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Abstract: It is a well-known fact that the difference between the continuous compounding rate of 

returns of financial derivatives    and its geometric rate of returns    is negligible if    is 

typically of        . The aim of this paper is to find the value of this difference when    is not 

negligible. We first establish that    and hence    are distributed according to the generalized 

hyperbolic distribution (GHd) to accommodate linear transformation property. We then apply a 

stochastic algorithm to trace the non-zero value of    and hence the value of    and their difference. 

An illustrative example is given in concrete setting. 
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1. Introduction 

     In valuation and options pricing theories for derivative securities as well as in 

other question in finance, the distributional form of the returns on the underlying 

assets plays a key role. For many years both financial economists and statisticians 

have been concerned with description of stock market returns. The form of the 

distribution of stock returns is a crucial assumption for mean-variance portfolio theory, 

theoretical models of capital asset prices, and the prices of contingent claims. For 

example, understanding the behaviour of the variance is essential to option pricing 

models. 

         It is widely known that the assumption according to which the financial 

asset returns are normally distributed is not supported by empirical evidence. Cont 

(2001), concludes that the precise form of the tail of financial returns distribution is 

difficult to determine, and in order for a parametric distributional model to reproduce 

the properties of the empirical distribution it must have at least four parameters: a 

location parameter, a scale parameter, a parameter describing the decay of the tails 

and an asymmetry parameter, therefore it is important to develop theoretical models 

based on other distribution classes, explaining asymmetry and heavy-tail phenomena. 

In this sense, stable distributions and normal mixture distributions have been used 

with considerable success.  

     Let         denote the price process of a security, in particular of a stock. 

The rate of daily arithmetic returns are defined by (the continuous compounding) 

                            
         

    
                            (1) 

and the yearly arithmetic returns are defined by  

                                
       

  
      

where    and    are the prices of the security at the first and last trading day of the 

year respectively, we have that    may be  
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That this, we have describe the yearly arithmetic return as a function, or a sum of 

daily arithmetic returns. 

The daily geometric returns are defined by 

                      

while the yearly geometric returns are given by  

                                                        (3) 

we can as well write    as 

                         (∏
  

    

 
   ) 

                        ∑    (
  

    
) 

     ∑   
 
    .               (4) 

This means that yearly geometric returns are equal to the sum of daily geometric 

returns (Aas and Dimakos, 2004) 

Notice that from (4) 

                                                  (5) 

which does not hold for   . The underlying price process is a continuous-time 

process from which discrete time series are drawn at equidistant time point but for 

continuous time processes returns with continuous compounding are the natural 

choice. The fact that the underlying process is a continuous time process leads to the 

use of   both as a continuous and as a discrete parameter. Eberlain and Keller(1995) 

had identified distributional form of compound returns as the generalized Hyperbolic 

distribution    , since it has been observed that actual returns distributions appear 

fat-tailed (compared to Normal) and skewed. 

 The relationship between (2) and (4) is  

                                           (6) 

which can be decomposed into a Taylor series as  

                            
 

 
  

  
 

 
  

          (7a) 

or 

                              
 

 
  

  
 

 
  

                  (7b)        
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which simplifies to zero if    is small. That is the difference between    and    is 

negligible when    is typically of the order     . If    is small, this means in 

practice that volatility of a price series is small , and the time resolution is high and  

geometric and arithmetic returns are quite similar, but when volatility increases and 

the time resolution decreases, the differences grows larger. The question here; what is 

the numerical differences between    and    if the time resolution decreases and 

the differences grow large. 

This question is what this study seeks to address. For portfolio management, the 

practical utility of non-normal distribution like    requires two things; 

I. There must be a fact algorithm for calibrating the parameters to data and 

II. The distribution family must be closed under linear combinations 

(transformations). 

Under this linear transformation, we propose a stochastic algorithm to address the 

question above. 

Our proposed method has been successfully used in solving linear system and it is 

capable of overcoming the sparcity difficulty and also reaching the solution at one 

iteration. Thus we are going to apply a stochastic approximation method introduced 

by Okoroafor and Ekere (1999) and have been extremely studied by other authors (see 

for example Okorafor and Osu, 2004,2005). 

2. Option’s Pricing with the Generalized Hyperbolic Distribution 

We consider a market model with a riskless asset M on n risky assets      

     . We make the usual assumptions that there exists a probability space 

         a complete and right continuous filtrations              where    

represents the information available up to time   and that    are stochastic 

processes adapted to      . Moreover, we assume that there exist a probability 

measure   equivalent to   which is called forward neutral probability (El Karoui 
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et al, 1995), such that the value of the riskless asset   remains constantly equal to   

through time and the dynamics of prices of assets    under   are the following 

                         
    

 〈  
    〉, 

where       is a d-dimensional  -Brownian motion adapted to      , 〈   〉 is 

the Euclidean scalar product in    and, for all        ,   is a d- dimensional 

process such that               where   is a closed bounded set in the 

space of     real matrices          and       (which we call set of 

admissible volatilities) is the set of  -valued processes progressively measurable with 

respect of      . 

We can write the dynamics of the risky assets in a none compact vectorial notation in 

this way: 

      ̅      

                ̅          (

     
    
 
 

 
 

 
 

 
  

).            (8)                                                                 

In this paper concern is shown mostly to the Generalized Hyperbolic variates. The 

probability density function of the Generalized hyperbolic distribution (GHd)  is 

given as(Necula, 2009): 

                                    (     {   }  )
 

 
   

 ⁄
                                                    

        (       √            )                            (9) 

where               
(     )

 
 

 

√   
  

 
    [   √     ]

 and        denotes the modified 

Bessel function of the third kind with index λ. For    , the Generalized 

Hyperbolic Distribution is called the simple Hyperbolic Distribution           . 
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√     

    (   √     )
   (  √   {   }        ).    (10) 

The name of hyperbolic distribution derives from the fact that the log-pdf represents 

the equation of a hyperbola.  

       Considering an asset dynamics given by the exponential Brownian motion 

process, we can find the price of a European call option strike price   at exercise 

time   as (Benth et al, 2005); 

                                 ,                        (11)                                         

where   is the risk-free interest rate and   is an equivalent martingale measure. 

Consider a standard Black-Scholes type market consisting of one risk-free bond and N 

risky stocks and a finite time horizon      (Korn, 1997). The price  process of 

underlying assets      is governed by the following stochastic differential equation  

                                    ,              (12) 

where   and   are the drift and the diffusion of the asset value, and    is a 

standard Brownian motion. The institution hedges the asset’s value using put options. 

Let today’s market price be defined of a  -period put as                      

(Huang, et al, 2012). For simplicity, we assume that all options are priced according 

to the Black-Scholes option pricing models is(Merton,et al 1978);  

                                     ,           (13) 

where 

              
   

 

 
 (  

 

 
  ) 

 √ 
        

   
 

 
 (  

 

 
  ) 

 √ 
.                             

  2.1. Linear Transformation 

Let         be m independent GHd variable with common shape parameters 

     , but having individual location parameters         and individual scale 

parameter        . Then, the sum variable           is also GHd. That  

is                    and        where        and     , then 
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Let                     and         then 

                             (Hu and Kercheval, 2007). 

Now if                and    , then the portfolio       is a one 

dimensional skewed-t distribution and  

                                         .     (14) 

Thus the marginal distribution are automatically obtained once the multi-variance 

distributions are calculated, i.e,                                Here skewed-t 

distribution is subfamily of generalized distribution      championed by Mc Neil et 

al (2005).     with the parameterization above is closed under linear transformation. 

Under the       
            

    
 is the asset price return at a given time scale T, and 

     is the asset price at time t. 

2.2.The Optimization Model 

Under the assumption that the compound return is distributed according to   , given 

the linear transformation, the optimization problem is formulated into equivalent 

minimization problem. 

                                               (15) 

      {
      
           

}    

Where   {   } is a given     real matrix and b is a given n-dimensional space. 

  is a convex function not necessarily differentiable, and it is well known that if 

     {           }                   the sub gradient    of 

       at   is defined as (Okoroafor and Osu ,2004) 

       {                 〈   〉}                (16) 

And it is a monotone.    a Euclidean n-dimensional space with the usual norm 

‖ ‖      and inner product 〈   〉  ∑     
 
   , where    denotes the transpose of 

the vector     . 

Equation (15) is a special case of a generalized equation consisting typically of a 

smooth part   (the gradient of a real valued differentiable convex function) and a 

multivalued non-smooth part   (the sub-gradient of a proper lower semi continuous 
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function) expressed in the form  

                                             (17) 

So that the problem (15) is equivalent to minimizing the function f defined as  

                    
 

 
                             (18) 

a number of procedures are available for solving such problems as in (18) (see for 

example Uko, (1992)). In what follows, we formulate a stochastic algorithm method 

since the form of (18) suggests a reformation of the original multi valued problem as a 

search for zero of a single-valued section of the smooth function   . 

 

3. Formulation of Stochastic Algorithm 

 Denote     
      

  
 
       

      
     

    

As in (Okoroafor and Osu, 2004), we constructed a sequence of random vectors 

      that strongly approximate        (  ) for each k in the sense that 

                           ‖  
     ‖   . 

And their expected Euclidean distance 

 ‖  
     ‖

 
 

is minimum so that a search in the direction of the random sequence {  
 } 

approximates a search through the true gradient     and this is expected to lead to the 

non-zero global minimizing factor if it exists. To this end, we consider the natural 

Taylor’s expansion of a quadratic function f about point    given by 

                    〈           〉  
 

 
                       (19) 

where    is on the line segment between   and    and       is the Hessian of   

at   . 

Let       be a sequence of non-observable random errors satisfying 

                  (  )    for each   

and 
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              (  ) (  )              . 

Let                     be real- valued independent observable random variable 

performed on                  
 

 
       chosen in the neighbourhood of 

   for a fixed k, the 

    (  )   (    )   (  ) 

            〈  (  )   〉  
 

 
∑ ∑                

     (  )   (20)  

is identifiable with (15) so the fixed       satisfying ∑       
    

 

 
∑    

  
    

linearizes  , (Okoroafor and Osu, 2005) and hence the least square approximation 

                         ∑        ∑     
   

   
 
   ,        (21) 

exists and is adequate for approximation    such that Euclidean distance 

                     ‖         ‖    for each k     (22) 

and also yields, by elementary calculation the minimum Euclidean distance 

                     ‖         ‖             (23) 

in the sequel we assume, without loss of generality that      {  } is, thus, a 

sequence of independent and identically distributed random vectors and determines 

the direction of search. 

It follows that by letting    be an initial point, the sequence of path produced by 

{  }   
  through its definition 

             

By successive iteration, is the trajectory of the point    and any limiting point of the 

sequence is therefore the attractor of   . 

  3.1. Getting The Domain of Attraction 

Let   
       be partitioned into exclusive segments,                      

Let    be chosen randomly in     such that  (  )       

Let     (    )be the probability that      so that 

                               ∑      
                                    (24) 
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Put 

   
     

∑      
 
   

 

So that 

                           ̅  ∑      ∑
       

∑      
 
   

 
   

 
     .        (25) 

It is shown in (Okoroafor and Osu, 2004) that if 

               ̂   ̅         ,                      (26) 

where   is as in(21), then 

   ̂     〈 (  )     〉  It follows that the segment    where  ̂     contains 

    for which      is minimum and hence we have     ̅     so that if { } is 

the attractor of the point  ̅ and   { }       ̅    then          ̂    or 

else          ̂  with global domain of attraction          ̅ .  Where  

                    {                   }          (27) 

is a way of stochastically solving problem (15). Thus we have 

Lemma 1: suppose that   ̂     thus there exists a neighborhood     ̂        

of   ̂ such that for any initial guess  ̂      ̅ , the non-negative minimizer   ̂ is 

obtained as the limit of iteratively constructed sequence {  }   
  generated form 

 ̂                . 

Then with  ̂ as our starting point we search for the minimizer of   as follows: 

starting at  ̂ as in Eq. (26). 

A. Compute the    as in Eq. (21) 

B. Compute the corresponding   as specified below 

C. Compute              

Has the process converged? i.e., ‖       ‖         if yes, then 

         if no return to A. 

Here we prove the strong convergence of the sequence to the solution of (27) 

Theorem 1: Let {  } be a real sequence such that 
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I.                 

II. ∑    
      

III. ∑     
      

Then the sequence {  }   
  generated by  ̂      ̂        and defined 

iteratively by              remain in       and converges strongly to   ̂. 

Proof: Let      ‖      ‖ 

Then {  }   
  is a sequence of independent random variable and from (22)       

for each K. 

Noticing that the sequence of partial sums {  }   
 ,    ∑   

 
      is a Martingale. 

Therefore, 

   
  ∑    

 

 

   

 ∑    

 

   

 ‖      ‖
 
 

                                 ∑     
   . 

And  

∑    
            ∑     

      

Hence by a version of Martingale convergence theorem (Whittle, 1976), we have 

   
   

   ∑     
 

   
 

So that  

   
   

   ‖      ‖    

Noticing that in (15), A is positive definite so that      is convex and hence    is 

monotone. But an earlier result in theory of monotone operators, due to (Chidume, 

1990), shows that the sequence {  }  generated by          and defined 

iteratively by: 

              

Remain in       and converges strongly to {           }  It follows from this 

result that our sequence converges strongly to     if        

   4. Empirical Example 

The following illustrates the method in a concrete setting; 
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(

 

  
 ⁄  

 ⁄

 
 ⁄   

 ⁄

 
 ⁄  

 ⁄  )

 (
  

  

  

)  

(

 

  
  ⁄

  
  ⁄

  
  ⁄ )

 , the actual solution by 

Richardson method at the eighty iteration is 

                              . The above procedure starting at 

  
        gives after one iteration;  

                                       , which is quite close to the 

solution. This gives the value of     as:  

                                       , and the difference between 

    and     gives                      (using 7a and 7b). 

   This shows that the difference between the Geometric returns and Arithmetic 

returns is not negligible. 

 

4.1. Concluding Remarks 

In the present paper, after carefully studying the process with hyperbolic returns, we 

discovered that, if     is small, in practice the volatility of a price series is small, and 

the time resolution is high, geometric and arithmetic returns are quite similar, but 

when volatility increase and the time resolution decreases, the difference grows large. 

We introduce a transformation             where                   ,   is 

a real     coefficient matrix and   is       dimensional real vector taken Y as 

the sum of geometric returns and X as the sum of arithmetic returns. The numerical 

difference between      and       is not negligible if the time resolution decreases 

and the volatility of price series is large. 
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