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Abstract. In this article, a proximal point algorithm is investigated for treating zeros of maximal monotone map-

pings. Strong convergence theorems are established in the framework of Hilbert spaces.
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1. Introduction-Preliminaries

Recently, algorithms have been studied as an effective and powerful tool for studying a wide

class of real world problems which arise in economics, finance, and network; see [1-9] and the

references therein.

Throughout this paper, we assume that H is a real Hilbert space, whose inner product and

norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let T be a set-valued mapping.

(a) The set D(T ) defined by

D(T ) = {u ∈ H : T (u) 6= /0}
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is called the effective domain of T ;

(b) The set R(T ) defined by

R(T ) =
⋃

u∈H

T (u)

is called the range of T ;

(c) The set G(T ) defined by

G(T ) = {(u,v) ∈ H×H : u ∈ D(T ),v ∈ R(T )}

is said to be the graph of T .

Recall the following definitions.

(c) T is said to be monotone if

〈u− v,x− y〉 ≥ 0, ∀(u,x),(v,y) ∈ G(T );

(d) T is said to be maximal monotone if it is not properly contained in any other monotone

operator.

For a maximal monotone T : D(T ) → 2H , we can defined the resolvent of T by Jt = (I +

tT )−1, t > 0. It is well known that Jt : H → D(T ) is nonexpansive and F(Jt) = T−1(0),

where F(Jt) denotes the set of fixed points of Jt . The Yosida approximation Tt is defined by

Tt =
1
t (I − Jt), t > 0. It is well known that Ttx ∈ T Jtx, ∀x ∈ H and ‖Ttx‖ ≤ |T x|, where

|T x|= inf{‖y‖ : y ∈ T x}, for all x ∈ D(T ).

Let C be a nonempty, closed and convex subset of H. Next, we always assume that T :C→ 2H

is a maximal monotone mapping with T−1(0) 6= /0, where T−1(0) denotes the set of zeros of

T . The class of monotone mappings is one of the most important classes of mappings among

nonlinear mappings. Within the past several decades, many authors have been devoting to

the studies on the existence and convergence of zero points for maximal monotone mappings,

see [10-18] and the references therein. A classical method to solve the following set-valued
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equation 0 ∈ T x, is the proximal point algorithm. To be more precise, start with any point x0 ∈

H, and update xn+1 iteratively conforming to the following recursion xn ∈ xn+1 +βnT xn+1,n≥

0, where {βn} ⊂ [β ,∞), (β > 0) is a sequence of real numbers.

In 1976, Rockafellar [19] gave an inexact variant of the method

x0 ∈ H, xn + en+1 ∈ xn+1 +λnT xn+1, n≥ 0,

where {en} is regarded as an error sequence. This an inexact proximal point algorithm. It was

shown that, if ∑
∞
n=0 ‖en‖< ∞, then the sequence {xn} converges weakly to a zero of T provided

that T−1(0) 6= /0. In [16], Güler obtained an example to show that Rockafellar’s proximal point

algorithm does not converge strongly, in general.

Recently, many authors studied the problems of modifying Rockafellar’s proximal point algo-

rithm so that strong convergence is guaranteed. Cho, Kang and Zhou [10] proved the following

result.

Theorem CKZ. Let H be a real Hilbert space, Ω a nonempty closed convex subset of H, and

T : Ω→ 2H a maximal monotone operator with T−1(0) 6= /0. Let PΩ be the metric projection of

H onto Ω. Suppose that, for any given xn ∈H, βn > 0 and en ∈H, there exists x̄n ∈Ω conforming

to the SVME (1.5), where {βn}⊂ (0,+∞) with βn→∞ as n→∞ and ∑
∞
n=1 ‖en‖2 < ∞. Let {αn}

be a real sequence in [0,1] such that

(i) αn→ 0 as n→ ∞,

(ii) ∑
∞
n=0 αn = ∞.

For any fixed u ∈Ω, define the sequence {xn} iteratively as follows:

xn+1 = αnu+(1−αn)PΩ(x̄n− en), n≥ 0.

Then {xn} converges strongly to a fixed point z of T , where z = limt→∞ Jtu.

Lemma 1.1. [20] Let H be a Hilbert space and C a nonempty, closed and convex subset H. For

all u ∈C, limt→∞ Jtu exists and it is the point of T−1(0) nearest u.

Lemma 1.2 [12] For any given xn ∈C, λn > 0, and en ∈ H, there exists x̄n ∈C conforming to

the following set-valued mapping equation (in short, SVME):

xn + en ∈ x̄n +λnT x̄n.
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Furthermore, for any p ∈ T−1(0), we have

〈xn− x̄n,xn− x̄n + en〉 ≤ 〈xn− p,xn− x̄n + en〉

and

‖x̄n− en− p‖2 ≤ ‖xn− p‖2−‖xn− x̄n‖2 +‖en‖2.

Lemma 1.3 Assume that {αn} is a sequence of nonnegative real numbers such that

αn+1 ≤ (1− γn)αn +δn,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that

(i) ∑
∞
n=1 γn = ∞;

(ii) limsupn→∞ δn/γn ≤ 0 or ∑
∞
n=1 |δn|< ∞.

Then limn→∞ αn = 0.

2. Main results

Theorem 2.1. Let H be a real Hilbert space, C a nonempty, closed and convex subset of H

and T : C→ 2H a maximal monotone operator with T−1(0) 6= /0. Let PC be a metric projection

from H onto C. For any xn ∈ H and λn > 0, find x̄n ∈C and en ∈ H conforming to the SVME,

where {λn} ⊂ (0,∞) with λn→ ∞ as n→ ∞ and ‖en‖ ≤ ηn‖xn− x̄n‖ with supn≥0 ηn = η < 1.

Let {αn} and {βn} be real sequences in [0,1] satisfying αn +βn < 1 and the following control

conditions:

lim
n→∞

αn = lim
n→∞

βn = 0 and
∞

∑
n=0

αn = ∞.

Let {xn} be a sequence generated by the following manner:

x0 ∈ H, xn+1 = αn f (xn)+βnxn +(1−αn−βn)PC(x̄n− en). n≥ 0, (2.1)

where f : C→ C is a fixed contractive mapping. Then the sequence {xn} generated by (2.1)

converges strongly to a zero point z of T , where z = limt→∞ Jt f (z), if and only if en → 0 as

n→ ∞.
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Proof. First, show that the necessity. Assume that xn → z as n→ ∞, where z ∈ T−1(0). It

follows from (1.5) that

‖x̄n− z‖ ≤ ‖xn− z‖+‖en‖

≤ ‖xn− z‖+ηn‖xn− x̄n‖

≤ (1+ηn)‖xn− z‖+ηn‖x̄n− z‖.

This implies that ‖x̄n− z‖ ≤ 1+ηn
1−ηn
‖xn− z‖. It follows that x̄n→ z as n→ ∞. Note that ‖en‖ ≤

ηn‖xn− x̄n‖ ≤ ηn(‖xn− z‖+‖z− x̄n‖). This shows that en→ 0 as n→ ∞.

Next, we show the sufficiency. From the assumption, we see ‖en‖ ≤ ‖xn− x̄n‖. For any

p ∈ T−1(0). It follows from Lemma 1.2 that

‖PC(x̄n− en)− p‖2 ≤ ‖x̄n− en− p‖2

≤ ‖xn− p‖2−‖xn− x̄n‖2 +‖en‖2

≤ ‖xn− p‖2.

That is, ‖PC(x̄n− en)− p‖ ≤ ‖xn− p‖. It follows that

‖xn+1− p‖= ‖αn( f (xn)− p)+(1−αn)[PC(x̄n− en)− p]‖

≤ αnα‖xn− p‖+αn‖ f (p)− p‖+(1−αn)‖PC(x̄n− en)− p‖
(2.2)

Putting M = max{‖x0− p‖, ‖u−p‖
1−α
}, we show that ‖xn‖ ≤M for all n≥ 0. It is easy to see that

the result holds for n = 0. Assume that the result holds for some n≥ 0. That is, ‖xn− p‖ ≤M.

Next, we prove that ‖xn+1− p‖ ≤ M. Indeed, from (2.2), we see that ‖xn+1− p‖ ≤ M. This

shows that the sequence {xn} is bounded. Next, we show that limsupn→∞〈u− z,xn+1− z〉 ≤ 0,

where z = limt→∞ Jt f (z). From Lemma 1.1, we see that limt→∞ Jt f (z) exists and is the point of

T−1(0) nearest to f (z). Since T is maximal monotone, Ttu ∈ T Jt f (z) and Tλnxn ∈ T Jλnxn, we

see limsupn→∞〈 f (z)− Jt f (z),Jλnxn− Jt f (z)〉 ≤ 0. On the other hand, by the nonexpansivity of

Jλn , we obtain ‖Jλn(xn + en)− Jλnxn‖ ≤ ‖(xn + en)− xn‖ = ‖en‖. From the assumption en→ 0

as n→ ∞, we arrive at limsupn→∞〈 f (z)− Jtz,Jλn(xn + en)− Jt f (z)〉 ≤ 0. It follows that

‖PC(x̄n− en)− Jλn(xn + en)‖ ≤ ‖(x̄n− en)− Jλn(xn + en)‖ ≤ ‖en‖.
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That is, limn→∞ ‖PC(x̄n− en)− Jλn(xn + en)‖= 0. It follows that

limsup
n→∞

〈 f (z)− Jt f (z),PC(x̄n− en)− Jt f (z)〉 ≤ 0.

On the other hand, from the algorithm (2.1), we see that

xn+1−PC(x̄n− en) = αn[ f (xn)−PC(x̄n− en)]+βn[xn−PC(x̄n− en)].

It follows from the condition limn→∞ αn = limn→∞ βn = 0 that xn+1−PC(x̄n−en)→ 0 as n→

∞, It follows that limsupn→∞〈 f (z)− z,xn+1− z〉 ≤ 0. Notice that

‖xn+1− z‖2 = 〈αn f (xn)+βnxn +(1−αn−βn)PC(x̄n− en)− z,xn+1− z〉

≤ αn〈 f (xn)− z,xn+1− z〉+βn〈xn− z,xn+1− z〉

+(1−αn−βn)〈PC(x̄n− en)− z,xn+1− z〉

≤ αn〈 f (xn)− z,xn+1− z〉+βn‖xn− z‖‖xn+1− z‖

+(1−αn−βn)‖PC(x̄n− en)− z‖‖xn+1− z‖

≤ αn〈 f (xn)− z,xn+1− z〉+βn‖xn− z‖‖xn+1− z‖

+(1−αn−βn)‖xn− z‖‖xn+1− z‖

= αn〈 f (xn)− z,xn+1− z〉+(1−αn)‖xn− z‖‖xn+1− z‖

≤ αn〈 f (xn)− z,xn+1− z〉+ 1−αn

2
(‖xn− z‖2 +‖xn+1− z‖2).

This implies that

‖xn+1− z‖2 ≤ (1−αn)‖xn− z‖2 +αn〈 f (z)− z,xn+1− z〉.

An application of Lemma 1.3, we obtain that xn→ z as n→ ∞. This completes the proof.
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