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Abstract. Khan and Shah associated two natural numbers with a seminormal identity.
Using these natural numbers, we further enlarge the class of heterotypical identities of
which both sides contain repeated variables which are preserved under epis in conjunction

with a seminormal permutation identity.
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1. Introduction

Let U and S be any semigroups with U a subsemigroup of S. Following Isbell [5], we say
that U dominates an element d of S if for every semigroup 7" and for all homomorphisms
a,B:8 = T, ua = up for all w € U implies da = dfS. The set of all elements of S
dominated by U is called the dominion of U in S, and we denote it by Dom(U, S). It
may easily be seen that Dom(U, S) is a subsemigroup of S containing U. A semigroup U
is said to be saturated if Dom(U, S) # S for every properly containing semigroup S, and

epimorphically embedded or dense in S if Dom(U,S) = S.
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A morphism « : S — T in the category of all semigroups is called an epimorphism
(epi for short) if for all morphisms 3, ~, af = ary implies 5 = 7. Every onto morphism is
epi, but the converse is not true in general. It may easily be checked that oo : S — T is
epi if and only if the inclusion map ¢ : Sav — T is epi and the inclusion map i : U — S
is epi if and only if Dom(U,S) = S. A variety V of semigroups is said to be saturated if
all its members are saturated and epimorphically closed or closed under epis if whenever
SeVand ¢:S — T is epi in the category of all semigroups, then T" € V or equivalently
whenever U € V and Dom(U, S) = S, then S € V.

An identity g is said to be preserved under epis in conjunction with an identity 7 if
whenever S satisfies 7 and p, and ¢ : S — T is an epimorphism in the category of all
semigroups, then 7' also satisfies 7 and u; or equivalently, whenever U satisfies 7 and pu

and Dom(U, S) = S, then S also satisfies 7 and p.

An identity of the form

T1Tg - Ty = TiyTiy - Ty, (N> 2) (1)

is called a permutation identity, where ¢ is any permutation of the set {1,2,3,...,n} and
ir (1 <k <mn) is the image of k under the permutation i. A permutation identity of the
form (1) is said to be nontrivial if the permutation ¢ is different from the identity per-
mutation. Further, a nontrivial permutation identity zyxs - -z, = x;, x4, - - - x;, is called
seminormal if i, = 1 and i,, = n. A semigroup S satisfying a nontrivial permutation
identity is said to be permutative while a variety V of semigroups is said to be permu-
tative if it admits a nontrivial permutation identity. For any word u, the content of u
(necessarily finite) is the set of all variables appearing in u and is denoted by C(u). An

identity u = v is said to be heterotypical if C(u) # C(v); otherwise homotypical. A variety

V of semigroups is said to be heterotypical if it admits a heterotypical identity.

Khan [8], jointly with Higgins, has shown that any semigroup variety satisfying a
permutation identity zyxq - - - x, = x;;, - - T;,, where i1 # 1 or i,, # n, is epimorphical-

ly closed. Higgins [3] found an example of an identity whose both sides contain repeated
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variables and is not preserved under epis in conjunction with the identity xyzt = xzyt
(a seminormal identity). Thus the problem of finding those semigroup identities whose
both sides contain repeated variables and are preserved under epis in conjunction with a

seminormal identity appears worthwhile.

A necessary condition for a heterotypical variety to be saturated is that it admits
a heterotypical identity of which atleast one side has no repeated variable (see Higgins
2], and Khan [6] for sufficient condition). Since every saturated variety of semigroups
is epimorphically closed, all heterotypical identities of which atleast one side has no re-
peated variable are preserved under epis in conjunction with any non trivial permutation
identity. In [8], Khan found some homotypical as well as heterotypical identities contain-
ing repeated variables on both sides that are preserved under epis in conjunction with
any seminormal identity. Recently in [10], Khan and Shah have found some suffecient
condition on homotypical identities containing repeated variables on both sides that are
preserved under epis in conjunction with a seminormal identity. It is, therefore, natural
to find all those heterotypical identities whose both sides contain repeated variables and

are preserved under epis in conjunction with a seminormal identity.

In the present paper, we enlarge the class of heterotypical identities whose both sides
contain repeated variables and are preserved under epis in conjunction with a seminormal
identity. However, a complete determination of all such heterotypical identities to be pre-

served under epis in conjunction with a seminormal identity remains still an open problem.

2. Preliminaries

Now, we quote some results that will be used in rest of the paper. We shall be using
standard notation and refer the reader to Clifford and Preston [1] and Howie [4] for any
unexplained symbols and terminology. Further, in what follows, we will often speak of a
semigroup satisfying a semigroup identity to mean that the semigroup in question satisfies

an identity of that type.
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Result 2.1 ([7, Proposition 3.1]). Let S be any permutative semigroup satisfying (1) with

n > 3.

(i) For each g € {2, 3,...,n} such that x,_1z4 is not a subword of x;,x;, -+~ x;,, S

also satisfies the permutation identity
T1To -+ Ty 1 TYTy -+ Ty = T1To -+ Ty 1YTTy - - Tpy.
(ii) If x1 # x;,, then S also satisfies the permutation identity
TYT1Xg +*+ Ty = YTT1To - - Tny.

In the following result and elsewhere in the paper S, for any positive integer m and

semigroup S, will denote the set of all m-fold products of elements of S.

Result 2.2 ([7, Proposition 6.3]). Let S be any semigroup satisfying (1) with n > 3.
Then for each g € {2,3,...,n} such that x, 1z, is not a subword of x;,x;, - - - x;,, for all

m>g—1,p>n—g+1 and for allu € S™ v € SP, we have

UT1 T2V = UTT1V, for all x1,x9 € S.
In particular, S®) satisfies the normality identity for all k > max(g — 1,n — g + 1).
Result 2.3 ([8, Theorem 3.1]). All permutation identities are preserved under epis.

A most useful characterization of semigroup dominions is provided by Isbell’s Zigzag

Theorem.

Result 2.4 ([5, Theorem 2.3] or [4, Theorem VII.2.13]). Let U be a subsemigroup of a
semigroup S and let d € S. Then d € Dom(U,S) if and only if d € U or there exists a

series of factorizations of d as follows:
=aotr = Yty = yiagly = yoasty = = YmGam—1lm = Ymom, (2)
wherem > 1, a; €U (i=0,1,...,2m), y;, t, € S (i =1,2,...,m), and

ap = Y101, A2m—1tm = Q2m,

agi—1t; = azliy1, Yilo; = Yir102i41 (1<i<m-—1).
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Such a series of factorization is called a zigzag in S over U with value d, length m and

SPINE g, A1, - - -, Aopm-
In whatever follows, we refer to the equations in Result 2.4 as the zigzag equations.

Result 2.5 ([7, Result 3|). Let U be any subsemigroup of a semigroup S and let d €
Dom(U,S) \ U. If (2) is a zigzag of minimal length m over U with value d, then
yj, t; € S\U forallj=1,2,...,m.

Result 2.6 (]9, Proposition 2.1]). Let S be any permutative semigroup satisfying (1) with
n > 3. Then for each g € {2,3,...,n} such that x, 1z, is not a subword of x; x;, - - - x;,,,

forallm>g—1, p>n—g+1 and for allu e S™, v e SP we have

UT1T2 * - - TgU = UL\, Ty ** * TH,V

for all x1,29,...,xs €S (¢ > 2), where X is any permutation of the set {1,2,... (}.
In the following results, let U and S be any semigroups with U dense in S.

Result 2.7 ([7, Result 4]). For any d € S\U and k any positive integer, if (2) is a zigzag
of minimal length over U with value d, then there exist by, by, ..., by € U and dy, € S\ U
such that d = biby - - - brdy.

Result 2.8 ([7, Corollary 4.2]). If U be permutative, then

ST1T - Tt = STjXj, - -+ Ty, T

for all x1,x9,..., 2, € S, s,t € S\ U and any permutation j of the set {1,2,... k}.
The following corollary easily folllows by Result 2.8

Corollary 2.9 ([9, Corollary 1.8]). For any d € S and positive integer k, if d =
biby - - - bdy for some by, bs,... by € U and d € S\ U such that by = yllcl for some yll
in S\U, ¢, €U, then d® = Wbl - - - bid;, for any positive integer p.

The symmetrical statement in the following result is in addition to the original state-

ment.
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Result 2.10 ([8, Proposition 4.6]). Assume that U is permutative. If d € S\ U and
(2) is a zigzag of length m over U with value d such that y; € S\ U, then d* = akt}
for each positive integer k; in particular, the conclusion holds if (2) is of minimal length.
Symmetrically, if d € S\ U and (2) is a zigzag of length m over U with value d such that
tm € S\ U, then d* = y*ak  for each positive integer k; in particular, the conclusion

holds if (2) is of minimal length.

Result 2.11 (]9, Proposition 2.2]). Let U be any semigroup satisfying (1) with n > 3.
Then for each g € {2,3,...,n} such that x, 1z, is not a subword of x; i, - - - x;,, for all

m>g—1 and for allu € S™, v € S\ U, we have

UT1X ** * TpU = UL )\, Ty TN,V

for all zy,x9,...,x0 € S (¢ > 2), where X is any permutation of the set {1,2,... (}.
Symmetrically, for all p > h — 1 such that x,_p,T,_n—1) 15 not a subword of x; s, - - z;

and for allv € S v € S\ U, we have

n

UL1T - TgU = UL\, Ty * * - TH,U

for all x1,x9,...,2p € S (¢ > 2), where X is any permutation of the set {1,2,... (}.

3. Main results

Throughout the paper, we shall assume that U is any permutative semigroup satisfying

a seminormal permutation identity and is dense in the semigroup S.

To avoid introduction of new symbols, we shall treat, wherever is appropriate, x1, .. ., X;,
Y1,¥2:---,Ys: W1, Wa, ..., Wy, Z1,22,...,2Zp etc. as variables as well as the members of a
semigroup without explicit mention of distinction. Further for any word u and any vari-

able x of u, |x|, will denote the number of occurrences of x in the word u.

Lemma 3.1. Let u and v be any words in wy,ws,...,we and 21, 22, ..., 2, respective-
ly. Let p1,pa,...,0r,q1,q2,...,qs are any positive integers such that p1 < py < --- < p,;

s < - < g < qi(r,s > 1). If U satisfies the semigroup identity



ON EPIMORPHISMS AND SEMINORMAL IDENTITIES 7

p1 q1 __ P q1

oyt aru(wr, . we)yt e yd =2yt alro(z, L )y Yl (3)
then (3) is also satisfied for all x1,29, ..., Tr,Y1,Y2,...,Ys € S and wy,wa, ..., wy, 21,
Zo,..., 2 nU.

Proof. Since U satisfies a seminormal identity, by Result 2.3, S also satisfies a semi-
normal identity. Now we shall show that the identity (3) satisfied by U is also satisfied

when z1,2,..., T, Y1,Y2,...,Ys €S and 21, 22, ..., 2p, W1, Wa, ..., we € U.

Case (i): First, take any zy,29,...,2, € S and y1,...,ys,w1,...,Wp, 21,...,2, € U.
If 1,29,...,2, € U, then (3) holds trivially. So assume without loss of generality that

x1 € S\ U. Let (2) be a zigzag of minimal length m over U with value z;. Then

P1,.P2 D q1 ,,92 q
oty - alru(wy, wy, . we)yl Yy -y
_ 1 ,P1 P2 q1,,92
= yhlay,xh’ - wlru(wy, wo, . .. we)yi Yy - YL

(by the zigzag equations and Result 2.10)

— p1 ,.p2 - q1,.92 5 :

= yPrabr ab? - axlro(zy, 20, ..., 2p) Yl ys - - - y?2 (as U satisfies (3) )
— P1,.DP2 q1,,92 3

= ay'wy’ o alro(z, 2e, . 2yl Ys e YR

(by the zigzag equations and Result 2.10)
We, now, assume inductively that the result is true for all x1,..., 21 € S and zy, ..., .
in U. We shall prove that the result is also true for all x1,...,zy € Sand x4 1,..., 2, € U.
Again if xp € U, then the result follows by the inductive hypothesis. So assume that

xp € S\ U. Let (2) be a zigzag of minimal length in .S over U with value z;. Now,

D1 .2 D q1, g2 q
wy wy? s alru(wy, wy, . we)yl Yy Y
P P2 PRt pp Pk o PREL | op @0
= T T Tp_ 1 Ym O Ty aPru(wy, wa, . .., we) Yy ys Ys®

(by Result 2.10 and zigzag equations)

(m)Pk; (m)Pk (m)Pk_pp Prs1 Pr q1, .92 s
= m by cebply agnay ok u(wy, wa, ..., W)Yt Y3 - - - Y3

(by Results 2.4 and 2.5 for some ™. .. ,b,(ﬁ)l € U and yo” € S\U as ynm
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in S\U and as,, = agp_1ty, with t,, € S\U and where w = af'25? - - 27" ")

_ (m)pk m (m)p1 (m)pk_l Pk ,.Pk+1 - q1 .92 s
= wym” ™™ b bk A alru(wr, wa, L we) Y YR -y

(by Result 2.5 as y") t,, € S\U and where v(m) = p{m™™ . plm) PEEEL

_ (m)Pk ()7, (m)PL (m)Pk=1 pp  pry1 - q1, .92 s
= wym 0™by by agnmy o alro(z, 2, 2yl Yt

(as U satisfies (3))

(m)Pky (m)Pk (m)Pk_pi  Prt1 - q1. g2 .
= wWym b byt abs e alru (2, 2o, )Y s e Y

(by Result 2.5 and the definition of v(™))

—  gpPrpP2 PRy pg Pl PR p 92, .4
= I Xy L—1 Ym a’2mxk+1 .TTTU(ZI, 295 7zp)y1 Ya Ys®
(m)Pk 3 (m)Pk (m) Pk P1,.P2 Pr—1
(as ym by --by =yl and w =22l 1)
— P1,.02 . Pk—1_DPk Pkl . .p q,492 . ,q
= I Ty xk—l ‘rk xk’—l—l ZCTTU(Zl’ 22y e Zp>y1 Y yss

(by Result 2.10 and zigzag equations)

as required.

Case(ii): Now we show that (3) is satisfied for all zy,x9,..., 2, y1,¥2,...,ys € S and
Wy, Wa, ..., Wy, 21, 22, - .., % € U. Again, we can assume without loss of generality that

y1 € S\ U. Let (2) be a zigzag of minimal length m over U with value y;, we have

p1,.D2 pr a1, a2 ds
Ty Ty "'CE,,"LL(wl,QUQ,...,’LUg)yl Yo "'ysb
_ pP1,..pP2 q14491 , .92
= a'ay - aPru(wy, wa, .. we)ad Ty - - yde

(by the zigzag equations and Result 2.10)

_ .p1,.D2 . q ()% M@ ()N go s
= ay'ay’ - alru(wy,we, .. we)agtcy’ ceecs )ty Yyt eyl (4)

P1,..p2

1 1)112 1)qs 1 1)491
= aab? - aPru(wy, we, ..., we)ad ESAR: SaRTIONIO

1 Yy yk (5)



ON EPIMORPHISMS AND SEMINORMAL IDENTITIES 9

. P1..Dp2 q1 ,(1)92 (D% (1)) go

= aab? - alru(zy, 20, zp)altiey ) e wWDE Ty gl
(as U satisfies (3))

. P1..Dp2 q1 (1T (D (D) g

= a'al? - alru(zy, 20, .., 2p)ad ey’ s eyl

(by Result 2.5 and definition of w("))

— P1.P2 P 1491, 492 . q
= a'al? - aPru(z, 20, ..., 2p)ad T Ys g
(Ha M, M _ L q
(by Result 2.5 as ¢5 ' ---cs’ t; =1ti")
— b1 ,.p2 a1, .92
= afay’ - alru(a, a2yl Yyl

(by the zigzag equations and Result 2.10)

as the equalities (4) and (5) follow by Results 2.4 and 2.5 for some c}’

s cgl) in
Uand t!V € 8 \ U as y1,t; € S\ U and where w") = cgl)qrqz DT respective-
ly.

Now, we assume inductively that the result is true for all y1,...,yx—1 € S and y, ..., ys
in U. We shall prove that the result is also true for all yy, ..., yx—1,yx € S and ygy1, ..., Ys
in U. Again if y;, € U, then the result follows by the inductive hypothesis. So assume
that y, € S\ U. Let (2) be a zigzag of minimal length m in S over U with value y.
Now as the equalities (6) and (7) follow by Results 2.4 and 2.5 for some c&il, Y in

U and tgl) € S\ U as yi,t; € S\ U and where v = y*%' ---y%, and by Result 2.5 as

1 1) 9k—Aqk+1 1)9k —94s .
ag = Y101, Y1, tg ) e S\U and where w(!) = céil S respectively, we have
p1,.P2 q1, .92
oyt wy’ -l u(wy, wa, - WYYy Y
— p1,.D2 q1,,92 dk—1 _Qqk 49k, dk+1
= ay'wy? o alru(wy, we, o w)y Yy gttty oy

(by Result 2.10 and zigzag equations)

_ P1,.D2 q1,,q2 Q-1 qx (1) I* (1), (1) 9%
= o' wy’ - alru(wy, we, W)Y Y Y G0 Crpqy ctcCs )t U (6)

_ P12 a1, g Gh-1 _qp, (1) Ik+1 (1) (1),(1) 9%
= af'ah? - abru(wr, wa, . w)yl s -yl el e wW (7)
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— P1D2 | op a1, q2 o dk—1 gk (1) L (1) (1), (1)9k
= o' wy® - alru(z, 22, 2p) YT Y Yt @0 G cs’ wMt

(by the inductive hypothesis )
—  P1aP2 p qu, a2 dk=1 ok Gk (DT
= a'z} xPru(zy, 29, ..oy 2p) Y s Ypq adt el ety v

(by Result 2.5 and the definition of w(®))

— P1,.P2 . ,p a . 9%—1 9Kk 49k, k+1 . q
= a'a} 2Pru(zy, 29, ..oy 2p) Y] (P A T g
1) 9k 1)9% ,(1)9k .
(by Result 2.5 as céll cel) tg = t9* and the definition of v)
— P1,P2 . ..p a,q2 . ,9%-1,4k,9k+1 . q
= 7 Ty aPrv(z1, 22, - 2p) YT Y5 Y—1 Yk Yk s

(by Result 2.10 and zigzag equations)

as required. This completes the proof of the lemma. 0

Following [10], for any seminormal identity (1), let go = min P, the minimum of P, where
P={2<g<n-—2:z,1z,is not a subword of x;, x;, - - - z;, }.
Similarly, let hy = min (), where
Q={1<h<n—gy—1:T, p2n_(h_1) is not a subword of z;, x;, - - - 5, }.

In whatever follows, gog and hg will stand as defined above. We shall also assume

that p1,p2,.-.,Pr, 91,42, ---,qs be any positive integers such that

P1+ - -+Pr>8—1ldi+ +Qq>ho—1,

p1 < <prand qs < --- < qp(r,s > 1) without further mention.
The following corollary directly follows from Result 2.11 and Lemma 3.1.

Corollary 3.2. Let my,ma, ..., mg,ny1,Na,...,n, be any positive integers. If U satisfies

the identity

D1 ,.P2 D, L me, 41, 92 qs _ ,.P1,.D2 Dr U1 Mjp, 41, 42 q
331 xz ...xrrwl we yl y2 ...yss_l'l mz ...xrrwjl ...u}jZ yl y2 ...yss
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1 xp,q1,.q2

AN, Y1 Y2 eyl (8)

_ o PLP2 P ML oM, 41,92 o Gs _ ,P1P2 o pr T
= I Ty Ly 2y Zp Y1 Yo Ys = T Lo Ty 2y,

where j and \ are any permutations of {1,2,...,0} and {1,2,...,p} respectively, then (8)
is satisfied for all x1,29,..., %, Y1,Y2,...,Ys €S and wi,ws, ..., Wy, 21,22,...,2p € U.
The following corollary follows easily by Result 2.11 as p; +ps + -+ +p. > go — 1 and

G F+qt+qg > hy— 1

Corollary 3.3. Let S be any permutative semigroup satisfying a seminormal identity. Let
u be any word in the variables z1, 2o, ..., z¢ and let z; € C(u), for some j € {1,2,...,(},

be such that z; € S. If z; = va = by, for all x,y,a,b € S, then

oV e alru(z, 2, 2y 2y Y ey
= PP ()Pl 2, Zi1s Gy Zjgts s 20) YL Y -yl
[t ah? - alru(z, 2o, oy 25, 20) YT Y Yy
=l alru(z, 2o, 21,0, 2500, s 20) (y)/Faley Ty 22 gyt ]
Further, if z; = sicsy for all s1,¢,s9 € S, then
oV e alrul(z, ze, o 2y 20y Y ey
= 2w b (s) 0 (s) Pz, 20, 20, 2, 20U Yy
[t ah? e alru(z, 2o,y 25, 20) YT Y YR
- Z‘11)1‘7‘12)2 o IIT)TU(ZD 22y ey Rj—1,Cy Zj41y 0oy Zf)(sh)lelu<5k2>‘Zj|uyinyg2 te .ygsL
where k is any permutation on the set {1,2}.
Proposition 3.4. Let u and v be any words in wy, ws, ..., w; and 21, 22, . . . , 2, respectively
and let the identity
ot alru(wy, o we)yt eyl =alt e alro(zy, o )yl eyt
holds for all z1, 29, ..., 2, %1,Y2,...,Ys € S and wy, wo, ..., Wy, 21,22,...,%, in U.

Then the identity

dPu(wy, .. w)yf -yl = aPu(zy, . 2)yd ey
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[ aPru(wy, . we)y? = a2t aPru(z, . 2p) Y

holds for all x € S\ U, y1,...,ys € S,wy,...,we, 21,...,%2, in U, and positive integer
p>py [forallye S\U, z1,...,2, €S, wy,...,wy, 21,...,2, in U, and positive integer

q>aql.

Proof. We have

ya q1 [oF
2Pu(wy, wa, . .. we)yy - - - y®
_ - @
= aPPraPru(wy, we, ..., we)yit -yl
_ — 'Pr _p q1
= aP P Tal" L aPru(wy, we, . we)yft ey

(by Result 2.7 and Corollary 2.9 for some a4, ...,a, € U and
z € S\U as a, = b,z, for some z. € S\U, b, € U)

— —pr .'Pr, D1 q ,
= aPPrx Twa .. aPru(wy, we, .. we)yt -y P

-p1 pr—pr71)

(by Corollary 2.9 as a, = b,z and where w = a}" “a,

= - PP : q1 X
= aP Py Twal . oalu(zy, 2, 2p) Yty
D , . .
= aPPraalm L alru(z, 2o, ., 2) YT - - Y2 (by defenition of w)

_ — q1
= aPPraPru(zy, 2o, ..., 2p)YL -yl

(by Result 2.7 and Corollary 2.9 as 2P = """ a2 ... a?)

_ q1

- .CCpU(Zl, Ry ey Zp)yl o gs
as required. Dual statement may be proved on the similar lines. 0
Theorem 3.5. Let u and v be any words in wi,ws,...,wy and zi,2a,...,%, respec-

tively such thatV i € {1,2,...,0} andV j € {1,2,...,p}, min{|wi|u, |2jo} > min{p., 1}

Then all heterotypical identities of the form
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p1 q1 __ Pt q1
2yt aru(wr, . we)yt ke = ayt e alro(z, e )y eyl (9)
are preserved under epis in conjunction with a seminormal identity.

Proof. We shall prove the theorem for Case when min{p,,¢1} = p,, the proof in
other case follows along similar lines. As U satisfy a seminormal identity, by Result

2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (9), then

so does S. So let x1,29,..., %0, Y1,Y2, ..., Ys, W1, Wa, ..., Wy, 21, 22, ...,%, in S. If all of
Wy, Wa, . .., Wy, 21, 22, - - ., %p are from U, then the result holds by Lemma 3.1. So, assume
that not all of wy,ws, ..., wy, 21, 22, ..., 2, are from U. Now to show that the identity (9)

is satisfied by S, we shall first prove that

oyt alru(wy, . weyft eyl = at e alro(on o)y yE (10)
for all x1,29,..., 2, 91,Y2, .., Ys, W1, Wa, ..., we € S and vy, vy,...,v, € U. We prove the
equality (10) by induction on the number k of arguments wy, wy, ..., wy in S, by assum-
ing that the remaining arguments wy,1,...,w, € U. So, first, assume that w; € S and

Wa, ..., we € U. When w; € U, equality (10) is satisfied by Lemma 3.1. So, let w; € S\U.

Let (2) be a zigzag of minimal length m over U with value w;. Letting x = )" 25> - - - 2P~
and y = y'yd - - - y%, we have
oy ay’ i u(we, wa, . we)yt Yy Y
= 2U(YmGam, Wa, . .., wy)y (by the zigzag equations)

= 2(Ym) "l u(agm,, wa, . .., we)y (by Corollary 3.3)

= 2(ym)" v (vy, vy, ..., v,)y (by Proposition 3.4 as y,, € S\ U and |wi|, > p,)

= 2(ym) " eu(ag, 1, wa, . .., we)y

(by Proposition 3.4 as y,, € S\ U and |wi|, > p;,)

= 2U(YmGom—_1,W2, ..., we)y (by Corollary 3.3)
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= 2U(Ym_102m—2,Ws . .., we)y (by the zigzag equations)

= (Y1) u(agm_o,ws, . .., we)y (by Corollary 3.3)

= Q:(yl>|wl|uu(a27 wa, . .. ,'lUg)y

= a(y)"v(vy, ve, ..., v,)y (by Proposition 3.4 as y; € S\ U and |wi|, > p,)

= 2(yy)"eu(ar, wy, ..., wy)y (by Proposition 3.4 as y; € S\ U and |wi|, > p,)

= au(yra1,ws,...,wy)y (by Corollary 3.3)

= au(ag,ws,...,wy)y (by the zigzag equations)
= e alro(vg,ve, .0yt yst -y
(by Lemma 3.1 and as @ = 20"z - - 2P and y = y{'ya* - - - y%)

as required.

Next, assume inductively that the equality (10) holds for all z1,xs, ..., T, ¥1, Y2, - - -, Ys,
Wi, Wa, ..., Wg_1 in S and wg, Wri1,...,w, in U. From this we shall prove that the e-
quality (10) also holds for all xy, 29, ..., 20, y1,Y2,. .., Ys, W1, Wa, ..., Wk_1, Wy in S and
Wity .-, we € U. If wy, € U, then the equality (10) follows by the inductive hypothesis.
So, assume that w, € S\ U. Let (2) be a zigzag of minimal length m over U with value

wy. Now, for any vq,vs,...v, € U, we have

p1_p2 a, ¢ ‘
b e aPru(wy, wa, L W1, Wiy Wty - -+, W) YT YD -yl
= au(wy, Wy, ..., Wk_1, YmQom, Wki1, - - -, W)y (by the zigzag equations)

= ﬂc(ym)'wk‘uu(wh W, . .+ s Wh—1, Q2m, We1, - - -, We)y (by Corollary 3.3)
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= 2(Ym)"*lev(vy, vg, .. ., v,)y(by the inductive hypothesis and Proposition 3.4 as
Ym € S\ U and |wg|, > py)

= 2(ym)leu(wy, wo, . .., We_1, 21, Wiy 1, - - ., we)(by the inductive hypothesis

and Proposition 3.4 as y,,, € S\ U and |wg|, > p;)

= au(wy, Wy, ..., Wk_1, Ym2m—1, Wk+1, - - -, We)y (by Corollary 3.3)

= au(wy, Wy, ..., Wk_1, Ym—102m—2, Wk+1, - - -, W) (by the zigzag equations)
= (Y1) "Fleu(wy, wo, . .. W1, G2, W1, - - ., we)y (by Corollary 3.3)
=z u(wy, wa, . Whlt, A9, Wit « - W)Y

= xy'f”’“l“v(vl, vg, ..., v,)y(by the inductive hypothesis and Proposition 3.4 as
y1 € S\ U and |wi|, > pr)

[w
1

= Xy u(wl7w27"'awk—hahwk—‘rl)"'awf)y

(by the inductive hypothesis as y; € S\ U and |wg|, > pr)

= zu(wy,wey, ..., Wk_1,Y101, Wkt1, - -.,we)y (by Corollary 3.3)

= zu(wy,wy, ..., Wk_1, Ao, Wkt1,-- ., W)y (by the zigzag equations)
_ ,p1,..p2 . q1, .92 .

= ay'zy’ o alu(on, vas LUy S e

(by the inductive hypothesis and as x = " 25> - - - 2P and y = y{'ys* - - - y?*)

as required.
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Similarly, we may prove that

yal D Q1 qs — .P1 D q1 q
Ty "'ZL‘TTU(Zl,..,,Zp)yl Y =1 ”"'L‘rru<u1a"'7u5)y1 g (11)
for all x1,z2,..., 20, y1,%2,. .., Ys, 21, 22,. .., 2p €S and uy,ug,...,ug € U.

Now, using Lemma 3.1 and equations (10) and (11), we have

p1,.D2 D q1,,92 q
Ty Ty --~:U,,Tu(w1,w2,...,wg)y1 Yoo Yg

= 2v(vy, Vg, ...,0p)Y

_ p1,.D2 q1,,92 .
= I7 Ty ...xfrv(zlaz%"'vzp)yl Yo o ;19‘

__ .P1,..D2 _ 491,92 ’
(as & = 27'a? - 2P and y = yT'yg® - - y%)

This completes the proof of Theorem. O
Proposition 3.6. Let u and v be any words in wy,...,we, 21,...,2, ({,p > 1) and

Wi, ..., wp (£ > 1) respectively such that¥V i € {1,2,... 0}, min{|w|u, |wilo} = min{p., ¢ }.
If U satisfies

x?l ‘..xfru(w17"'7w£7 217"'7Zp>y?1 ...yss = x€1 ..'xgzrv(w17"'7we>y?l o 357 (12>
then (12) is also satisfied for all xy, ..., %, y1,...,Ys, W1, ..., we € S and for all z,. .., z,
mn U.

Proof. We shall prove the theorem for the case when min{p,,q;} = p., the proof in
other case follows along similar lines. As U satisfy a seminormal identity, by Result
2.3, S also satisfy a seminormal identity. We shall show that if U satisfies (12), then
(12) is also satisfied for all z1,..., 2, y1,...,ys, w1,...,we in S and 2q,...,2, € U. If
X1y Tpy Y1y, Ys € S and all of wy, ..., wy, 21,...,2, € U, then (12) holds by Lem-

ma 3.1. So, assume first that not all of wy,...,w, are from U. We prove the equality
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(12) by induction on the number k of arguments wy, ..., w; of the word u in S, as-
suming that the remaining arguments wy,1,...,w, € U. So assume that w; € S and
Wa, ..., wy are from U. When w; € U, then (12) is satisfied by Lemma 3.1. So assume

that w; € S\ U. Let (2) be a zigzag of minimal length m over U with value w;. Letting

x=al'ab? 2P and y = yf'yd® - - -y, we have
p1,.D2 D q1,,92 q
ot ah? - alru(w, w2z )Y Y YR
= 2U(YmQom, Wa, . .., Wy, 21, - . ., 2,)y (by the zigzag equations)

= 2(ym) " u(ag,, wo, . . ., we, 21, . . ., 2,)y (by Corollary 3.3)

= m(ym)|wl|uv(&2m7 wa, . . . ,UM)y

(by Proposition 3.4 as y,, € S\ U and |wi|, > p;)

= 2(ym) v (agm_1tm, wa, ..., w)y (by the zigzag equations)

= 2(y)" e (tn) 0 (agm-1, w3, . . we)y (by Corollary 3.3)

= 2(Y) "l () o ag 1, wa, W, 214 2)Y

(by Proposition 3.4 as t,, € S\ U and |wy|, > p;)

= 2(t) o u(Ymagm 1, w2, . .., we, 21, . . ., 2,)y(by Corollary 3.3)

= 2(t) o u(ym_1a2m 2, Wa, . . ., Wy, 21, . . ., 2,)y (by the zigzag equations)

= x(t2>‘w1|vu<yla27w2a"'7w€7217"'7zp)y

= a(y) ol (ty)thu(ag, wy, . .., we, 21, . . ., 2,)y (by Corollary 3.3)
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= a(y) "l () thov(ag, wy, . .., we)y

(by Proposition 3.4 as to € S\ U and |w1|, > p;)

= a(y)"lev(agty, wy, . .., we)y (by Corollary 3.3)

= a(y)"hv(arty, wy, ..., we)y (by the zigzag equations)

= a(y) "l (t)lov(ay, wy, ..., wy)y (by Corollary 3.3)

= x(yl)‘w”“(tl)‘wl'”u(al, Way .oy Wy 215 -y 2p)Y

(by Proposition 3.4 as t; € S\ U and |wi|, > p;)

= a(t)lu(yiar, wy, ... we, 21, ..., 2,)y (by Corollary 3.3)

= a(t)lu(ag, wy, ... w21, ..., 2,)y (by the zigzag equations)

= 2(t))"lw(ag, w, ..., w)y (by Proposition 3.4 as ¢, € S\ U and |wyl, > p,)

= av(agty, ws,...,we)y (by Corollary 3.3)

_ Dp1,.D2 q1,,92 ’
= a'a - abro(wy, . we)yltyy -y
(by the zigzag equations and as = 20"z’ - - aPr and y = y{'ya* - - - y%)

as required.

Next, assume inductively that (12) holds for all zy,...,x.,y1,...,ys in S and all of
wy, ..., wg—1 €S, and Wy, W41, ... Wy, 21, - . ., 2, € U. From this, we shall prove that (12)
holds for all z1,..., 2z, y1,...,ys €S, wi,...,wi_1,wr € S and Wyy1,... W, 21, ..., 72 I
U. If wy € U, then the equality (12) follows by the inductive hypothesis. So, assume that

wr € S\ U. Let (2) be a zigzag of minimum length m over U with value wg. Now, we
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have
el alru(wy, Wk w2 2p) YT Yy
= zu(ws, ..., YnA2m, Wkt1,-- ., W, 21, - - ., 2p)y (by the zigzag equations)
= 2(Ym)leu(wy, . .. Aom, Wy, - We, 21, - -, 2,)y (by Corollary 3.3)
= 2(y)lo(wy, . .. agm, Wiet, - ., we)Yy

(by the inductive hypothesis and Proposition 3.4 as y,, € S\ U, |wk|. > pr)

= 2(ym)lvv(wy, . . . agm1tm, Weyt, . .., we)y (by the zigzag equations)

= 2(ym)lle ()W o v (wy, . Ggm1, Weyt, - - ., we)y (by Corollary 3.3)

= x(ym)|wk|“(tm)|w’“|”u(w1, ey Qo1 Wheg 1y e v, Wey 21y - v - ;Zp)y

(by the inductive hypothesis and Proposition 3.4 as t,, € S\ U, |wg|, > p;)

= 2(tn) " lou(w, .. Ymom 1, Whit, - - - We, 21, - - -, 2p)y (by Corollary 3.3)

= l’(tm>‘wk|”ll,(w1, ey Ym—102m—2, Wi41, -+ -, Wp, 215+« - ,Zp)y

(by the zigzag equations)

= :L'(tg)'wk'“u(wl, e Y1A2, Wi 1 oy Why 21, - ey 2p)Y

= a(y) sl (t)orlou(wy, . ag, Wi, - -, we, 21, - -+, 2p)y (by Corollary 3.3)

= x(yy)rle(t)orlbv(wy, .. ag, Wi, - we)Y

(by the inductive hypothesis and Proposition 3.4 as to € S\ U, |wg|, > p)

= z(y)lev(wy, . .., asty, Wiy, . .., we)y (by Corollary 3.3)
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= a(y) " lev(wy, ..., a1ty Wy, . .., we)y (by the zigzag equations)

= x(y1)|wk|u(t1)|wk|vv(wla ey A1, Wi,y - - awf)y (by Corona’ry 33)

= x(y1)|wk|“(t1)|wk|”u(w1, e QL Wht s e Wy 21y ey Zp)Y

(by the inductive hypothesis and Proposition 3.4 as t; € S\ U, |wk|, > p;)

= a(t)lu(wy, ... yran, wiga, .. we, 21, - -4, 2,)y (by Corollary 3.3)

= a(t)lu(wy, ... ag, Wi, ... we, 21, ..., 2,)y (by the zigzag equations)

= x(t1)|wk|”v(w1, e 00, Wiy -+ W)Y

(by the inductive hypothesis and Proposition 3.4 as t; € S\ U, |wk|, > p;)

= av(wy,...,apty, Wk, .., wp)y (by Corollary 3.3)

= IIIHIJQQ T xﬁf’“v(wl, vy Wy - 7w€)yg1y32 T ygs
(by the zigzag equations and as x = 27" 25” - - - aPr and y = y{'y2* - - - y%)
as required.
This completes the proof of the proposition. Il

Proposition 3.7. Let U be a semigroup satisfying a seminormal identity and dense in .S.
Let w and v be any words in wy, ws, ..., ws, 21,22...,2, ({,p > 1) and wy, wa ..., we (£ >
1) respectively such that for each i € {1,...,¢} and j € {1,...,p}, min{|w|u, |wi|v, |2|u}
> min{p,, 1 }. If U satisfies

p

xll'Hx%zru(wlv'"7w€7217-"7zp)y1111“' gS: ]111“'x];rv(wla"ww@)yllh“' gs (13>

then so does S.
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Proof. We shall prove the theorem in the Case when min{p,,¢;} = p., the proof in
other case follows along similar lines. As U satisfy a seminormal identity, by Result 2.3,
S also satisfy a seminormal identity. We shall show that if U satisfies (13), then so does
S. Ifxq,...,2,y1,...,ys in S and all of wy,...,wy, 21,...,2, € U, then (13) holds by
Lemma 3.1, and if all of 21, ..., 2, y1,...,Ys, w1,...,we € S and 2q,...,2, € U, then (13)
holds by Proposition 3.6. So assume that not all of z1,...,2, € U. We prove the equality
(13) by induction on the number k of arguments z1, ..., 2, of u in S, assuming that the
remaining arguments 2zpy1,...,%, in U. First assume that z; € S and 2;,...,2, € U.
When z; € U, then (13) is satisfied by Proposition 3.6. So assume that z; € S\ U.

By Result 2.4, let (2) be a zigzag of minimal length m over U with value z;. Letting

x=al'ab? 2P and y = yf'yd® - - -y, we have
p1,.D2 D q1,.,92 q
atah? - alru(w, . w2 2) Y Y YR
= zu(wy, ..., Ws, Ymom, 22, - - -, %)y (by the zigzag equations)

= 2(ym)eu(wy, . . . Wy, g, 29, - - -, 2,)y (by Corollary 3.3)

= 2(ym) v (wy, ..., wy)y (by Proposition 3.6 as |z1], > p,)

= 2(ym) B lu(wy, . .., we, agm—1, 22, . . . . 2p)y (by Proposition 3.6 as |21|, > p;)

= zu(wi, ..., W, YmA2m—1, 22, - - -, 2p)y (by Corollary 3.3)

= zu(wy, ..., W, Ym—102m—2, 22, . . ., 2p)y (by the zigzag equations)

= (Y1) lu(wy, ... wp, azm_2, 22, . .., 2,)y (by Corollary 3.3)

= 2(Ym_1)v(wy, ..., we)y (by Proposition 3.6 as |z |, > pr)
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= 2(Ymr) P u(wy, ... wp, agms, 20, . . ., 2,)y (by Proposition 3.6 as |z1|, > p;)

= x(y1)|21‘“u(w1, e Wy A2, 22y ey Zp)Y

= a(y)?lw(wy, ..., we)y (by Proposition 3.6 as |z |, > p,)

= a(y)#lu(wy, ... we, a1, 29, . . ., 2,)y (by Proposition 3.6 as |21}, > p,)

= zu(wi,...,ws, Y101, 22, ..., %)y (by Corollary 3.3)

= zu(wy,...,wy, a0, 22, - ., 2,)y (by the zigzag equations)
= o' ab - abro(wy, .. we)yltyd -yl
(by Proposition 3.6 and as = 20"z’ - - - aPr and y = y{'y3* - - - y%) as required.
Next, assume inductively that (13) holds for all zx, zx41, ..., 2, € U and a1, 29, ..., 2, Y1,

Y2y ey Ysy Wy oo, Wy 21, - -+, 2p—1 € S. From this, we shall prove that (13) holds for all
Tlyee s Ty Ylse ooy Ysy Wiy e ooy Wy 21,4 - -5 Z—1, 2 DS and 241, ..., 2, iIn U. If 2, € U, then
the equality (13) follows by the inductive hypothesis. So, assume that z, € S\ U. Let

(2) be a zigzag of minimal length m over U with value z;. Now

D1 ,.P2 DPr q1,,92 ds

oyt e alru(w, o we 21 2 2) Y Y Y
= zu(wi, ..., We 21, -, YmGom, Zkt1, - - - 2p)Y (Dy the zigzag equations)
= 2(Ym)*leu(wy, .. we, 21, Qo Zhss -+ 2p)y (by Corollary 3.3)

= 2(ym)*lv(wy, ..., w)y (by the inductive hypothesis as |zx|, > p,)
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= x(ym)|zk‘“u(w1, e Wy 21y A2y Bt s - - 5 Zp)Y

(by the inductive hypothesis as |zx|, > p,)

= zu(Wi, ..., We 21, YmG2m—1, Zkt1, - - - 2p)y (by Corollary 3.3)
= zu(wy,..., W, 21, -« s Ym—102m—2, Zk+1, - - -, 2p)Y (by the zigzag equations)
= 2(Ym_1)*u(wi, .. w21, G2, k41, - - - %)y (by Corollary 3.3)

= 2(Ym_1)*luv(wy, ..., we)y (by the inductive hypothesis as |z;|, > p,)

= x(ym,l)‘zk“u(wl, e Wy 21y ey A28y 2 ds - - - Zp)Y

(by the inductive hypothesis as |zx|, > p,)

= a:(yl)'Zk'“u(wl, e Wy 2y ey A2y Bt s -5 Zp)Y

= a(y)*l«v(wi, ..., w)y (by the inductive hypothesis as |z;|, > p,)

= :E(yl)|zk|“7,b(wl7 e Wy 2y ey ALy Bt s -5 2p)Y

(by the inductive hypothesis as |zk|, > p,)

= azu(wy,..., W, 21, ..., Y101, Zkt1,s - - -5 2p)y (by Corollary 3.3)

= au(wy,..., Wy, 21,. .., 00, Zk+1, - - - 2p)Y (by the zigzag equations)
— P1,.P2 r q1 ,,92

= o' wy’ - -alro(w, . we)yltys - yE

(by the inductive hypothesis and as x = " 2h> - - - 2P and y = y{'ya* - - - y?)

as required. Thus the proof of the Proposition is completed. O]



24 WAJIH ASHRAF AND NOOR MOHAMMAD KHAN

Now combining Propositions 3.6 and 3.7, we get the following.
Theorem 3.8. All heterotypical identities of the forms
ot alru(w, w21, 2yt eyl =2t alro(wy, L we) Yyl Y2,

where u and v be any words in ws, ..., we, 21, ..., 2, p > 1) and wy, ..., we({ > 1) such
that for each i € {1,...,4} and j € {1,...,p}, min{|w;l|u, |Wilv, |2jlu} > min{p.,q1} are

preserved under epis in conjunction with a seminormal identity.
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