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Abstract. We propose a new class of models for pricing forward starting options. We assume that the asset price

is a nonlinear function of a CIR process, time changed by a composition of a Lévy subordinator and an absolutely

continuous process. The new models introduce the nonlinearity in both drift and diffusion components of the

underlying process and can capture jumps and stochastic volatility in a flexible way. By employing the spectral

expansion technique, we are able to derive the analytical formulas for the forward starting option prices. We also

implement a specific model numerically and test its sensitivity to some of the key parameters of the model.
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1. Introduction

The forward starting options are options that start at a specified future date with an expiration

date set further in the future. Like standard options, forward starting options are paid in advance;
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however, the strike price is not determined until the specified future date before expiration.

Forward starting options belong to the class of path-dependent exotic options and have many

applications in finance. The forward starting options are the building blocks to the so-called

cliquet or ratchet options, which can be seen as a series of consecutive forward starting options.

Employee stock options, in a sense, can be treated as a type of forward starting options since

their strike price is not fixed when the employee begins to work. The forward starting options

are also used by insurance companies to manage the risk contained in guaranteed equity-linked

life insurance products.

Even though the payoff function of the forward starting options appears simple, their pricing

can be demanding. Rubinstein [27] provides a closed-form solution for forward starting op-

tions under the constant volatility assumption. Kruse and Nögel [15] adopt Heston’s stochastic

volatility model by integrating the option pricing formula with respect to the conditional den-

sity of the variance value at strike determination date. However, their quasi-analytical pricing

formulas involve the numerical solution of a two-dimensional integration problem. Hong [12]

demonstrates that the valuation of forward starting options can be further simplified to a single

one-dimensional Fourier transform inversion as long as the characteristic function of the for-

ward rate of return on the underlying asset is known. However, the accuracy and stability of

Hong’s approach depends on the optimization of a dampening factor that ensures square inte-

grability. Nunes and Alcaria [24] propose an alternative and more robust pricing methodology

that can be easily and efficiently implemented through a Gaussian quadrature. Their alterna-

tive pricing solution is derived under the general affine jump-diffusion (AJD) framework of

Duffie et al. [10] and does not require any optimization routine. Zhang and Geng [35] provide

an efficient method for pricing forward starting options under stochastic volatility model with

double exponential jumps. The forward characteristic function of the log asset price is derived

and thereby forward staring options are evaluated by Fourier-cosine technique. Other jump-

diffusion or/and stochastic volatility models for forward starting options can be found in [3],

[26], [34] and references therein.

In the previous studies on forward starting options, the underlying state variables are usually

assumed to follow an AJD process where the drift, diffusion and jump intensity all have affine
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dependence on the state variables. Therefore, the analytical valuation of forward staring op-

tions in these models critically requires the knowledge of the exponential affine complex-valued

transform considered by Duffie et al. [10]. In this paper, we relax the strong assumptions of

the AJD models and propose a non-affine model with stochastic volatility and jumps for pric-

ing forward starting options. First, we model the asset price as a power function of a square

root process (CIR). The resulting model is called CIR-CEV model since the stochastic process

of the asset price belongs to the nonlinear constant-elasticity-of-variance (CEV) model. The

CIR-CEV model encompasses many important models such as CIR and 3/2 models of [4] as

special cases. Second, to capture both jumps and stochastic volatility in the asset price, we take

time change to the CIR-CEV model where the time change process is modeled by the compo-

sition of a Lévy subordinator and an absolutely continuous time change process. The resulting

time changed CIR-CEV (TC-CIR-CEV) model allows for flexible specification of jump and

stochastic volatility processes and can capture the nonlinearity in the asset price process.

The CIR-CEV model or TC-CIR-CEV model belongs to the nonlinear model and therefore,

we can not apply the characteristic function approach to derive the analytical solution to the

option pricing problem. Instead, we employ the spectral expansion or so-called eigenfunction

expansion method that is particularly suited for pricing contingent claims written on symmetric

Markov processes with time changes. For the underlying CIR process, we are able to obtain

the explicit expressions for the eigenvalues and eigenfunctions by solving the associated Sturm-

Liouville eigenvalue problem. We can then express the forward starting option prices in terms of

spectral expansion where the expansion coefficients can be calculated in closed form. A remark-

able result of spectral expansion method is that if the underlying diffusion process possesses the

spectral expansion, then the time changed process has the expansion in the same eigenfunctions

with eigenvalues replaced by the Laplace transform of the time change processes. We refer to

[20] and [21] for the surveys on the spectral expansion method and [16]-[19], [22], [23] and

[30]-[33] for its various applications.

The structure of the paper is as follows. In Section 2, we introduce the general framework

for modeling the asset price as a power transformed time changed CIR process, where the time

change process is the composition of a Lévy process and an absolutely continuous process.
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In Section 3, we discuss the spectral expansion method for the proposed CIR-CEV and TC-

CIR-CEV models. We also calculate some of the integrals that are key to the determination

of the spectral expansion coefficients. In Section 4, we provide the analytical solutions to the

forward starting option pricing problems with the tool of the spectral expansion. In Section

5, we analyze the effect of the parameters of the model on the option prices through specific

numerical examples.

2. Model framework

Let (Ω,F ,Q) denote a probability space with an information filtration (Ft). We assume that

under the risk-neutral measure Q, the state variable X(t) is a CIR process, i.e.,

dX(t) = κ(θ −X(t))dt +σ
√

X(t)dB(t) ,(2.1)

where κ , θ , σ are constants and B(t) is a standard Brownian motion. To ensure X to be positive,

we impose the Feller condition: α := 2θκ

σ2 −1 > 0.

The asset price S(t) is a power function of a time changed CIR process Y (t), that is

S(t) = Y β (t) ,(2.2)

where β is a constant satisfying β >−(α +1), β 6= 0 and

Y (t) = X(T (t)) ,(2.3)

where T is a time change process.

To introduce both jumps and stochastic volatility into the asset price, we model the time

change process T by composing a Lévy subordinator and an absolutely continuous time change

process as follows:

T (t) = T1(T2(t)) ,(2.4)

where T1 is a Lévy subordinator to capture jumps and T2 is an absolutely continuous time change

process to produce stochastic volatility. We assume T1 is independent of T2 and both T1 and T2

are independent of B(t) in (2.1).
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The Lévy subordinator T1 is a non-negative Lévy process with nondecreasing increments and

the Laplace transform

E[exp(−λT1(t))] = exp(−tφ(λ )) ,(2.5)

where φ is the Lévy exponent and given by the Lévy-Khintchine formula (see e.g., [28])

φ(λ ) = γλ +
∫
(0,∞)

(1− exp(−λ s))ν(ds) ,

where γ ≥ 0 and the Lévy measure ν must satisfy∫
(0,∞)

(s∧1)ν(ds)< ∞ .

The absolutely continuous time change process T2 is modeled as an integral of a positive process

v, that is

T2(t) =
∫ t

0
v(s)ds ,(2.6)

where v is also known as the activity rate process. In this paper, we require the Laplace trans-

form of T2(t) can be expressed in closed form. We list below some of the processes that can act

as activity rate processes:

• CIR process

dv(t) = κv(θv− v(t))dt +σv
√

v(t)dBv(t) ,(2.7)

where κv > 0, θv > 0, σv > 0 and 2κvθv ≥ σ2
v . Bv(t) is a Brownian motion independent

of T1(t) and B(t) in (2.1).

• Squared Ornstein Uhlenbeck (OU) process

v(t) = w2(t) ,(2.8)

where

dw(t) = κw(θw−w(t))dt +σwdBw(t) ,(2.9)

where Bw(t) is a Brownian motion independent of T1(t) and B(t) in (2.1).
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• 3/2 process

dv(t) = κv(θv− v(t))v(t)dt +σvv3/2(t)dBv(t) ,(2.10)

where κv > 0 and σv > 0. Bv(t) is a Brownian motion independent of T1(t) and B(t) in

(2.1).

• Lévy-driven OU process

dv(t) =−κvv(t)dt +σvdLv(t) ,(2.11)

where κv > 0 and σv > 0. Lv(t) is a Lévy subordinator independent of T1(t) and B(t) in

(2.1).

For all of the above activity rate processes, not only the Laplace transform of T2 but also the

Laplace transform of the joint density of v(t) and T2(t) can be calculated in closed form. For

example, the following Lemma gives the Laplace transform of the joint density of v(t) and∫ t
0 v(s)ds when v(t) is a CIR process (see e.g., [14]):

Lemma 2.1. For the CIR process defined in (2.7), the Laplace transform ϕ(t,α,β ;v(0)) of the

joint density of v(t) and
∫ t

0 v(s)ds is given by

ϕ(t,α,β ;v(0)) = E
[

exp
(
−αv(t)−β

∫ t

0
v(s)ds

)
| v(0)

]
= exp[A(t,α,β )+B(t,α,β )v(0)] ,

(2.12)

where

A(t,α,β ) =
2κvθv

σ2
v

log
(

2δ exp((δ +κv)t/2)
σ2

v α(exp(δ t)−1)+δ (exp(δ t)+1)+κv(exp(δ t)−1)

)
,(2.13)

and

B(t,α,β ) =− α(δ +κv + exp(δ t)(δ −κv)+2β (exp(δ t)−1)
σ2

v α(exp(δ t)−1)+δ (exp(δ t)+1)+κv(exp(δ t)−1)
,(2.14)

where δ =
√

κ2
v +2σ2

v β .

Given the Laplace transform of T2, we can immediately obtain the Laplace transform of the

composite time change T through

E[exp(−λT(t))] = E[exp(−λT1(T2(t)))] = E{E[exp(−λT1(T2(t))) | T2(t)]}= E[exp(−φ(λ )T2(t))] .
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In the case T (t) = t, by Itô’s Lemma, the dynamics of S is given by

dS(t) =
[(

κθβ +
σ2

2
β (β −1)

)
S(β−1)/β (t)−κβS(t)

]
dt +σβS(β−1/2)/β (t)dB(t) .(2.15)

It is clear that S belongs to the constant-elasticity-of-variance (CEV) process with nonlinear drift

and diffusion. This CIR-CEV process has been employed by [5] and [7] for interest rates; [6]

and [29] for VIX futures and options; [32] for electricity derivatives; [33] for discrete arithmetic

Asian options. Many special cases of CIR-CEV models have been widely used in the finance

literature. When β = 1, we obtain the CIR model which has been studied by [9] for interest rate

and [8], [13] and [18] for commodities and electricity prices and derivatives. When β = −1,

we obtain the 3/2 model for S which is a popular model for pricing interest rate and volatility

derivatives; see e.g., [4] and [11]. When β = 2, we obtain the 3/4 model which has been used

to model the crude oil futures and futures options in [1] and [2].

When T (t) 6= t, we obtain the TC-CIR-CEV model where the asset price S is constructed

from the composition of two processes: CIR-CEV process Y β (t) and the time change process

T (t). This model can not only capture the nonlinearities in the asset price but also introduce

jumps and stochastic volatility through stochastic time change. We refer to [32] and [33] for

further applications of the TC-CIR-CEV model and [16]-[19], [22], [23], [30], [31] for the

applications of other time changed processes in finance.

3. Spectral expansion method for the TC-CIR-CEV model

For the CIR process X in (2.1), its infinitesimal generator L is defined by

L f (x) = κ(θ − x) f ′(x)+
1
2

σ
2x f ′′(x) ,(3.1)

where f is transformation function. f ′ and f ′′ are first- and second-order derivatives of f ,

respectively.

The speed measure of X is given by

m(x) =
2

σ2 xα exp
(
−2κx

σ2

)
.(3.2)
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Define the inner product ( f ,g) :=
∫

∞

0 f (x)g(x)m(x)dx and let L2((0,∞),m) be the Hilbert space

of functions on (0,∞) square-integrable with the speed density m(x), that is, with || f || < ∞,

where || f ||2 = ( f , f ).

Under some basic assumptions, the infinitesimal generator L with domain dom(L ) is always

self-adjoint on the Hilbert space L2((0,∞),m). We can then appeal to the spectral theorem for

self-adjoint operators in Hilbert space to obtain the spectral decomposition of the generator. For

the process X , the spectrum of the negative of the infinitesimal generator−L is purely discrete.

For any f ∈ L2((0,∞),m), we can write down the spectral expansion or so-called eigenfunction

expansion of the following expectation:

E[f(X(t))|X(0) = x] =
∞

∑
n=0

fn exp(−λnt)ψn(x) ,(3.3)

where fn = ( f ,ψn), {λn}∞
n=0 are the eigenvalues of −L and {ψn}∞

n=0 are the corresponding

eigenfunctions satisfying the following Sturm-Liouville equation

−L ψn = λnψn ,

where the eigenfunctions {ψn}∞
n=0 form a complete orthonormal basis in the Hilbert space

L2((0,∞),m); that is, (ψn,ψn) = 1 and (ψn,ψm) = 0 for n 6= m.

For the CIR process X defined in (2.1), its eigenvalues and eigenfunctions can be summarized

in the following result (see e.g., [21]):

Theorem 3.1. For the CIR process in (2.1), the eigenvalues λn, n = 0,1, . . ., are

λn = κn .(3.4)

The eigenfunctions ψn, n = 0,1, . . ., can be written as

ψn(x) = NnL(α)
n

(
2κx
σ2

)
,(3.5)

where N2
n =

(
2κ

σ2

)α
n!κ

Γ(n+α+1) . L(α)
n (x) is the generalized Laguerre polynomials defined as

L(α)
n (x) =

(α +1)n

n! 1F1(−n; α +1; x) ,
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where 1F1(a; b; x) is the Kummer confluent hypergeometric function, given by

1F1(a; b; x) =
∞

∑
n=0

(a)n

(b)n

xn

n!
,

where (a)0 = 1, (a)n = a(a+1), . . . ,(a+n−1), n > 0.

From (3.3), it is clear that time enters only through the exponentials exp(−λnt). Then un-

der the TC-CIR-CEV model, for any f ∈ L2((0,∞),m), we can employ the spectral expansion

method to compute the following expectation (see e.g., [17]):

E[f(Y(t))|Y(0) = x] = E[f(X(T(t)))|X(0) = x] =
∞

∑
n=0

fnE[exp(−λnT(t))]ψn(x) ,(3.6)

where Y is the process of X time changed by T . {λn} and {ψn} can be obtained from (3.4) and

(3.5), respectively.

Thus, a key feature of the spectral expansion method is that the temporal and spatial variables

are separated. The time variable t enters the expansion only through the exponential function

exp(−λnt). The spectral expansion of time changed process Y has the same form as the original

process X , but with exp(−λnt) replaced by E[exp(−λnT(t))]. As long as the Laplace transform

of the time change process T is known, the time changed model will be as tractable as the

original model.

For the TC-CIR-CEV model, to calculate the forward staring option prices using the spectral

expansion method, we need to compute the expansion coefficient fn. We provide the formulas

for the following integrals that will later be employed to calculate fn.

• Define

bn(x,β ) =
∫ x

0
yβ

ψn(y)m(y)dy ,

where β >−(α +1) and x > 0. The definitions of ψn(y) and m(y) can be found in (3.5)

and (3.2), respectively.

• Define

b̃n(x,β ) =
∫

∞

x
yβ

ψn(y)m(y)dy ,

where x > 0.
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• Define

am,n(k,β ,γ) =
∫

∞

0
yβγbn(ky,(1− γ)β )ψn(y)ψm(y)m(y)dy ,

where β >−(α +1) and γ ∈ {0,1}.

• Define

ãm,n(k,β ,γ) =
∫

∞

0
yβγ b̃n(ky,(1− γ)β )ψn(y)ψm(y)m(y)dy ,

where β >−(α +1) and γ ∈ {0,1}.

We can prove the following results.

Lemma 3.2.

bn(x,β ) =
2Nn(α +1)n

σ2n!(α +β +1)
xα+β+1

2F2

(
α +n+1,α +β +1; α +1,α +β +2;−2κ

σ2 x
)

,

where 2F2(a1,a2; b1,b2; x) is the generalized hypergeometric function given by

2F2(a1,a2; b1,b2; x) =
∞

∑
n=0

(a1)n(a2)n

(b1)n(b2)n

xn

n!
.

Proof. We have

bn(x,β ) =
2Nn

σ2

(
σ2

2κ

)α+β+1 ∫ 2κx/σ2

0
zα+β exp(−z)L(α)

n (z)dz .

Using the following formula (see e.g., [25])∫ x

0
yγ exp(−ay)L(α)

n (ay)dy =
(α +1)n

n!(γ +1)
xγ+1

2F2(α +n+1,γ +1; α +1,γ +2;−ax) ,

for x > 0 and γ >−1, we immediately obtain the formula for bn. �

Lemma 3.3.

b̃n(x,β ) =
2Nn

σ2

(
σ2

2κ

)α+β+1
[
−
(

2κx
σ2

)α+β+1 (1+α)n

n!(α +β +1)

× 2F2

(
α +β +1,α +n+1; α +β +2,α +1;−2κ

σ2 x
)

+
(−β )nΓ(α +β +1)

n! 2F2

(
0,−β +n;−α−β ,−β ;−2κ

σ2 x
)]

.
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Proof. We have

b̃n(x,β ) =
2Nn

σ2

(
σ2

2κ

)α+β+1 ∫
∞

2κx/σ2
zα+β exp(−z)L(α)

n (z)dz .

Using the following formula (see e.g., [25])∫
∞

x
yγ exp(−ay)L(α)

n (ay)dy =− (α +1)n

n!(γ +1)
xγ+1

2F2(α +n+1,γ +1; α +1,γ +2;−ax)

+
a−γ−1

n!
(α− γ)nΓ(γ +1)2F2(0,α− γ +n;−γ,α− γ;−ax) ,

for x > 0 and a > 0, we immediately obtain the formula for b̃n. �

Lemma 3.4.

am,n(k,β ,γ) =
4N2

n Nm(α +1)n

σ4n!(α +(1− γ)β +1)

(
σ2

2κ

)2α+β+2

kα+(1−γ)β+1(−1)m+n

×
m+n

∑
s=0

Cs(m,n,α−m+n,α +m−n)
s!

Γ(2α +β +2+ s)

× 3F2 (2α +β +2+ s,α +n+1,α +(1− γ)β +1; α +1,α +(1− γ)β +2;−k) ,

where Cs is the function defined by

Cs(m,n,α,β ) = (−1)m+n+s
s

∑
d=0

(
s
d

)(
m+α

n− s+d

)(
n+β

m−d

)
,(3.7)

and 3F2(a1,a2,a3; b1,b2; x) is the generalized hypergeometric function given by

3F2(a1,a2,a3; b1,b2; x) =
∞

∑
n=0

(a1)n(a2)n(a3)n

(b1)n(b2)n

xn

n!
.

Proof. We have

am,n(k,β ,γ) =
4N2

n Nm(α +1)n

σ4n!(α +(1− γ)β +1)

(
σ2

2κ

)2α+β+2

kα+(1−γ)β+1

×
∫

∞

0
z2α+β+1

2F2 (α +n+1,α +(1− γ)β +1; α +1,α +(1− γ)β +2;−kz)

×L(α)
m (z)L(α)

n (z)exp(−z)dz .

Using the following formula

L(α)
m (x)L(β )

n (x) = (−1)m+n
m+n

∑
s=0

Cs(m,n,β −m+n,α +m−n)
xs

s!
,
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where Cs is defined in (3.7) and the formula (see e.g., [25])∫
∞

0
xα−1 exp(−cx)2F2 (a1,a2; b1,b2;−x)dx = c−α

Γ(α)3F2

(
α,a1,a2; b1,b2;−1

c

)
,

for α > 0 and c > 0, we obtain the formula for am,n. �

Lemma 3.5.

ãm,n(k,β ,γ) =−am,n(k,β ,γ)+
4N2

n Nm(−(1− γ)β )nΓ(α +(1− γ)β +1)
σ4n!

(
σ2

2κ

)2α+β+2

× (−1)m+n
m+n

∑
s=0

Cs(m,n,α−m+n,α +m−n)
s!

Γ(βγ +α + s+1)

× 3F2 (βγ +α + s+1,0,−(1− γ)β +n;−α− (1− γ)β ,−(1− γ)β ;−k) .

The proof of Lemma 3.5 is similar to Lemma 3.4, so we omit it.

4. Valuation of forward starting options

A forward staring option is a contract in which the holder receives at the strike determination

time t1 an option with expiry date t2 > t1 and exercise price kS(t1) for some constant k > 0. The

terminal payoff of a forward starting put option is thus given by the following:

(kS(t1)−S(t2))+ .

The payoff function of the forward starting option looks simple, but the valuation of the option

is demanding since typically we need the models that can capture stochastic volatility and/or

jumps. Fortunately, for the TC-CIR-CEV model developed in Section 2, we are able to de-

rive the analytical formula for forward staring option prices by employing spectral expansion

method. For illustration purpose, we will focus on the example where the activity rate process

v for the absolutely continuous time change process T2 is CIR. We can write down the formula

for the time t0 = 0 value of a forward staring put option P(t1, t2;k,s0,v0)) with exercise price

kS(t1) and expiry date t2 (t0 < t1 < t2), conditioning on S(t0) = s0 and v(t0) = v0, as follows:

Theorem 4.1. Assume stochastic process for S(t) is specified in (2.1)-(2.3) and time change

process T (t) = T1(T2(t)), where T1 is a Lévy subordinator with Lévy exponent φ and T2 is an
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integrated CIR process defined in (2.6) and (2.7), then price of the forward starting put option

P(t1, t2;k,s0,v0) is

1. If β > 0, then

P(t1, t2;k,s0,v0)

= exp(−rt2)

{
∞

∑
n=0

∞

∑
m=0

(
kam,n(k1/β ,β ,1)−am,n(k1/β ,β ,0)

)
exp
[
A(t2− t1,0,φ(λn))

+A(t1,−B(t2− t1,0,φ(λn)),φ(λm))+B(t1,−B(t2− t1,0,φ(λn)),φ(λm))v0

]
ψm

(
s1/β

0

)}
,

where the function am,n can be obtained from Lemma 3.4. A and B can be found in Lemma 2.1.

2. If −(α +1)< β < 0, then

P(t1, t2;k,s0,v0)

= exp(−rt2)

{
∞

∑
n=0

∞

∑
m=0

(
kãm,n(k1/β ,β ,1)− ãm,n(k1/β ,β ,0)

)
exp
[
A(t2− t1,0,φ(λn))

+A(t1,−B(t2− t1,0,φ(λn)),φ(λm))+B(t1,−B(t2− t1,0,φ(λn)),φ(λm))v0

]
ψm

(
s1/β

0

)}
,

where the function ãm,n can be obtained from Lemma 3.5.

Proof. To prove 1, using iterated conditional expectation, we have

P(t1, t2;k,s0,v0)

= exp(−rt2)E[(kS(t1)−S(t2))+]

= exp(−rt2)E{E[(kS(t1)−S(t2))+|Ft1]}

= exp(−rt2)E{kS(t1)E[1{S(t2)<kS(t1)}|Ft1]

−E[S(t2)1{S(t2)<kS(t1)}|Ft1 ]} .(4.1)

The two expectations in the last line can be calculated using spectral expansion. Using Lemma

2.1, we have
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E[1{S(t2)<kS(t1)}|Ft1]

= E[1{Y(t2)<k1/β Y(t1)}|Ft1 ]

=
∞

∑
n=0

bn(k1/βY (t1),0)E[exp(−λnT(t2− t1))]ψn(X(T(t1)))

=
∞

∑
n=0

bn(k1/βY (t1),0)exp[A(t2− t1,0,φ(λn))+B(t2− t1,0,φ(λn))v(t1)]ψn(X(T (t1))) ,(4.2)

where we used

bn(k1/βY (t1),0) =
∫ k1/βY (t1)

0
ψn(y)m(y)dy .

Similarly, we have

E[S(t2)1{S(t2)<kS(t1)}|Ft1 ]

= E[Yβ (t2)1{Y(t2)<k1/β Y(t1)}|Ft1]

=
∞

∑
n=0

bn(k1/βY (t1),β )exp[A(t2− t1,0,φ(λn))+B(t2− t1,0,φ(λn))v(t1)]ψn(X(T (t1))) ,

(4.3)

where we used

bn(k1/βY (t1),β ) =
∫ k1/βY (t1)

0
yβ

ψn(y)m(y)dy .

Plugging (4.2) and (4.3) into (4.1) and using spectral expansion and Lemma 2.1 again, we obtain

P(t1, t2;k,s0,v0)

= exp(−rt2)E

{
kYβ (t1)

∞

∑
n=0

bn(k1/β Y(t1),0)exp
[
A(t2− t1,0,φ(λn))

+B(t2− t1,0,φ(λn))v(t1)
]
ψn(X(T (t1)))−

∞

∑
n=0

bn(k1/βY (t1),β )

× exp
[
A(t2− t1,0,φ(λn))+B(t2− t1,0,φ(λn))v(t1)

]
ψn(X(T (t1)))

}
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= exp(−rt2)

{
∞

∑
n=0

∞

∑
m=0

(
kam,n(k1/β ,β ,1)−am,n(k1/β ,β ,0)

)
exp
[
A(t2− t1,0,φ(λn))

+A(t1,−B(t2− t1,0,φ(λn)),φ(λm))+B(t1,−B(t2− t1,0,φ(λn)),φ(λm))v0

]
ψm

(
s1/β

0

)}
.

where we used

am,n(k1β ,β ,1) =
∫

∞

0
yβ bn(k1β y,0)ψn(y)ψm(y)m(y)dy ,

and

am,n(k1β ,β ,0) =
∫

∞

0
bn(k1β y,β )ψn(y)ψm(y)m(y)dy .

The proof to 2 is similar to 1 and we omit it. �

5. Numerical Analysis
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FIGURE 1. Option prices for different β . The parameters are κ = 3, θ = 1,

σ = 1, κv = 4, θv = 1, σv = 1, ϑ = 1, ω = 0.02, r = 0.05, s0 = 1, v0 = 1,

k = 1.2, t1 = 0.5 and t2 = 1.

In this section, we numerically study forward starting option pricing based on a specific

TC-CIR-CEV model. We will focus on the put options. We assume the time change process
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FIGURE 2. Option prices for different θ . The parameters are κ = 3, σ = 1,

κv = 4, θv = 1, σv = 1, ϑ = 1, ω = 0.02, r = 0.05, s0 = 1, v0 = 1, t1 = 0.5 and

t2 = 1.
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FIGURE 3. Option prices for different σ . The parameters are κ = 3, θ = 1,

κv = 4, θv = 1, σv = 1, ϑ = 1, ω = 0.02, r = 0.05, s0 = 1, v0 = 1, t1 = 0.5 and

t2 = 1.
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FIGURE 4. Option prices for different ϑ . The parameters are κ = 3, θ = 1,

σ = 1, κv = 4, θv = 1, σv = 1, ω = 0.02, r = 0.05, s0 = 1, v0 = 1, t1 = 0.5 and

t2 = 1.
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FIGURE 5. Option prices for different θv. The parameters are κ = 3, θ = 1,

σ = 1, κv = 4, σv = 1, ϑ = 1, ω = 0.02, r = 0.05, s0 = 1, v0 = 1, t1 = 0.5 and

t2 = 1.
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T (t) = T1(T2(t)), where T2 is an integrated CIR process and T1 is a Gamma subordinator with

the Lévy exponent

φ(λ ) =
ϑ 2

ω
log
(

1+
ωλ

ϑ

)
,

where ϑ = E(T(1)) and ω = Var(T(1)).

We employ the spectral expansion method to calculate the option prices. In practice, we need

to truncate the eigenfunction expansion after a finite number of terms. We will following [16]

by truncating the infinite series when a given error tolerance level is reached. In the base case of

the numerical analysis, we select the following parameter values: κ = 3, θ = 1, σ = 1, κv = 4,

θv = 1, σv = 1, ϑ = 1, and ω = 0.02. We find the convergence of the expansion is really fast

under these parameters.

In Fig.1, we plot the option prices for different values of power transformation parameter β .

It is clear the option prices are sensitive to β . Different β implies different levels of mean and

volatility for the asset prices. It seems that the mean of the underlying asset price increases with

β when β > 0 and decreases with β when β < 0. As a result, the option values decline with

respect to β when β < 0, but increase when β > 0.

We also evaluate the effect of other parameter value changes on the forward starting option

prices. We consider the sensitivity of option prices with respect to four parameters: the long

term mean parameter θ for the process X , the volatility term σ for the process X , the mean

parameter ϑ for the time change process T1(1) and the mean parameter θv for the activity rate

process v of T2. We plot the forward starting option prices against different values of excise

price constant k for both β =−1 and β = 1.

When β is negative (positive), the mean of asset price S is a decreasing (increasing) function

of mean of process X . The prices of forward staring put options, however, will depend on the

mean of the difference between kS(t1) and S(t2). Therefore, we expect the relationship between

θ and the option prices will be dependent on the values of k and may not be monotone. From

Fig. 2, we find for the given parameters, the option prices decrease with θ in the case β =−1.

When β = 1, the prices decrease with θ when k is small but increase when k becomes larger.

From Figs. 3-5, it is clear that the option prices increase with σ , ϑ and θv in both β = −1

and β = 1 cases. These are as expected since when σ , ϑ and θv increase, the variability in the



A SPECTRAL APPROACH TO PRICING OF FORWARD STARTING OPTIONS 19

asset prices will be greater no matter whether β is negative or positive. When the variability

increases, the option prices will also increase.

6. Conclusion

In the classical models for the valuation of forward starting options, the underlying state

variables are usually assumed to follow the AJD process where the drift, diffusion and jump

intensity all have affine dependence on the state variables. In this paper, we propose a new

nonlinear CEV model for the purpose of pricing forward starting options. The asset price is

modeled by a power transformed time changed CIR process, where the time change process is a

composition of a Lévy subordinator and an absolutely continuous process. The resulting model

introduces nonlinearity in both drift and diffusion parts of the underlying process and allows

for flexible forms of jump and stochastic volatility processes. We employ spectral expansion

method to obtain the analytical formulas for the prices of forward starting options. We also

numerically implement our model and test its sensitivity to some of the key parameters of the

underlying processes.
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