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1. Introduction 

     The concept of state-price deflator or stochastic discount factor, which has been 

introduced by Duffie [4], p.23 and 97, is a convenient ingredient of general financial pricing 

rules. Based on it, the author has introduced a multivariate Black-Scholes deflator and has 

applied it to option pricing in [11-13]. An extension of the Black-Scholes deflator to a more 

general version with Vasicek interest rates as additional source of randomness is defined in 

[14]. It has been used to obtain extensions of the Margrabe and Black-Scholes option pricing 

formulas and a validation of them in a multiple risk economy with Vasicek interest rates. In 

particular, the invariance of these formulas against changing market prices of risk, which has 

been first noticed in [11], is preserved in the extended model. 

     The present follow-up goes a step further and constructs in Theorem 2.1 a Gaussian 

state-price deflator for a more general multidimensional Black-Scholes-Merton market with a 

multiple factor Gaussian bond price dynamics. As shown in Theorem 4.1 Margrabe’s formula 

to exchange one risky asset against the other remains valid in the considered multiple factor 

Gaussian interest rate environment. The derivation of further generalized versions of the 

Black-Scholes call option formula under Gaussian interest rates turns out to be more 

challenging. 

     The Gaussian Heath-Jarrow-Morton (GHJM) model with multiple factors provides a 

useful general method to generate Gaussian interest rates. It is considered in Section 3. If one 

requires that the sensitivities of the GHJM model should be time-homogeneous, and if the 

short rate should follow a Markov diffusion process, then the class of GHJM models reduces 

to a Hull-White GHJM interest rate model. In this context, an interesting question of practical 

relevance concerns the comparison of the initial forward rate curve with its future evolution. 

For example, given initial parameterizations of the Nelson-Siegel yield curve and a dynamic 

model of interest rates, e.g. the GHJM Hull-White model, will the future yield curves also be 

of Nelson-Siegel form? Intuitively, it seems reasonable to use a parameterization, which is 

consistent with the model dynamics, i.e. with future yields curves of the same form though 

with possibly different parameter values (e.g. Munk [21], Section 9.7). Some answers to the 

preceding question, which rely on advanced mathematics, have been given by Björk and 

Christensen [2] (see also Björk [1], Munk [21], Section 9.7).  We consider two simple 
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forward rate curves that are consistent with the Hull-White model, the one being the simplest 

consistent form of Nelson-Siegel type. We analyze the conditions under which these forms 

are consistent and obtain parsimonious parameterizations with two respectively four 

parameters. The first one is closely related to the term structure model by Vasicek [25] and 

generates the so-called Hull-White-Vasicek (HWV) model. The second one is consistent with 

a forward curve of Nelson-Siegel type and is called Hull-White-Nelson-Siegel (HWNS) 

model. As a main new result of practical interest, Theorem 4.2 states a closed-form formula 

for the European call option for the multidimensional Black-Scholes-Merton market with 

HWV or HWNS interest rates. 

 

2. A state-price deflator in a multiple risk economy with Gaussian interest rates 

Consider a multiple risk economy with  1≥m   risky assets, whose real-world prices with 

time horizon  T   satisfy the stochastic differential equations of Itô type 

 

,,...,1,],0[,)(/ )()()( mkTtdWdttSdS k
tkk

k
t

k
t =∈+= σm   (2.1) 

 

where the  kσ ’s  are constant volatilities, the )(tkµ ’s  are arbitrary time dependent 

Gaussian drifts, and the )(k
tW ’s are correlated standard Wiener processes. The geometric 

Brownian motions (2.1) constitute a so-called multidimensional Black-Scholes-Merton 

market. The economy contains also an exogenously given money market account, whose 

value follows the real-world dynamics 

 

,],0[,/ TtdtrMdM ttt ∈⋅=       (2.2) 

 

where the short rate process  tr   follows some well-defined Gaussian process (to be 

specified in the Sections 3 and 4). Let  T
tB   be the price at time  t   of a zero-coupon 

bond paying 1 unit of account with certainty at maturity date  T . It is assumed that the bond 
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prices depend upon  1≥n   factors of Gaussian type with volatilities  niTtim ,...,1),,( =+σ   

such that the following real-world dynamics hold (e.g. Munk [21], Section 4.4.2): 
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where the  niW im
t ,...,1,)( =+   are standard Wiener processes. Moreover, the Wiener 

processes driving the risky assets and the bond prices are correlated such that  

nmjidtdWdWE ij
j

t
i

t +≤≤= ,1,][ )()( ρ . The constants  0<+imλ   are the market prices with 

respect to the  i -th factor of the zero-coupon bond. Note that a constant market price of risk 

can be justified using market equilibrium theory (e.g. Munk [21], Section 5.4.2). One 

observes that the terms in the second sum of (2.3) are negative (a positive shock to the short 

rate implies a negative shock to the zero-coupon bond price and vice versa). Since in 

equilibrium risky assets have usually an expected rate of return that exceeds the instantaneous 

risk-free rate, the constants  im+λ   must be negative. Consider further the (constant) market 

prices  0>kλ   of the first  m   risky assets defined by 

 

mktrtkkk ,...,1),()( =−= mσλ .     (2.4) 

 

An application of Itô’s Lemma to the system of stochastic differential equations (2.1) and (2.3) 

(taking into account (2.4)) implies the following representations in terms of the integrated 
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By assumption, the short rate  tr   (given the initial value  0r ) is normally distributed. 

Therefore, the integrated short rate  tR   is also normally distributed. It follows that the 

risky assets in (2.5) are exponential Gaussian processes with lognormal distributions. The 

state-price deflator in [11,14] generalizes as follows to the context of a multiple risk economy 

with multiple factor Gaussian interest rates. 

Theorem 2.1. (Exponential Gaussian state-price deflator of dimension  nm + ) Given is a 

Black-Scholes-Merton market with  1≥m   risky assets in a stochastic Gaussian interest rate 

environment with  1≥n   factors. Assume the risky assets and the bond price follow the 

log-normal real-world prices (2.5), where the correlation matrix nmjiC ij +≤≤= ,1),(ρ  of 

the multivariate Wiener process ),...,( )()1( nm
ttt WWW +=   is non-singular and positive 

semi-definite. Then, the exponential Gaussian process given by 
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is a well-defined state-price deflator. 

Proof. According to the general theory of state-price deflators (e.g. Munk [21], Section 4.3), 

the stochastic process (2.6) defines a deflator provided the following conditions are fulfilled: 
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The first condition D1 is trivially fulfilled. The conditions D2 and D3 mean that the 

discounted cumulative interest rate process and the discounted risky asset prices are 

martingales. The validity of D2 follows from the fact that  

{ } t
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t
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2
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and variance  tCT ⋅ββ .  To show the first part of D3 let )(tmk   and  )(2 tvk   be the 

mean and variance of the normally distributed random variable 
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where the last equality follows from the fact that  λβ =C . It follows that 
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From the rules of stochastic calculus (e.g. Munk [21], Chapter 3), one gets 
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where again the equation  λβ =C   has been used. It follows that 
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This shows D3 and completes the proof.  ◊ 

 

3. The parsimonious and consistent Hull-White models of Vasicek and Nelson-Siegel 

type 

In the Gaussian Heath-Jarrow-Morton (GHJM) model with  1≥n   factors the  
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T -maturity forward rates risk-neutral Q -dynamics is described by the Itô process (e.g. [21], 

Section 10.5) 
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where the forward rate sensitivities  ),( Ttiβ   at time  t   depend only on the maturity 

date  T , and the following drift restriction holds (e.g. Munk [21], Theorem 10.2, equation 

(10.5)) 
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Since the  ),( Tuiβ ’s depend only on time, the stochastic integrals in (3.1) are normally 

distributed (e.g. Munk [21], Theorem 3.3). Therefore, the future forward rates (3.1) are 

normally distributed under the Q-measure. The short rate process  t
tt fr =   is then also 

normally distributed under the Q-measure and given by 
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It is natural to ask about reasonable properties a GHJM model should satisfy. First, one may 

argue that the sensitivities should be time-homogeneous, that is do not depend on calendar 

time and therefore of the form  )(),( tTTt ii −= ββ   for some time to maturity dependent 

functions  tTi −=ttβ ),(   (consult the discussions in Munk [21], Chapter 9, and Chapter 

10, p.296). Another attractive property is the restriction to Markov diffusion processes of the 

short rate with dynamics of the type 
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The class of GHJM models with both time-homogeneous and Markov diffusion short rates 

reduces to a one-factor GHJM model with a time-homogenous sensitivity function of the type 

tTe −=≥>⋅= − tκσσtβ κt ,0,0,)( .    (3.5) 

According to Munk [21], p.296, this important result is due to Hull and White [10]. If  

0=κ   in (3.5) this leads to the Ho and Lee [7] extension of the model of Merton [15]. If  

0>κ   the model identifies with the Hull and White [9] extension of the model by Vasicek 

[25] studied in Munk [21], Section 10.4.2. While the Hull-White specification (3.5) is the 

most tractable one, there exist a plenty of other more complex but still tractable GHJM 

models (e.g. Munk [21], Sections 10.6.3, 10.7, 10.8, Exercise 10.1). An attractive 

non-Markovian GHJM model is the time-homogeneous humped volatility model introduced 

independently by Mercurio and Moraleda [18] and Ritchken and Chuang [24] with 

specification 

 

tTife −=>>≥⋅⋅+= − tγκγκγσtγσtβ κt ,0,0,,,)()( .  (3.6) 

 

If  0=γ   one recovers the Hull-White model (3.5). If  0== κσ   this model coincides 

with the specification by Nielsen and Sandmann [23]. The humped volatility model is 

discussed further in Mercurio and Moraleda [19] and Moraleda and Vorst [20]. The 

consistency and calibration of this model is discussed in Falco et al. [5]. For simplicity, and 

unless otherwise stated, we consider throughout the Hull-White specification (3.5). 

To begin, let us briefly discuss the following general question, which is of practical relevance 

for model calibration (e.g. Munk [21], Section 9.7, Falco et al. [5]). It concerns the 

comparison of the initial forward curve  Tf0   with its future evolution  T
tf   in (3.1). For 

example, consider the initial parameterization by Nelson and Siegel [22] of the form 

 

TTT Tececcf κκ −− ++= 2100 ,     (3.7) 
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and suppose a GHJM model, say the Hull-White model, is given. Then, one can ask whether 

the future yield curve  ],0[, Ttf T
t ∈ , will also be of the Nelson-Siegel form (although 

possibly with different parameter values), that is such that 
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For an affirmative answer, one says that the initial parameterization is consistent with the 

given GHJM model. The original Nelson-Siegel form (3.7) is not consistent with the 

Hull-White model (e.g. Björk and Christensen [2], Björk [1], Munk [21], Section 9.7). Even 

more, it is not consistent with any non-trivial diffusion model, a result due to Filipovic [6]. 

Fortunately, there exist initial parameterizations, which are consistent with the GHJM 

Hull-White model. Two consistent forward rate curves are (e.g. Munk [21], end of Section 

9.7) 

 

TTT ececf κκ 2
210

−− += ,           (3.9) 

 TTTT ecTececcf κκκ 2
32100

−−− +++= .      (3.10) 

 

The form (3.10) is the simplest consistent form of Nelson-Siegel type extending (3.7). Before 

proceeding with the separate analysis of (3.9) and (3.10), we need explicit formulas for (3.1) 

and (3.2) for the one-factor Hull-White specification (3.5). The drift restriction (3.2) yields 

 

)1()/(),(ˆ )()(2)()(2 uTuT
T

u

usuT eedseeTu −−−−−−−− −⋅=∫⋅⋅= κκκκ κssα .  (3.11) 

 

Inserted into (3.1) one obtains the future forward rates in the Q-measure as 
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3.1. The consistent Hull-White-Vasicek interest rate model 

To analyze under which conditions the form (3.9) will be consistent with the Hull-White 

model, insert it into (3.12) to see that 
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Now, this is of the consistent form 
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Clearly, the short rate in the Q-measure of this model is given by 
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and satisfies the stochastic differential equation (SDE) 

Q
ttt dWdtrdr ⋅+−= σθκ )( ,     (3.17) 

which characterizes the term structure model by Vasicek [25]. However, in contrast to its 

original version, the parameter identification  ( )22
1

κ
σθ =   gives a meaning to this constant 

and reduces the number of required parameters to two. Henceforth, it is natural to call this 

simplest parsimonious and consistent interest rate model the Hull-White-Vasicek (HWV) 

model. 

 

3.2. The consistent Hull-White-Nelson-Siegel interest rate model 

Next, we analyze the conditions under which the form (3.10) is consistent with the 

Hull-White model. For this, insert it into (3.12) to see that 
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A parsimonious model is obtained by setting 
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which is consistent with (3.10) for the time  t   dependent parameters 
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Now, change notation and set  ( )22
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20 ,, κ
σθβα === cc . Then, the short rate reads 

 

θασβθα κκ +=⋅+++== −−
0, rXetefr Q

t
Ttt

tt .   (3.23) 

 

Through application of Itô’s Lemma one sees that the short rate satisfies the SDE 
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Clearly, the special case  0== βα   coincides with the HWV model of Section 3.1. In 
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general, the parameterization  ),,,( σκβα   of the initial forward curve 
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is as parsimonious as the original Nelson-Siegel forward curve, but it has the advantage to be 

consistent with the Hull-White model. It is therefore natural to call this simplest consistent 

extension of the original Nelson-Siegel model the Hull-White-Nelson-Siegel (HWNS) model. 

 

4. Option pricing in the Gaussian interest rate environment 

Closed-form Margrabe and European option pricing formulas on risky assets in the 

multidimensional Black-Scholes-Merton market with Gaussian interest rates are obtained. 

The new results are closely related to Theorems 3.1 and 4.1 in [14]. We begin with the 

Margrabe formula, which remains valid for all multiple factor Gaussian interest rate 

processes. 

Theorem 4.1. (Margrabe’s formula in a multiple factor Gaussian interest rate environment) 

Under the assumptions of Theorem 2.1, the market value at initial time of a European 
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     (4.1) 

 

Proof.  Using the generalized exponential Gaussian state-price deflator of Theorem 2.1, this 

is identical to the derivation of Theorem 3.1 in [14].  ◊ 

 

The comments of Remarks 3.1 in [14] remain true in the present context. We derive now 

generalized versions of the European call option formula by Black and Scholes [3] (see also 
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Merton [16]), to a multiple risk economy with one-factor HWV and HWNS interest rate 

models. The elementary derivation is done along the line of [14], Section 4. Starting point is 

the short rate dynamics (3.24) of the HWNS model under the Q-measure, which includes as 

special case  0== βα   the one-factor HWV model. With the usual change of measure the 

dynamics under the real-world P-measure turns out to be 

 

( ) )1(1
1)( +−
+ ⋅+⋅−+= m

ttmt dWdtrtdr σσκλθκ .   (4.2) 

 

The following formulas enter into the generalized Black-Scholes formula (4.4) below. 

 

Lemma 4.1. Assume the real-world short rate process follows the HWNS stochastic 

differential equation (4.2) and let  ∫=
T

sT dsrR
0

  be the associated integrated short rate 

process at maturity date  T , and set  )1()( 1 TeTB κκ −− −= . Then, the following identities 

hold true: 
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Proof.  For simplicity in notation we omit indices and set  1+= mλλ , )1( += m
tt WW . 

Integrating both sides of (4.2) over the interval  ],0[ T   yields the identity 
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Using the definition of the integrated process and rearranging one gets the representation 

( ) { }TTT WrrTBTR ⋅+−⋅++⋅++= −−− σκβκλσκαθ 0
111 )( . 

On the other hand (4.2) is the SDE of an Ornstein-Uhlenbeck process, whose solution can be 

written as 
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where the function  )(th   solves the ordinary differential equation 

tettthth κβκθαθλσκθκ −−−− ++=+=+ 111 )(,)()()(' . 

Indeed, setting  )())0(()( 0 thehrtg t +⋅−= −κ , one obtains from Itô’s Lemma that  

t
t

t Xetgr κσ −⋅+= )(   solves the SDE 
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where the second equality follows from the fact that 
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With  1)( −− +++= λσκβθα κtteth   the solution of (4.2) reads 

t
tttt

t Xeteeerr κκκκ σβλσκαθ −−−−− ⋅++−+++⋅= )1)(( 1
0 . 

Inserting into the equation for  TR   and taking into account that  θα +=0r   by (3.23) 

one obtains the (short rate independent) representation 
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Formulas for the first terms of the identities F1 and F2 follow at once, namely 
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Clearly, the risk-neutral integrated mean in F2 follows by setting  0=λ   in the real-world 

integrated mean. To calculate the variance of the integrated process one notes that 
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But, one has 
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Insert into the preceding relation and rearrange to get formula F3. The remaining covariance 

is calculated as follows (use the explicit representation of  TR ): 

 

{ } { }.)(],[

]E[]E[],[
11

21

TBTXWCoveT
XWeWWRWRCov

TT
T

TT
T

TTTTT

−⋅=−⋅=

−⋅==
−−−

−−

σκσκ

σκ
κ

κ

 

 

The proof of Lemma 4.1 is complete.  

 

The following generalized version of Theorem 4.1 in [14] follows. 

Theorem 4.2. (European option for the multidimensional Black-Scholes-Merton market with 

HWV or HWNS interest rates) Under the assumptions of Theorem 2.1, the market value at 

initial time of a European call option on the risky asset with real-world price  

{ }mkS k
t ,...,1,)( ∈ , strike time  T  and strike price  K   is given by the closed-form formula 
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and these quantities are determined by Lemma 4.1. 

 

Proof.  Using the generalized exponential Gaussian state-price deflator of Theorem 2.1, this 

is identical to the derivation of Theorem 3.1 in [14].  ◊ 
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To conclude the exposé we would like to challenge interested readers to derive with the 

state-price deflator technique a call option pricing formula for a risky asset under the 

non-Markovian one-factor GHJM interest rate model with time-homogeneous humped 

volatility (3.6). 
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