v^{(m)} b_{1}^{(m)^{p_{1}}} \cdots b_{k-1}^{(m)}{ }^{p_{k-1}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(as U satisfies (3))
$=w y_{m}^{(m)^{p_{k}}} b_{1}^{(m)^{p_{k}}} \cdots b_{k-1}^{(m)^{p_{k}}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 and the definition of $v^{(m)}$)

$$
\begin{aligned}
= & x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}} y_{m}^{p_{k}} a_{2 m}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \left(\text { as } y_{m}^{(m)^{p_{k}}} b_{1}^{\left.(m)^{p_{k}} \cdots b_{k-1}^{(m)}=y_{m}^{p_{k}} x_{2}^{p_{k}} \cdots x_{k-1}^{p_{k-1}}\right)}\right. \\
= & x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{k-1}^{p_{k-1}} x_{k}^{p_{k}} x_{k+1}^{p_{k+1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by Result 2.10 and zigzag equations)
as required.

Case(ii): Now we show that (3) is satisfied for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p} \in U$. Again, we can assume without loss of generality that $y_{1} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value y_{1}, we have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) a_{0}^{q_{1}} t_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by the zigzag equations and Result 2.10)

$$
\begin{align*}
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) a_{0}^{q_{1}} c_{2}^{(1)^{q_{1}}} \cdots c_{s}^{(1)^{q_{1}}} t_{1}^{(1)^{q_{1}}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \tag{4}\\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) a_{0}^{q_{1}} c_{2}^{(1)^{q_{2}}} \cdots c_{s}^{(1) q_{s}} w^{(1)} t_{1}^{(1)^{q_{1}}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \tag{5}
\end{align*}
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) a_{0}^{q_{1}} c_{2}^{(1)^{q_{2}}} \cdots c_{s}^{(1)^{q_{s}}} w^{(1)} t_{1}^{(1)^{q_{1}}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(as U satisfies (3))

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) a_{0}^{q_{1}} c_{2}^{(1) q_{1}} \cdots c_{s}^{(1){ }^{q_{1}}} t_{1}^{(1)^{q_{1}}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by Result 2.5 and definition of $w^{(1)}$)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) a_{0}^{q_{1}} t_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by Result 2.5 as $c_{2}^{(1)^{q_{1}}} \cdots c_{s}^{(1)^{q_{1}}} t_{1}^{(1) q_{1}}=t_{1}^{q_{1}}$)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by the zigzag equations and Result 2.10)
as the equalities (4) and (5) follow by Results 2.4 and 2.5 for some $c_{2}^{(1)}, \ldots, c_{s}^{(1)}$ in U and $t_{1}^{(1)} \in S \backslash U$ as $y_{1}, t_{1} \in S \backslash U$ and where $w^{(1)}=c_{2}^{(1)^{q_{1}-q_{2}}} \cdots c_{s}^{(1)^{q_{1}-q_{s}}}$ respectively.
Now, we assume inductively that the result is true for all $y_{1}, \ldots, y_{k-1} \in S$ and y_{k}, \ldots, y_{s} in U. We shall prove that the result is also true for all $y_{1}, \ldots, y_{k-1}, y_{k} \in S$ and y_{k+1}, \ldots, y_{s} in U. Again if $y_{k} \in U$, then the result follows by the inductive hypothesis. So assume that $y_{k} \in S \backslash U$. Let (2) be a zigzag of minimal length m in S over U with value y_{k}. Now as the equalities (6) and (7) follow by Results 2.4 and 2.5 for some $c_{k+1}^{(1)}, \ldots, c_{s}^{(1)}$ in U and $t_{1}^{(1)} \in S \backslash U$ as $y_{1}, t_{1} \in S \backslash U$ and where $v=y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}}$, and by Result 2.5 as $a_{0}=y_{1} a_{1}, y_{1}, t_{1}^{(1)} \in S \backslash U$ and where $w^{(1)}=c_{k+1}^{(1)}{ }^{q_{k}-q_{k+1}} \cdots c_{s}^{(1) q_{k}-q_{s}}$ respectively, we have $x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} t_{1}^{q_{k}} y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}}
$$

(by Result 2.10 and zigzag equations)

$$
\begin{align*}
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} c_{k+1}^{(1) q_{k}} \cdots c_{s}^{(1)^{q_{k}}} t_{1}^{(1) q_{k}} v \tag{6}\\
& =x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} c_{k+1}^{(1) q_{k+1}} \cdots c_{s}^{(1)^{q_{s}}} w^{(1)} t_{1}^{(1)^{q_{k}}} v \tag{7}
\end{align*}
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} c_{k+1}^{(1) q_{k+1}} \cdots c_{s}^{(1)^{q_{s}}} w^{(1)} t_{1}^{(1)^{q_{k}}} v
$$

(by the inductive hypothesis)

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} c_{k+1}^{q_{k}} \cdots c_{s}^{q_{k}} t_{1}^{(1)^{q_{k}}} v
$$

(by Result 2.5 and the definition of $w^{(1)}$)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{k-1}^{q_{k-1}} a_{0}^{q_{k}} t_{1}^{q_{k}} y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}}$ (by Result 2.5 as $c_{k+1}^{(1){ }^{q_{k}}} \cdots c_{s}^{(1)^{q_{k}}} t_{1}^{(1)^{q_{k}}}=t_{1}^{q_{k}}$ and the definition of v)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{k-1}^{q_{k-1}} y_{k}^{q_{k}} y_{k+1}^{q_{k+1}} \cdots y_{s}^{q_{s}}$
(by Result 2.10 and zigzag equations)
as required. This completes the proof of the lemma.

Following [10], for any seminormal identity (1), let $g_{0}=\min P$, the minimum of P, where

$$
P=\left\{2 \leq g \leq n-2: x_{g-1} x_{g} \text { is not a subword of } x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}\right\} .
$$

Similarly, let $h_{0}=\min Q$, where

$$
Q=\left\{1 \leq h \leq n-g_{0}-1: x_{n-h} x_{n-(h-1)} \text { is not a subword of } x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}\right\}
$$

In whatever follows, $\mathbf{g}_{\mathbf{0}}$ and $\mathbf{h}_{\mathbf{0}}$ will stand as defined above. We shall also assume that $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \ldots, \mathbf{p}_{\mathbf{r}}, \mathbf{q}_{\mathbf{1}}, \mathbf{q}_{\mathbf{2}}, \ldots, \mathbf{q}_{\mathbf{s}}$ be any positive integers such that

$$
\mathbf{p}_{1}+\cdots+\mathbf{p}_{\mathrm{r}} \geq \mathrm{g}_{0}-1, \mathrm{q}_{1}+\cdots+\mathrm{q}_{\mathrm{s}} \geq \mathbf{h}_{0}-1
$$

$\mathbf{p}_{1} \leq \cdots \leq \mathbf{p}_{\mathbf{r}}$ and $\mathbf{q}_{\mathbf{s}} \leq \cdots \leq \mathbf{q}_{\mathbf{1}}(\mathbf{r}, \mathbf{s} \geq \mathbf{1})$ without further mention.
The following corollary directly follows from Result 2.11 and Lemma 3.1.

Corollary 3.2. Let $m_{1}, m_{2}, \ldots, m_{\ell}, n_{1}, n_{2}, \ldots, n_{p}$ be any positive integers. If U satisfies the identity

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} w_{1}^{m_{1}} \cdots w_{\ell}^{m_{\ell}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} w_{j_{1}}^{m_{j_{1}}} \cdots w_{j_{\ell}}^{m_{j_{\ell}}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} z_{1}^{n_{1}} \cdots z_{p}^{n_{p}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} z_{\lambda_{1}}^{n_{\lambda_{1}}} \cdots z_{\lambda_{p}}^{n_{\lambda_{p}}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
where j and λ are any permutations of $\{1,2, \ldots, \ell\}$ and $\{1,2, \ldots, p\}$ respectively, then (8) is satisfied for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p} \in U$. The following corollary follows easily by Result 2.11 as $p_{1}+p_{2}+\cdots+p_{r} \geq g_{0}-1$ and $q_{1}+q_{2}+\cdots+q_{s} \geq h_{0}-1$.

Corollary 3.3. Let S be any permutative semigroup satisfying a seminormal identity. Let u be any word in the variables $z_{1}, z_{2}, \ldots, z_{\ell}$ and let $z_{j} \in C(u)$, for some $j \in\{1,2, \ldots, \ell\}$, be such that $z_{j} \in S$. If $z_{j}=x a=b y$, for all $x, y, a, b \in S$, then

$$
\begin{gathered}
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}(x)^{\left|z_{j}\right| u} u\left(z_{1}, z_{2}, \ldots, z_{j-1}, a, z_{j+1}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
{\left[x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right.} \\
\left.=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j-1}, b, z_{j+1}, \ldots, z_{\ell}\right)(y)^{\left|z_{j}\right|_{u}} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right] .
\end{gathered}
$$

Further, if $z_{j}=s_{1} c s_{2}$ for all $s_{1}, c, s_{2} \in S$, then

$$
\begin{gathered}
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}\left(s_{k_{1}}\right)^{\left|z_{j}\right|_{u}}\left(s_{k_{2}}\right)^{\left|z_{j}\right| u} u\left(z_{1}, z_{2}, \ldots, z_{j-1}, c, z_{j+1}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
{\left[x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j}, \ldots, z_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right.} \\
\left.=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(z_{1}, z_{2}, \ldots, z_{j-1}, c, z_{j+1}, \ldots, z_{\ell}\right)\left(s_{k_{1}}\right)^{\left|z_{j}\right| u}\left(s_{k_{2}}\right)^{\left|z_{j}\right| u} y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right]
\end{gathered}
$$

where k is any permutation on the set $\{1,2\}$.
Proposition 3.4. Let u and v be any words in $w_{1}, w_{2}, \ldots, w_{\ell}$ and $z_{1}, z_{2}, \ldots, z_{p}$ respectively and let the identity

$$
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
$$

holds for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s} \in S$ and $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p}$ in U.
Then the identity

$$
x^{p} u\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x^{p} v\left(z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
$$

$$
\left[x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}\right) y^{q}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, \ldots, z_{p}\right) y^{q}\right]
$$

holds for all $x \in S \backslash U, y_{1}, \ldots, y_{s} \in S, w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}$ in U, and positive integer $p \geq p_{r}\left[\right.$ for all $y \in S \backslash U, x_{1}, \ldots, x_{r} \in S, w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}$ in U, and positive integer $\left.q \geq q_{1}\right]$.

Proof. We have

$$
\begin{aligned}
& x^{p} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \\
& \quad=x^{p-p_{r}} x^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \\
& \quad=x^{p-p_{r}} x^{\prime p_{r}} a_{1}^{p_{r}} \ldots a_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
\end{aligned}
$$

(by Result 2.7 and Corollary 2.9 for some $\mathrm{a}_{1}, \ldots, a_{r} \in U$ and $x^{\prime} \in S \backslash U$ as $a_{r}=b_{r} z_{r}^{\prime}$ for some $\left.z_{r}^{\prime} \in S \backslash U, b_{r} \in U\right)$

$$
=x^{p-p_{r}} x^{\prime p_{r}} w a_{1}^{p_{1}} \ldots a_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
$$

(by Corollary 2.9 as $a_{r}=b_{r} z_{r}^{\prime}$ and where $w=a_{1}^{p_{r}-p_{1}} \cdots a_{r-1}^{p_{r}-p_{r-1}}$)
$=x^{p-p_{r}} x^{p_{r}} w a_{1}^{p_{1}} \ldots a_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$
$=x^{p-p_{r}} x^{\prime p_{r}} a_{1}^{p_{r}} \ldots a_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}($ by defenition of $w)$
$=x^{p-p_{r}} x^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$
(by Result 2.7 and Corollary 2.9 as $x^{p_{r}}=x^{\prime p_{r}} a_{1}^{p_{r}} \ldots a_{r}^{p_{r}}$)

$$
=x^{p} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}
$$

as required. Dual statement may be proved on the similar lines.
Theorem 3.5. Let u and v be any words in $w_{1}, w_{2}, \ldots, w_{\ell}$ and $z_{1}, z_{2}, \ldots, z_{p}$ respectively such that $\forall i \in\{1,2, \ldots, \ell\}$ and $\forall j \in\{1,2, \ldots, p\}, \min \left\{\left|w_{i}\right|_{u},\left|z_{j}\right|_{v}\right\} \geq \min \left\{p_{r}, q_{1}\right\}$. Then all heterotypical identities of the form

$$
\begin{equation*}
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \tag{9}
\end{equation*}
$$

are preserved under epis in conjunction with a seminormal identity.
Proof. We shall prove the theorem for Case when $\min \left\{p_{r}, q_{1}\right\}=p_{r}$, the proof in other case follows along similar lines. As U satisfy a seminormal identity, by Result 2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (9), then so does S. So let $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s}, w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p}$ in S. If all of $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p}$ are from U, then the result holds by Lemma 3.1. So, assume that not all of $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2}, \ldots, z_{p}$ are from U. Now to show that the identity (9) is satisfied by S, we shall first prove that

$$
\begin{equation*}
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(v_{1}, \ldots, v_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \tag{10}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s}, w_{1}, w_{2}, \ldots, w_{\ell} \in S$ and $v_{1}, v_{2}, \ldots, v_{p} \in U$. We prove the equality (10) by induction on the number k of arguments $w_{1}, w_{2}, \ldots, w_{k}$ in S, by assuming that the remaining arguments $w_{k+1}, \ldots, w_{\ell} \in U$. So, first, assume that $w_{1} \in S$ and $w_{2}, \ldots, w_{\ell} \in U$. When $w_{1} \in U$, equality (10) is satisfied by Lemma 3.1. So, let $w_{1} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value w_{1}. Letting $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$, we have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
&= x u\left(y_{m} a_{2 m}, w_{2}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) } \\
&= x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} u\left(a_{2 m}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) } \\
&=\left.x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y \text { (by Proposition } 3.4 \text { as } y_{m} \in S \backslash U \text { and }\left|w_{1}\right|_{u} \geq p_{r}\right) \\
&= x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} u\left(a_{2 m-1}, w_{2}, \ldots, w_{\ell}\right) y \\
&\left(\text { by Proposition } 3.4 \text { as } y_{m} \in S \backslash U \text { and }\left|w_{1}\right|_{u} \geq p_{r}\right) \\
&=\left.x u\left(y_{m} a_{2 m-1}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Corollary } 3.3\right)
\end{aligned}
$$

$$
\begin{aligned}
&= x u\left(y_{m-1} a_{2 m-2}, w_{2} \ldots, w_{\ell}\right) y \text { (by the zigzag equations) } \\
&= x\left(y_{m-1}\right)^{\left|w_{1}\right|_{u}} u\left(a_{2 m-2}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) } \\
& \vdots \\
&= x\left(y_{1}\right)^{\left|w_{1}\right|_{u}} u\left(a_{2}, w_{2}, \ldots, w_{\ell}\right) y \\
&=\left.x\left(y_{1}\right)^{\left|w_{1}\right|_{u}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y \text { (by Proposition } 3.4 \text { as } y_{1} \in S \backslash U \text { and }\left|w_{1}\right|_{u} \geq p_{r}\right) \\
&=\left.x\left(y_{1}\right)^{\left|w_{1}\right|_{u}} u\left(a_{1}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Proposition } 3.4 \text { as } y_{1} \in S \backslash U \text { and }\left|w_{1}\right|_{u} \geq p_{r}\right) \\
&= x u\left(y_{1} a_{1}, w_{2}, \ldots, w_{\ell}\right) y(\text { by Corollary } 3.3) \\
&= x u\left(a_{0}, w_{2}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) } \\
&= x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
&\left(\text { by Lemma } 3.1 \text { and as } x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} \text { and } y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right)
\end{aligned}
$$

as required.
Next, assume inductively that the equality (10) holds for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s}$, $w_{1}, w_{2}, \ldots, w_{k-1}$ in S and $w_{k}, w_{k+1}, \ldots, w_{\ell}$ in U. From this we shall prove that the equality (10) also holds for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s}, w_{1}, w_{2}, \ldots, w_{k-1}, w_{k}$ in S and $w_{k+1}, \ldots, w_{\ell} \in U$. If $w_{k} \in U$, then the equality (10) follows by the inductive hypothesis. So, assume that $w_{k} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value w_{k}. Now, for any $v_{1}, v_{2}, \ldots v_{p} \in U$, we have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, w_{k}, w_{k+1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x u\left(w_{1}, w_{2}, \ldots, w_{k-1}, y_{m} a_{2 m}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) } \\
& =x\left(y_{m}\right)^{\left|w_{k}\right| u_{u}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{2 m}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) }
\end{aligned}
$$

$$
\begin{aligned}
&= x\left(y_{m}\right)^{\left|w_{k}\right|_{u}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y(\text { by the inductive hypothesis and Proposition } 3.4 \text { as } \\
&\left.y_{m} \in S \backslash U \text { and }\left|w_{k}\right|_{u} \geq p_{r}\right) \\
&= x\left(y_{m}\right)^{\left|w_{k}\right|_{u}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{2 m-1}, w_{k+1}, \ldots, w_{\ell}\right) \text { (by the inductive hypothesis } \\
&\text { and Proposition } \left.3.4 \text { as } y_{m} \in S \backslash U \text { and }\left|w_{k}\right|_{u} \geq p_{r}\right) \\
&= x u\left(w_{1}, w_{2}, \ldots, w_{k-1}, y_{m} a_{2 m-1}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) } \\
&= x u\left(w_{1}, w_{2}, \ldots, w_{k-1}, y_{m-1} a_{2 m-2}, w_{k+1}, \ldots, w_{\ell}\right) \text { (by the zigzag equations) } \\
&= x\left(y_{m-1}\right)^{\left|w_{k}\right|_{u}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{2 m-2}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) } \\
& \vdots \\
&= x y_{1}^{\left|w_{k}\right|_{u}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{2}, w_{k+1}, \ldots, w_{\ell}\right) y \\
&= x y_{1}^{\left|w_{k}\right|_{u}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y(\text { by the inductive hypothesis and Proposition } 3.4 \text { as } \\
&\left.y_{1} \in S \backslash U \text { and }\left|w_{k}\right|_{u} \geq p_{r}\right) \\
&= x y_{1}^{\left|w_{k}\right|_{u}} u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{1}, w_{k+1}, \ldots, w_{\ell}\right) y
\end{aligned}
$$

(by the inductive hypothesis as $y_{1} \in S \backslash U$ and $\left|w_{k}\right|_{u} \geq p_{r}$)
$=x u\left(w_{1}, w_{2}, \ldots, w_{k-1}, y_{1} a_{1}, w_{k+1}, \ldots, w_{\ell}\right) y($ by Corollary 3.3)
$=x u\left(w_{1}, w_{2}, \ldots, w_{k-1}, a_{0}, w_{k+1}, \ldots, w_{\ell}\right) y$ (by the zigzag equations)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$ (by the inductive hypothesis and as $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$)
as required.

Similarly, we may prove that
$x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(u_{1}, \ldots, u_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}$
for all $x_{1}, x_{2}, \ldots, x_{r}, y_{1}, y_{2}, \ldots, y_{s}, z_{1}, z_{2}, \ldots, z_{p} \in S$ and $u_{1}, u_{2}, \ldots, u_{\ell} \in U$.
Now, using Lemma 3.1 and equations (10) and (11), we have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, w_{2}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
&= x v\left(v_{1}, v_{2}, \ldots, v_{p}\right) y \\
&= x u\left(u_{1}, u_{2}, \ldots, u_{\ell}\right) y \\
&= x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(z_{1}, z_{2}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} . \\
&\left(\text { as } x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} \text { and } y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\right)
\end{aligned}
$$

This completes the proof of Theorem.

Proposition 3.6. Let u and v be any words in $w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}(\ell, p \geq 1)$ and $w_{1}, \ldots, w_{\ell}(\ell \geq 1)$ respectively such that $\forall i \in\{1,2, \ldots, \ell\}, \min \left\{\left|w_{i}\right|_{u},\left|w_{i}\right|_{v}\right\} \geq \min \left\{p_{r}, q_{1}\right\}$. If U satisfies

$$
\begin{equation*}
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}, \tag{12}
\end{equation*}
$$

then (12) is also satisfied for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell} \in S$ and for all z_{1}, \ldots, z_{p} in U.

Proof. We shall prove the theorem for the case when $\min \left\{p_{r}, q_{1}\right\}=p_{r}$, the proof in other case follows along similar lines. As U satisfy a seminormal identity, by Result 2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (12), then (12) is also satisfied for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell}$ in S and $z_{1}, \ldots, z_{p} \in U$. If $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s} \in S$ and all of $w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p} \in U$, then (12) holds by Lemma 3.1. So, assume first that not all of w_{1}, \ldots, w_{ℓ} are from U. We prove the equality
(12) by induction on the number k of arguments w_{1}, \ldots, w_{k} of the word u in S, assuming that the remaining arguments $w_{k+1}, \ldots, w_{\ell} \in U$. So assume that $w_{1} \in S$ and w_{2}, \ldots, w_{ℓ} are from U. When $w_{1} \in U$, then (12) is satisfied by Lemma 3.1. So assume that $w_{1} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value w_{1}. Letting $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$, we have

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
=x u\left(y_{m} a_{2 m}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) }
$$

$$
=x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} u\left(a_{2 m}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} v\left(a_{2 m}, w_{2}, \ldots, w_{\ell}\right) y
$$

$$
\text { (by Proposition } 3.4 \text { as } y_{m} \in S \backslash U \text { and }\left|w_{1}\right|_{u} \geq p_{r} \text {) }
$$

$$
=x\left(y_{m}\right)^{\left|w_{1}\right|_{u}} v\left(a_{2 m-1} t_{m}, w_{2}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) }
$$

$$
=x\left(y_{m}\right)^{\left|w_{1}\right|_{u}}\left(t_{m}\right)^{\left|w_{1}\right|_{v}} v\left(a_{2 m-1}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(y_{m}\right)^{\left|w_{1}\right|_{u}}\left(t_{m}\right)^{\left|w_{1}\right|_{v}} u\left(a_{2 m-1}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y
$$

$$
\text { (by Proposition } 3.4 \text { as } t_{m} \in S \backslash U \text { and }\left|w_{1}\right|_{v} \geq p_{r} \text {) }
$$

$$
=x\left(t_{m}\right)^{\left|w_{1}\right|_{v}} u\left(y_{m} a_{2 m-1}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y(\text { by Corollary 3.3) }
$$

$$
=x\left(t_{m}\right)^{\left|w_{1}\right|_{v}} u\left(y_{m-1} a_{2 m-2}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) }
$$

$$
\vdots
$$

$$
=x\left(t_{2}\right)^{\left|w_{1}\right|_{v}} u\left(y_{1} a_{2}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right| u}\left(t_{2}\right)^{\left|w_{1}\right| v_{v}} u\left(a_{2}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right| u x_{u}}\left(t_{2}\right)^{\left|w_{1}\right| v} v\left(a_{2}, w_{2}, \ldots, w_{\ell}\right) y
$$

$$
\text { (by Proposition } 3.4 \text { as } t_{2} \in S \backslash U \text { and }\left|w_{1}\right|_{v} \geq p_{r} \text {) }
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right|_{u}} v\left(a_{2} t_{2}, w_{2}, \ldots, w_{\ell}\right) y(\text { by Corollary 3.3) }
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right|_{u}} v\left(a_{1} t_{1}, w_{2}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) }
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right|_{u}}\left(t_{1}\right)^{\left|w_{1}\right|_{v}} v\left(a_{1}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(y_{1}\right)^{\left|w_{1}\right|_{u}}\left(t_{1}\right)^{\left|w_{1}\right|_{v}} u\left(a_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y
$$

$$
\text { (by Proposition } 3.4 \text { as } t_{1} \in S \backslash U \text { and }\left|w_{1}\right|_{v} \geq p_{r} \text {) }
$$

$$
=x\left(t_{1}\right)^{\left|w_{1}\right|_{v}} u\left(y_{1} a_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(t_{1}\right)^{\left|w_{1}\right|_{v}} u\left(a_{0}, w_{2}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) }
$$

$$
\left.=x\left(t_{1}\right)^{\left|w_{1}\right|_{v}} v\left(a_{0}, w_{2}, \ldots, w_{\ell}\right) y \text { (by Proposition } 3.4 \text { as } t_{1} \in S \backslash U \text { and }\left|w_{1}\right|_{v} \geq p_{r}\right)
$$

$$
=x v\left(a_{0} t_{1}, w_{2}, \ldots, w_{\ell}\right) y(\text { by Corollary 3.3) }
$$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
\text { (by the zigzag equations and as } x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} \text { and } y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \text {) }
$$

as required.
Next, assume inductively that (12) holds for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ in S and all of $w_{1}, \ldots, w_{k-1} \in S$, and $w_{k}, w_{k+1}, \ldots w_{\ell}, z_{1}, \ldots, z_{p} \in U$. From this, we shall prove that (12) holds for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s} \in S, w_{1}, \ldots, w_{k-1}, w_{k} \in S$ and $w_{k+1}, \ldots w_{\ell}, z_{1}, \ldots, z_{p}$ in U. If $w_{k} \in U$, then the equality (12) follows by the inductive hypothesis. So, assume that $w_{k} \in S \backslash U$. Let (2) be a zigzag of minimum length m over U with value w_{k}. Now, we
have

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{k}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x u\left(w_{1}, \ldots, y_{m} a_{2 m}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) } \\
& =x\left(y_{m}\right)^{\left|w_{k}\right|_{u}} u\left(w_{1}, \ldots, a_{2 m}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) } \\
& =x\left(y_{m}\right)^{\left|w_{k}\right|_{u}} v\left(w_{1}, \ldots, a_{2 m}, w_{k+1}, \ldots, w_{\ell}\right) y
\end{aligned}
$$

(by the inductive hypothesis and Proposition 3.4 as $y_{m} \in S \backslash U,\left|w_{k}\right|_{u} \geq p_{r}$)
$=x\left(y_{m}\right)^{\left|w_{k}\right|_{u}} v\left(w_{1}, \ldots, a_{2 m-1} t_{m}, w_{k+1}, \ldots, w_{\ell}\right) y$ (by the zigzag equations)
$=x\left(y_{m}\right)^{\left|w_{k}\right|_{u}}\left(t_{m}\right)^{\left|w_{k}\right|_{v}} v\left(w_{1}, \ldots, a_{2 m-1}, w_{k+1}, \ldots, w_{\ell}\right) y$ (by Corollary 3.3)
$=x\left(y_{m}\right)^{\left|w_{k}\right|_{u}}\left(t_{m}\right)^{\left|w_{k}\right|_{v}} u\left(w_{1}, \ldots, a_{2 m-1}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y$
(by the inductive hypothesis and Proposition 3.4 as $t_{m} \in S \backslash U,\left|w_{k}\right|_{v} \geq p_{r}$)
$=x\left(t_{m}\right)^{\left|w_{k}\right|_{v}} u\left(w_{1}, \ldots, y_{m} a_{2 m-1}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y$ (by Corollary 3.3)
$=x\left(t_{m}\right)^{\left|w_{k}\right| v} u\left(w_{1}, \ldots, y_{m-1} a_{2 m-2}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y$
(by the zigzag equations)
\vdots
$=x\left(t_{2}\right)^{\left|w_{k}\right|_{v}} u\left(w_{1}, \ldots, y_{1} a_{2}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y$
$=x\left(y_{1}\right)^{\left|w_{k}\right|_{u}}\left(t_{2}\right)^{\left|w_{k}\right|_{v}} u\left(w_{1}, \ldots, a_{2}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y$ (by Corollary 3.3)
$=x\left(y_{1}\right)^{\left|w_{k}\right|_{u}}\left(t_{2}\right)^{\left|w_{k}\right|_{v}} v\left(w_{1}, \ldots, a_{2}, w_{k+1}, \ldots, w_{\ell}\right) y$
(by the inductive hypothesis and Proposition 3.4 as $t_{2} \in S \backslash U,\left|w_{k}\right|_{v} \geq p_{r}$)
$=x\left(y_{1}\right)^{\left|w_{k}\right|_{u}} v\left(w_{1}, \ldots, a_{2} t_{2}, w_{k+1}, \ldots, w_{\ell}\right) y($ by Corollary 3.3)

$$
\begin{aligned}
& =x\left(y_{1}\right)^{\left|w_{k}\right|_{u}} v\left(w_{1}, \ldots, a_{1} t_{1}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by the zigzag equations) } \\
& =x\left(y_{1}\right)^{\left|w_{k}\right|_{u}}\left(t_{1}\right)^{\left|w_{k}\right|_{v}} v\left(w_{1}, \ldots, a_{1}, w_{k+1}, \ldots, w_{\ell}\right) y \text { (by Corollary 3.3) } \\
& =x\left(y_{1}\right)^{\left|w_{k}\right|_{u}}\left(t_{1}\right)^{\left|w_{k}\right|_{v}} u\left(w_{1}, \ldots, a_{1}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y
\end{aligned}
$$

(by the inductive hypothesis and Proposition 3.4 as $t_{1} \in S \backslash U,\left|w_{k}\right|_{v} \geq p_{r}$)

$$
\begin{aligned}
& =x\left(t_{1}\right)^{\left|w_{k}\right| v} u\left(w_{1}, \ldots, y_{1} a_{1}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) } \\
& =x\left(t_{1}\right)^{\left|w_{k}\right| v} u\left(w_{1}, \ldots, a_{0}, w_{k+1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) } \\
& =x\left(t_{1}\right)^{\left|w_{k}\right| v} v\left(w_{1}, \ldots, a_{0}, w_{k+1}, \ldots, w_{\ell}\right) y
\end{aligned}
$$

(by the inductive hypothesis and Proposition 3.4 as $t_{1} \in S \backslash U,\left|w_{k}\right|_{v} \geq p_{r}$)
$=x v\left(w_{1}, \ldots, a_{0} t_{1}, w_{k+1}, \ldots, w_{\ell}\right) y($ by Corollary 3.3$)$

$$
=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{k}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

(by the zigzag equations and as $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$)
as required.
This completes the proof of the proposition.
Proposition 3.7. Let U be a semigroup satisfying a seminormal identity and dense in S. Let u and v be any words in $w_{1}, w_{2}, \ldots, w_{\ell}, z_{1}, z_{2} \ldots, z_{p}(\ell, p \geq 1)$ and $w_{1}, w_{2} \ldots, w_{\ell}(\ell \geq$ 1) respectively such that for each $i \in\{1, \ldots, \ell\}$ and $j \in\{1, \ldots, p\}, \min \left\{\left|w_{i}\right|_{u},\left|w_{i}\right|_{v},\left|z_{j}\right|_{u}\right\}$ $\geq \min \left\{p_{r}, q_{1}\right\}$. If U satisfies

$$
\begin{equation*}
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}} \tag{13}
\end{equation*}
$$

then so does S.

Proof. We shall prove the theorem in the Case when $\min \left\{p_{r}, q_{1}\right\}=p_{r}$, the proof in other case follows along similar lines. As U satisfy a seminormal identity, by Result 2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (13), then so does S. If $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}$ in S and all of $w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p} \in U$, then (13) holds by Lemma 3.1, and if all of $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell} \in S$ and $z_{1}, \ldots, z_{p} \in U$, then (13) holds by Proposition 3.6. So assume that not all of $z_{1}, \ldots, z_{p} \in U$. We prove the equality (13) by induction on the number k of arguments z_{1}, \ldots, z_{k} of u in S, assuming that the remaining arguments z_{k+1}, \ldots, z_{p} in U. First assume that $z_{1} \in S$ and $z_{2}, \ldots, z_{p} \in U$. When $z_{1} \in U$, then (13) is satisfied by Proposition 3.6. So assume that $z_{1} \in S \backslash U$. By Result 2.4, let (2) be a zigzag of minimal length m over U with value z_{1}. Letting $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$, we have

$$
x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}
$$

$$
=x u\left(w_{1}, \ldots, w_{\ell}, y_{m} a_{2 m}, z_{2}, \ldots, z_{p}\right) y \text { (by the zigzag equations) }
$$

$$
=x\left(y_{m}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{2 m}, z_{2}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) }
$$

$$
\left.=x\left(y_{m}\right)^{\left|z_{1}\right|_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y \text { (by Proposition } 3.6 \text { as }\left|z_{1}\right|_{u} \geq p_{r}\right)
$$

$$
=x\left(y_{m}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{2 m-1}, z_{2}, \ldots, z_{p}\right) y\left(\text { by Proposition } 3.6 \text { as }\left|z_{1}\right|_{u} \geq p_{r}\right)
$$

$$
=x u\left(w_{1}, \ldots, w_{\ell}, y_{m} a_{2 m-1}, z_{2}, \ldots, z_{p}\right) y(\text { by Corollary 3.3) }
$$

$$
=x u\left(w_{1}, \ldots, w_{\ell}, y_{m-1} a_{2 m-2}, z_{2}, \ldots, z_{p}\right) y \text { (by the zigzag equations) }
$$

$$
=x\left(y_{m-1}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{2 m-2}, z_{2}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) }
$$

$$
=x\left(y_{m-1}\right)^{\left|z_{1}\right| u n_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y\left(\text { by Proposition } 3.6 \text { as }\left|z_{1}\right|_{u} \geq p_{r}\right)
$$

```
\(=x\left(y_{m-1}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{2 m-3}, z_{2}, \ldots, z_{p}\right) y\) (by Proposition 3.6 as \(\left.\left|z_{1}\right|_{u} \geq p_{r}\right)\)
\(\vdots\)
\(=x\left(y_{1}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{2}, z_{2}, \ldots, z_{p}\right) y\)
\(=x\left(y_{1}\right)^{\left|z_{1}\right|_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y\) (by Proposition 3.6 as \(\left.\left|z_{1}\right|_{u} \geq p_{r}\right)\)
\(=x\left(y_{1}\right)^{\left|z_{1}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, a_{1}, z_{2}, \ldots, z_{p}\right) y\) (by Proposition 3.6 as \(\left|z_{1}\right|_{u} \geq p_{r}\) )
\(=x u\left(w_{1}, \ldots, w_{\ell}, y_{1} a_{1}, z_{2}, \ldots, z_{p}\right) y\) (by Corollary 3.3)
    \(=x u\left(w_{1}, \ldots, w_{\ell}, a_{0}, z_{2}, \ldots, z_{p}\right) y\) (by the zigzag equations)
    \(=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\)
```

 (by Proposition 3.6 and as \(x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}\) and \(y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}\)) as required.
 Next, assume inductively that (13) holds for all $z_{k}, z_{k+1}, \ldots, z_{p} \in U$ and $x_{1}, x_{2}, \ldots, x_{r}, y_{1}$, $y_{2}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{k-1} \in S$. From this, we shall prove that (13) holds for all $x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{s}, w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{k-1}, z_{k}$ in S and z_{k+1}, \ldots, z_{p} in U. If $z_{k} \in U$, then the equality (13) follows by the inductive hypothesis. So, assume that $z_{k} \in S \backslash U$. Let (2) be a zigzag of minimal length m over U with value z_{k}. Now

$$
\begin{aligned}
& x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{k}, \ldots, z_{p}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}} \\
& \quad=x u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, y_{m} a_{2 m}, z_{k+1}, \ldots, z_{p}\right) y \text { (by the zigzag equations) } \\
& =x\left(y_{m}\right)^{\left|z_{k}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{2 m}, z_{k+1}, \ldots, z_{p}\right) y \text { (by Corollary 3.3) } \\
& \left.\quad=x\left(y_{m}\right)^{\left|z_{k}\right|_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y \text { (by the inductive hypothesis as }\left|z_{k}\right|_{u} \geq p_{r}\right)
\end{aligned}
$$

$$
=x\left(y_{m}\right)^{\left|z_{k}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{2 m-1}, z_{k+1}, \ldots, z_{p}\right) y
$$

(by the inductive hypothesis as $\left|z_{k}\right|_{u} \geq p_{r}$)
$=x u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, y_{m} a_{2 m-1}, z_{k+1}, \ldots, z_{p}\right) y$ (by Corollary 3.3)
$=x u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, y_{m-1} a_{2 m-2}, z_{k+1}, \ldots, z_{p}\right) y$ (by the zigzag equations)
$=x\left(y_{m-1}\right)^{\left|z_{k}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{2 m-2}, z_{k+1}, \ldots, z_{p}\right) y$ (by Corollary 3.3)
$=x\left(y_{m-1}\right)^{\left|z_{k}\right|_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y$ (by the inductive hypothesis as $\left.\left|z_{k}\right|_{u} \geq p_{r}\right)$
$=x\left(y_{m-1}\right)^{\left|z_{k}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{2 m-3}, z_{k+1}, \ldots z_{p}\right) y$
(by the inductive hypothesis as $\left|z_{k}\right|_{u} \geq p_{r}$)
\vdots
$=x\left(y_{1}\right)^{\left|z_{k}\right|_{u}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{2}, z_{k+1}, \ldots, z_{p}\right) y$
$=x\left(y_{1}\right)^{\left|z_{k}\right|_{u}} v\left(w_{1}, \ldots, w_{\ell}\right) y$ (by the inductive hypothesis as $\left.\left|z_{k}\right|_{u} \geq p_{r}\right)$
$=x\left(y_{1}\right)^{\left|z_{k}\right| u} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{1}, z_{k+1}, \ldots, z_{p}\right) y$
(by the inductive hypothesis as $\left|z_{k}\right|_{u} \geq p_{r}$)
$=x u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, y_{1} a_{1}, z_{k+1}, \ldots, z_{p}\right) y$ (by Corollary 3.3)
$=x u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, a_{0}, z_{k+1}, \ldots, z_{p}\right) y$ (by the zigzag equations)
$=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$
(by the inductive hypothesis and as $x=x_{1}^{p_{1}} x_{2}^{p_{2}} \cdots x_{r}^{p_{r}}$ and $y=y_{1}^{q_{1}} y_{2}^{q_{2}} \cdots y_{s}^{q_{s}}$) as required. Thus the proof of the Proposition is completed.

Now combining Propositions 3.6 and 3.7 , we get the following.
Theorem 3.8. All heterotypical identities of the forms

$$
x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} u\left(w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}}=x_{1}^{p_{1}} \cdots x_{r}^{p_{r}} v\left(w_{1}, \ldots, w_{\ell}\right) y_{1}^{q_{1}} \cdots y_{s}^{q_{s}},
$$

where u and v be any words in $w_{1}, \ldots, w_{\ell}, z_{1}, \ldots, z_{p}(\ell, p \geq 1)$ and $w_{1}, \ldots, w_{\ell}(\ell \geq 1)$ such that for each $i \in\{1, \ldots, \ell\}$ and $j \in\{1, \ldots, p\}$, $\min \left\{\left|w_{i}\right|_{u},\left|w_{i}\right|_{v},\left|z_{j}\right|_{u}\right\} \geq \min \left\{p_{r}, q_{1}\right\}$ are preserved under epis in conjunction with a seminormal identity.

References

[1] Clifford, A.H. and Preston, G.B., The Algebraic Theory of Semigroups, Math. Surveys No.7, Amer. Math. Soc., Providence, R. I., (vol. I, 1961).
[2] Higgins, P.M., 'Saturated and epimorphically closed varieties of semigroups', J. Austral. Math. Soc. (Ser. A) 36(1984a), 153-175.
[3] Higgins, P.M., 'Epimorphisms, permutation identities and finite semigroups', Semigroup Forum 29(1984b), 87-97.
[4] Howie, J.M., An Introduction to Semigroup Theory, London Math. Soc. Monograph 7, Academic Press, 1976.
[5] Isbell, J.R., 'Epimorphisms and dominions', Proceedings of the conference on Categorical Algebra, La Jolla, 1965, 232-246, Lange and Springer, Berlin 1966.
[6] Khan, N.M., 'Some saturated varieties of semigroups', Bull. Austral. Math. Soc. 27(1983), 419-425.
[7] Khan, N.M., 'On saturated permutative varieties and consequences of permutation identities', J. Austral. Math. Soc. (ser. A) 38(1985), 186-197.
[8] Khan, N.M., 'Epimorphically closed permutative varieties', Trans. Amer. Math. Soc. 287(1985), 507-528.
[9] Khan, N.M and Shah, A.H., 'Epimorphisms, Dominions and Seminormal identities', Semigroup Forum, 80(2010) 219-241.

[^0]: *Corresponding author
 Received March 13, 2013

