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Abstract. In this paper, we examine the framework to estimate financial risk called conditional-value-at-risk

(CVaR) and examine models to optimize portfolios by minimizing CVaR. We note that total risk can be a function

of multiple risk factors combined in a linear or nonlinear forms. We demonstrate that, when using CVaR, several

common nonlinear models can be expressed as second order cone programming problems and therefore efficiently

solved using modern algorithms. This property is not shared with the more classical estimation of financial risk

based on value-at-risk.
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1. INTRODUCTION

Financial institutes make investments in different assets to grow their business but the vari-

ability of returns gives rise to risk. So risk, along with returns, is a major consideration for

capital budgeting decisions. Thus, it becomes pertinent to measure risk.
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There are several types of risk, for example, interest rate risk, equity risk, currency risk, com-

modity risk, credit spread risk, default risk, operational risk etc [13]. Various risk measures have

been proposed to quantify these risks, for example, Market beta, Standard deviation, Downside

deviation, Mean absolute deviation, Semi-mean absolute deviation etc. The most popular and

widely used risk measure is Value-at-Risk (VaR), see for example, Jorion [14], Linsmeier and

Pearson [23], Basak and Shapiro [6], Glasserman et al. [12], Gençay and Selçuk [11], Adrian

and Shin [1], and many more. VaR is often approximated by linear approximation of the risk

portfolios which assumes normal distribution of losses. As a result, VaR becomes unstable when

losses are not normally distributed (which is often the case) [22]. In these cases, historical or

Monte-Carlo simulations are often used in the presence of non-linear instruments [2, 10, 19].

Although, VaR is a very popular risk measure, it lacks subadditivity and convexity [5]. As an

alternative measure of risk, Conditional-Value-at-Risk (CVaR) has better properties than VaR

and is proved to be a coherent and convex risk measure [18, 22]. It provides us convenient

way of estimating risk in the presence of linear or non-linear instruments. It has been used

in many applications, for example, Bucay and Rosen [8], Uryasev [25], Andersson et al. [4],

Rockafellar and Uryasev [21,22], Quaranta and Zaffaroni [20], Zhu and Fukushima [26], Noyan

and Rudolf [17], Dai et al. [9] and many more.

In this paper, we demonstrate a novel advantage of CVaR over VaR. Specifically, we show

that when using CVaR it is possible to combine multiple risk factors in a number of nonlinear

models and still produce a final optimization problem that is a second order cone program

(SOCP). Since modern algorithms can efficiently solve SOCPs, this allows for a broad class

of risk optimization model with tractable solve times. In this paper, we define a model to

minimize the total risk as a function of different risk factors and discuss the methodology to

solve the same.

The remaining paper is organized as follows. In Section 2, we consider different risk factors

that contribute to the total risk of any financial firm and total risk is defined as a non-linear

function of these risk factors assuming different risk factors follow different distributions of

losses. The model to minimize the total risk, using CVaR to measure risk, is formulated and

CVaR is also known as average value-at-risk, mean access loss, expected shortfall, or tail VaR [21].
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transformed into an SOCP in Section 3. Finally, in Section 4 conclusion is made and future

directions are discussed.

2. DESCRIPTION OF THE MODEL

Assuming N different assets, the investment decision vector x is expressed as:

(1) x = (x1,x2, ...,xN),

where xi, i = 1,2, ...,N represents the proportion of budget to invest in ith asset. These invest-

ment proportions xi are assumed to be non-negative and must satisfy the unity budget constraint

(2)
N

∑
i=1

xi = 1,xi ≥ 0 for all i = 1,2, ...,N.

The returns of each asset are random and so are the losses (being negative of returns).

Our goal is to minimize total risk. There are several types of risk in market: interest rate

risk, equity risk, currency risk, commodity risk, credit spread risk, default risk, operational risk

etc [13]. Each asset can have a distinct combination of risk factors and these risk factors may

follow different distributions of losses. Here we consider m distinct risk factors, so total risk is

the function of these risk factors.

(3) Total Risk (T R) = f (γ1,γ2, ...,γm),

where γk is the distribution of losses for kth risk factor. We classify the assets into three cate-

gories as follows

(4) T R = f

(⋃
k∈A

(γk),
⋃
k∈B

(γk),
⋃
k∈C

(γk)

)
,

(5)
T R = ∑

k∈A
βkCVaRαk(x,γk)+ ∑

k′∈B
βk′ ‖{(CVaRαk(x,γk)) | k ∈ Bk′}‖2+

∑
k′∈C

βk′ ‖{(CVaRαk(x,γk)) | k ∈Ck′}‖2
2 ,

where

(1) The collection γk,k ∈ A represents the distributions of losses for the linear risk factors.
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(2) The collection γk,k ∈ B represents the distributions of losses for the risk factors which

have non-linear contribution to the total risk and their non-linearity is defined by the l2

norm.

(3) The collection γk,k ∈C represents distributions of losses for the risk factors which have

non-linear contribution to the total risk and their non-linearity is defined by the l2 norm

squared.

(4) The distribution of losses for the kth risk factor γk, across the N assets is written as

γk = (γ1 j,γ2 j, ...,γN j) ∈ RN , 1≤ j ≤ Qk,

where γi j represents the jth scenario of the ith asset while considering Qk number of

historical scenarios for kth risk factor.

To minimize the total risk, there is need to calculate the risk in all the distributions of losses

for different risk factors. The random variable X(x,γk) represents the losses of each asset for

kth risk factor. These depend on the random losses and the investment in each asset. The risk

measure CVaRαk(X(x,γk)), for a given parameter 0 < αk < 1, can be calculated as [22]

(6) CVaRαk(X(x,γk)) = min
lk∈R

x

{
lk +

1
1−αk

E[(X(x,γk)− lk)+]
}
,

(7) = min
lk∈R

xi

{
lk +

1
1−αk

[
Qk

∑
j=1

(
N

∑
i=1

γi jxi− lk

)+

ρ j

]}
, k ∈ {1,2, ...,m},

where (a)+ = maximum{0,a} and lk represents VaR that is obtained as a by product while op-

timizing CVaR [22]. The function E[·] represents the expected loss/risk of the loss distribution

with joint probability distribution function p(γ1 j,γ2 j, ...,γN j)) = ρ j, j ∈ {1,2, ...,Qk} for kth risk

factor.

2.1. Risk Estimation across the Linear Risk Factors. The set A provides indices of the

risk factors that are treated linearly. The risk across these risk factors is calculated as a linear

combination as follows:

(8) ∑
k∈A

βkCVaRαk(x,γk),

where βk,k ∈ A are assumed to be any non-negative real numbers.
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2.2. Risk Estimation across the Non-linear Risk Factors. The sets B and C provide indices

that are treated non-linearly. Set B corresponds to risk factors that are combined through an l2

norm. For each k′ ∈ B, we generate a set Bk′ that links the appropriate risk measures together.

The resulting risk across risk factors in B is calculated as:

∑
k′∈B

βk′

(
∑

k∈Bk′

(CVaRαk(x,γk))
2

) 1
2

.

where βk′,k′ ∈ B are assumed to be any non-negative real numbers.

Set C corresponds to risk factors that are combined through an l2 norm squared. For each

k′ ∈C, we generate a set Ck′ that links the appropriate risk measures together. The resulting risk

across risk factors in C is calculated as:

∑
k′∈C

βk′

(
∑

k∈Ck′

(CVaRαk(x,γk))
2

)
.

where βk′,k′ ∈C are assumed to be any non-negative real numbers.

The total risk across all the linear and non-linear risk factors can be defined as follows

(9)
T R = ∑

k∈A
βkCVaRαk(x,γk)+ ∑

k′∈B
βk′

(
∑

k∈Bk′
(CVaRαk(x,γk))

2

) 1
2

+

∑
k′∈C

βk′

(
∑

k∈Ck′
(CVaRαk(x,γk))

2

)
where βk, 1≤ k ≤ m and βk′ , 1≤ k′ ≤ m are any non-negative real numbers.

3. MODEL FORMULATION AND TRANSFORMATION

The model to minimize total risk (9) subject to constraints (2) is formulated as follows

(10)

Minimize ∑
k∈A

βkCVaRαk(x,γk)+ ∑
k′∈B

βk′

(
∑

k∈Bk′
(CVaRαk(x,γk))

2

) 1
2

+

∑
k′∈C

βk′

(
∑

k∈Ck′
(CVaRαk(x,γk))

2

)
subject to

N
∑

i=1
xi = 1,

xi ≥ 0, i = 1,2, ...,N.
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Now, we transform this non-linear model (10) into an equivalent SOCP. Assuming

rk = CVaRαk(X(x,γk)) for 1≤ k ≤ m, the model (10) is transformed into

(11)

Minimize ∑
k∈A

βkrk + ∑
k′∈B

βk′( ∑
k∈Bk′

r2
k)

1
2 + ∑

k′∈C
βk′( ∑

k∈Ck′
r2

k)

subject to

rk = CVaRαk(X(x,γk)), 1≤ k ≤ m,
N
∑

i=1
xi = 1,

xi ≥ 0, i = 1,2, ...,N.

Using equation (7), this can be rewritten as

(12)

Minimize ∑
k∈A

βkrk + ∑
k′∈B

βk′( ∑
k∈Bk′

r2
k)

1
2 + ∑

k′∈C
βk′( ∑

k∈Ck′
r2

k)

subject to

rk = lk +
1

1−αk

[
Qk
∑
j=1

(
N
∑

i=1
γi jxi− lk

)+

ρ j

]
, 1≤ k ≤ m,

N
∑

i=1
xi = 1,

xi ≥ 0, i = 1,2, ...,N.

The non-linear constraints of problem (12) can be transformed into linear constraints [22] using

dummy variables s j,1≤ j ≤ Qk,

(13)

Minimize ∑
k∈A

βkrk + ∑
k′∈B

βk′( ∑
k∈Bk′

r2
k)

1
2 + ∑

k′∈C
βk′( ∑

k∈Ck′
r2

k)

subject to

rk = lk +
1

1−αk

[
Qk
∑
j=1

s jρ j

]
, 1≤ k ≤ m,

N
∑

i=1
γi jxi− lk− s j ≤ 0, 1≤ k ≤ m,1≤ j ≤ Qk,

N
∑

i=1
xi = 1,

xi ≥ 0, i = 1,2, ...,N,

s j ≥ 0, 1≤ j ≤ Qk.
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Defining tk′ = ( ∑
k∈Bk′

r2
k)

1
2 ,k′ ∈B and tk′ = ( ∑

k∈Ck′
r2

k)
1
2 ,k′ ∈C, the problem (13) can be transformed

into the following SOCP

(14)

Minimize ∑
k∈A

βkrk + ∑
k′∈B

βk′tk′+ ∑
k′∈C

βk′t2
k′

subject to

rk = lk +
1

1−αk

[
Qk
∑
j=1

s jρ j

]
, 1≤ k ≤ m,

N
∑

i=1
γi jxi− lk− s j ≤ 0, 1≤ k ≤ m,1≤ j ≤ Qk,

∑
k∈Bk′

r2
k ≤ t2

k′,k
′ ∈ B,

∑
k∈Ck′

r2
k ≤ t2

k′,k
′ ∈C,

N
∑

i=1
xi = 1,

xi ≥ 0, i = 1,2, ...,N,

s j ≥ 0, 1≤ j ≤ Qk,

tk′ ≥ 0,k′ ∈ B,

tk′ ≥ 0,k′ ∈C.

The quadratic constrains ∑
k∈Bk′

r2
k ≤ t2

k′,k
′ ∈ B and ∑

k∈Ck′
r2

k ≤ t2
k′,k
′ ∈C in problem (14) represents

the Lorentz cones, so the model can be rewritten as follows

Minimize ∑
k∈A

βkrk + ∑
k′∈B

βk′tk′+ ∑
k′∈C

βk′t2
k′

subject to

rk = lk +
1

1−αk

[
Qk
∑
j=1

s jρ j

]
, 1≤ k ≤ m,

N
∑

i=1
γi jxi− lk− s j ≤ 0, 1≤ k ≤ m,1≤ j ≤ Qk,

N
∑

i=1
xi = 1,

The constraint ∑
k∈Bk′

r2
k ≤ t2

k′ ,k
′ ∈ B, is equivalent to ∑

k∈Bk′
r2

k = t2
k′ ,k
′ ∈ B due to the fact that we are minimizing

tk′ ,k′ ∈ B. An Analogous comment holds for the ∑
k∈Ck′

r2
k ≤ t2

k′ ,k
′ ∈C constraint.
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(15)

xi ≥ 0, i = 1,2, ...,N,

s j ≥ 0, 1≤ j ≤ Qk,

tk′ ≥ 0,k′ ∈ B,

tk′ ≥ 0,k′ ∈C,

(rk′, tk′) ∈L k′,k′ ∈ B,

(rk′, tk′) ∈L k′,k′ ∈C,

where L k′ = {(rk′, tk′) ∈ Rk′×R| ∑
k′

r2
k′ ≤ t2

k′}.

The model (15) is an SOCP. As such, a number of algorithms exist that guarantee converging

to a solution to this problem [3, 15, 16, 24]. For example, it can be solved by using any of the

solvers: QUADPROG, SeDuMi, CPLEX, Gurobi, or MOSEK.

Remark 1. If set B = φ and C = φ as well, then Problem (15) will be a linear model that can

also be solved by using Simplex algorithm.

4. CONCLUSION AND FUTURE DIRECTIONS

In portfolio design, there generally exist many risk factors across the assets. The total risk

depends on all the risk factors simultaneously. This total risk, being a function of different risk

factors, can include linear or non-linear forms. We have studied the problem by considering

total risk as a non-linear function where some risk factors are assumed to be linear, some follow

the l2 norm and others follow the l2 norm squared. We demonstrate that, when risk is measured

using CVaR, the resulting model is an SOCP and therefore solvable by a number of modern

algorithms.

In this paper we have presented the methodology to transform a specific non-linear model

into a tractable SOCP. Our next step is to perform some experiments and check the applicability

of the proposed method by implementing it to some real life data. Moreover, this method is

applicable to a specific class of problems where non-linearity can be defined as a quadratic form.

However, total risk could have any kind of non-linearity so there is still scope for advancements

in the proposed method that can support the more general forms of non-linearity.
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